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ABSTRACT 

Cities are constantly evolving, complex systems; and modeling them, both theoretically 

and empirically, is a complicated task.  However, understanding the manner in which developed 

regions change over time and space can be of great importance for transportation researchers and 

planners. In this paper, methodologies for modeling developed areas are developed while 

incorporating spatial and temporal effects of the data. The work emphasizes spatial relationships 

between various geographic, land-use, and demographic variables characterizing fine zones across 

regions. It derives and combines land cover data for the Austin, Texas region from a 

panel of satellite images and U.S. Census of Population data. Models for population, vehicle 

ownership, and developed, residential, and agricultural land cover are estimated; and the effects 

of space and time on the models are shown to be statistically significant. Simulations of 

population and land cover for the year 2020 help to illustrate the strengths and limitations of the 

models. 

 
INTRODUCTION 

Urban systems are intricate, multifaceted and constantly evolving. Their evolution is 

dictated by a large number of influences, including public policy, individual preferences and 

actions, the physical landscape, technology and history. All of these factors (and more) interact 

in myriad ways.  Discerning how and why urban systems evolve is, from the start, an extremely 

difficult task. 

There is great benefit to uncovering the dynamics underlying urban systems. 

Understanding the ways in which geographic, economic, demographic, political and other factors 

interact is of interest to transportation engineers and land use planners, economists as well as 

historians, policymakers and the public. Models that reliably track these interactions are of great 

interest to transportation planners, as they illuminate how, among other things, policy impacts 

land use and travel patterns, welfare and development, congestion and air quality.
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 Parker, et. al. (2003) discussed the wide range of many land-use/cover change (LUCC) 
models recently developed.  They pointed out that, due to the complexity of the systems 
encompassing land-use/cover, no single existing model is of more use than others; thus, a wide 
range of models, from the theoretical to the empirical, are being investigated by a variety of 
researchers (see, e.g., Candau (2002); Clarke and Gaydos (1998); Parker, Berger and Manson 
(2001)).  In this paper, a closer connection between the real world and the model, as opposed to 
largely theoretical work, is sought.  This parallels some recent models, developed for use by 
planning organizations for regional forecasting and policymaking.  The regional models most 
similar to the work undertaken here are UrbanSim, What If?, and CUF2. 
 UrbanSim (Waddell 2002) micro-simulates the effects of location, land use, and policy 
decisions by households, workers, developers and policymakers on the land use patterns and 
rents across a region.  Land use and development is modeled at the level of single parcels. Others 
are modeled at the level of user-defined grid cells which have no lower bound.  Klosterman’s 
(1999) “What if?” model of land use assigns land uses to a set of homogeneous zones in a 
bottom-up fashion, derived from socioeconomic, geographic, transportation and zoning 
information.   Landis and Zhang’s (1998) California Urban Futures 2 (CUF2) model employs 
multinomial models of land-use change per hectare (or other unit of observation) to predict 
future land use patterns.   
 One of the major drawbacks to many of these models is that they fail to incorporate and 
integrate the spatial and temporal correlations that are present in urban systems.  That is, on an 
intuitive level, it would be expected that plots of land which are “close,” in either spatial or 
temporal dimensions, would have more similarities which would influence or be representative 
of their characteristics than those which are “far” away.  Whereas panel data techniques that 
account for temporal correlations are in widespread use, the methods described in Anselin (1988) 
and Elhorst (2003) – used to account for correlations, or more correctly the autocorrelations, in 
the spatial dimension –are less well known.  There have been a variety of studies accounting for 
spatial autocorrelation.  For example Case (1992) examined the influence of neighbors on 
technological changes on Indonesian farms, Coughlin et al. (2003) looked at the effect of spatial 
dependence on state lotteries in the U.S., and Dubin (1991) studied the spatial autocorrelations of 
residential neighborhood qualities.  However, most studies incorporating spatial autocorrelation 
do not incorporate temporal correlations, and their focus is not aimed at transportation-based 
applications.  
 Researcher and planners would like to obtain as much information as possible from the 
spatial and temporal characteristics of the urban landscape.  A primary goal of this work is to 
develop methodologies to analyze urban growth that account for such characteristics and are of 
interest to transportation researchers and planners.  These models are tested empirically using 
land-cover data derived from satellite images coupled with U.S. Census data.  The following 
sections detail the data sets and their development, the applied methodologies, and results for an 
Austin, Texas application.1  
 
DATA DESCRIPTION  
 The data used in this work is drawn primarily from satellite and U.S. Census data, which, 
in their original form, are spatially and temporally incongruous.  This section discusses these 
data sources, as well as the methods used to integrate them into a single data set.  It should be 
                                                 
1 For additional depth on statistical specifications, additional model formulations and results (including sample 
selection methods and differential equation model approximations), readers may consult Frazier (2004). 



noted that the term “land cover” is throughout the text as opposed to the more common term 
“land use.”  This is essentially because the data derived from the visual/spectral qualities of the 
land, rather than information on the manner in which humans actually use it. 
 
Land Cover Data Derived from Satellite Imagery 
 Satellite data offer excellent opportunities and considerable challenges. A serious and 
recurring problem for modeling land use has been the lack of spatially detailed data.  Remote 
sensing, imaging technology, and geographical information systems (GIS) are making accurate 
land cover maps far more accessible to the researcher, and to the public.  In particular, global 
satellite imaging, initiated in the early 1970s, provides highly detailed images regularly.  And 
image analysis software can classify these by various general categories.  GIS software combines 
data maps of various types, dramatically facilitating spatial analysis. 
 The United States launched LandSat 1 in 1972.  Passing over Austin every 18 days, this 
early satellite provides images with 79 m × 79 m pixel resolution.  LandSat 4 was launched in 
1982, and resulted in 185 km × 185 km images with 30 m × 30 m resolution with a repeat orbit 
cycle of 16 days. 1984’s LandSat 5 and 1999’s LandSat 7 have essentially identical orbit and 
image characteristics to LandSat 4.   These imaging systems work by scanning multiple passes 
(each representing one pixel) over an area and recording the reflectance of seven distinct spectral 
bands (Richards and Jia 2000); six of these bands record with 30 m × 30 m resolution, while the 
seventh, a thermal band, records with 120 m × 120 m resolution (60 m × 60 m for LandSat 7).   
 The land-cover data used in this work was derived from images taken by the LandSat 4, 
5, and 7 satellite systems.  Four images of Austin, Texas, taken in the years 2000, 1997, 1991, 
and 1983, were used.  The image sections used are all 48.5 km × 55.8 km and have 30 m × 30 m 
resolution; each section thus contains just over three million pixels of data. 
 The derivation of land cover from the satellite images was achieved by a method called 
supervised image classification and was performed by University of Texas - Austin professor Dr. 
Barbara Parmenter and students in a graduate geography course.  Supervised image classification 
basically uses the satellite image data from areas of known land cover to create a set of decision 
rules by which the rest of the image can be classified (Richards and Jia 1999).  In the data used 
here, each satellite pixel was classified into one of nine land-cover types: water, barren, 
forest/woodland, shrubland, herbaceous natural/semi-natural, herbaceous planted/cultivated, 
fallow, residential, or commercial/industrial/transportation.  In the context of this work, the 
second through fifth classifications are considered uninhabited land, the sixth and seventh are 
considered agricultural land, and the final two are developed land.  Qualitative comparisons of 
the land cover classifications with aerial photography showed the results to be accurate, though 
no quantitative analysis of the quality of the classification was carried out.  For more details 
concerning both the classification process and possible issues with the data, the reader is referred 
to Frazier (2004). 
 
Derived Land Cover Data and Other Data Sources 
 Two spatial statistics were computed based on the land-cover data described above. 
These are land-cover mix and land-cover entropy.  Land-cover mix (from here on called mix) 
characterizes the dissimilarity of the land-cover in a particular area: For a given pixel, mix is an 
index of adjacent pixels’ dissimilarity; it measures the level of homogeneity between a central 
pixel’s use type )( 0x and those of its neighbors )( ix  (Kockelman 1997, Cervero and Kockelman 



1997).  For this work, the neighborhood around a pixel was considered to be the eight pixels 
immediately surrounding it (see Figure 1).  Mathematically, mix is defined by 
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As an average measure of dissimilarity, the mix index ranges from 0 to 1, with a higher 
numerical value corresponding to less similarity between a given pixel and its neighbors.   
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Figure 1 Reference diagram for pixel neighborhood used in calculation of land-cover mix 
statistic. 
 
 As a complement to mix, land-cover entropy (from here on called entropy) measures the 
level of land-cover variety of a particular neighborhood.  Entropy is also called land-cover 
balance, and it essentially provides a measure for the level of heterogeneity of land-cover in the 
neighborhood (Kockelman 1997).  Rather than comparing all the pixels in a neighborhood with 
the central one, as is done in mix, it instead compares all of the pixels with each other.  If there 
are J possible land-cover types which a neighborhood may be made up of, then entropy is 
defined by:  
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where jP  is the fraction of the neighborhood that is land-cover type j.  Entropy also ranges from 
0 to 1, with a higher value corresponding to a greater level of neighborhood land-cover 
heterogeneity. It equals 1 when all land cover types exist in a zone and all their proportions are 
equal (i.e., perfect “balance” in cover types).  Because of this non-centralized nature of the 
statistic, it was calculated for 300 m × 300 m “neighborhoods” (which correspond to the 
combination grid cells as described in the next section) as opposed to the nine cell ones used for 
mix.     



 In addition to the land cover data and its derived statistics, Census of Population data was 
used.  Statistics from both the 100%-sample Census (SF1) and the 17% sample (SF3) were used.  
These include population and  household-level variables (such as household size and the number 
of vehicles per household).  Data for Travis, Williamson, Bastrop and Hays Counties was 
collected so as to completely encompass the land-cover data region.  Of course, the smallest 
areal unit for Census data is the block or block group, which typically encompass dozens of 30 m 
x 30 m pixel-based cells.  So data had to be cleverly combined and then allocated to grid cells, as 
described in the following section.  Finally, two Euclidean distance measures are used for 
analysis: distance to the central business district (CBD) and distance to the nearest highway.   
 
Data Combination Methods 
 The fact that the years of the Census data do not align with the years of the satellite 
pictures, as well as the fact that the Census block groups do not line up with any grid system, 
necessitates the use of various methods to reasonably combine the data sets.  That is, to use the 
various data sources collected for this work all together, the data must all be registered to the 
same temporal and spatial coordinate system.   
 To spatially combine the data, a grid that combines 100 of the pixel cells is used. This 
coarser grid is superimposed over the Census block groups, and the Census data allocated to each 
grid cell based on how much area each block group represents within the cell.  For actual count 
variables, such as population, the fraction of the variable that corresponded to the fraction of the 
block-group in the cell was transferred; for the variables representing averages over the block-
group, such as average household income, the transfer was done by (spatially) weighted 
summation of the Census values. 
 The new grid system has another benefit in that it reduces the large land cover data set.  
As noted earlier, each land cover data set has over 3 million pixels, which is an excessive amount 
of data, especially when compared to the thousand or so Census block groups.  By using a 
combination grid whose cells are exactly ten pixels square (300 m × 300 m), the land cover data 
set was reduced by a couple orders of magnitude, while still retaining significant resolution of 
the region’s land cover patterns.  This coarsening of the grid system transformed the land cover 
data from a set of distinct, single-valued land cover types to a proportions data set (wherein each 
combination grid cell has a percentage of each land cover type associated with it). 
 In order to align the data sets temporally, an approximation method was applied to the 
Census data.  Under the assumption that all Census variables roughly follow an exponential 
growth pattern with time, an approximation of the form 
 
 tetz λα=)(          (4) 
 
is used for each variable at an aggregate level, with parameters α and λ estimated using the 2000 
and 1990 Census figures in a least squares framework and )(tz  representing the average variable 
value in a grid cell at time t (the simple exponential form is motivated in Smith and Sincich 
1992).  Averages for off-Census years are then calculated and the values for the combination grid 
cells determined from (4) by using the deviations of each grid cell from the 2000 and 1990 
means.  That is, for each grid cell i, the value of the variable at time t is given by: 
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where )(txi  is the true Census level of the variable in grid cell i, and )(tx  is the average across 
all grid cells. 
 
METHODOLOGY 
Spatial Linear Regression Model for Panel Data 
 The specification used for modeling continuous variables in this work’s data sets is the 
panel-data spatial linear regression model.  Examples of research using this model (though in 
different forms than that used in this work) include Dubin’s (1991) study of residential home 
values and the study of national homicide rates in Messner and Anselin (2002).   

In the context of this work, the general form of the model for an individual cell i (with N 
total cells and T total time periods) is:  
 
 itiitit vxy θβ ++= ∗         (6) 
 
where yit is the dependent variable at time t, iv  is an individual-specific effect assumed to be 
normally distributed with zero mean and variance 2

vσ , and ∗it
x  is a vector of exogenous 

explanatory variables, some of which may be time lagged (see Frazier (2004) for a discussion of 
exogeneity issues as they relate to this work).  θit is an error term which, to capture spatial 
autocorrelation, is specified, in block matrix form, as follows (Anselin 1988): 
  
 ( ) ξλθξθλθ 1WW −−=→+= 1       (7) 
 
where ξ  is a (TN × 1) vector of which every element is distributed as Normal(0, 2σ ) and W is a 
(TN × TN) block diagonal matrix with T copies of the (N × N) spatial weight matrix W~  defined 
by: 
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where g(·) is a function and dij is the distance between cells i and j.  For this work, an inverse 
squared-distance measure was used in order to recognize greater autocorrelation present among 
cells close to each other, and a rapid reduction in such correlation with distance.  Thus, the 
equation used is as follows (see Anselin 1988 for a discussion of other functional forms): 
 
 2)()( −= ijij ddg         (9) 
 



 To estimate the model parameters, a combination of feasible generalized least squares 
regression (FGLS) and maximum-likelihood estimation (MLE) can be used (Elhorst 2003).  In 
the following derivation of the model, which closely follows Elhorst (2001 and 2003), it is first 
noted that the random effect can be realized as a variable-parameters model, with the constant 
variable, X1it=1, having a variable coefficient β1 + vi.  Furthermore, β is partitioned such that 

[ ]11 , −= βββ , the eigenvalues of W~ are ωi, the matrix of the eigenvectors of W~  is Λ, and a 
parameter κ is defined such that 
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Moreover, R is defined as an (N ×N) diagonal matrix whose ith diagonal element is given by 

( ) 22 1 −−+ iT λωκ .  With these assumptions, the model’s concentrated log-likelihood function is 
given by 
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Here, tY  is the (N ×1) vector of observed y values at time t, Y is the (N ×1) vector of time 
averages across tY , tX  is the (N ×(K – 1)) matrix of exogenous variables minus the constant 
term, X  is the (N × (K – 1)) matrix of time averages across tX , and ι is an (N ×1) vector of 
ones.  Equation 11 is called the concentrated log-likelihood function because β1 and 2σ  have 
been factored out of the equation; they can be recovered by 
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The et term in (14) and (15) is the vector of residuals or error estimates that correspond to (7)’sξ  
term.  To estimate the parameters λ, κ2, and β-1, a two-step iterative procedure is used (Elhorst 
2003).  First, values for λ and κ2 are chosen, then β-1 is estimated using an ordinary least squares 
routine of *X on *Y , where both are stacked with elements given by   

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−Λ+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−−= ∑∑ ==

∗ ιλ N

i i
N

i itt y
N

YRy
N

YYY
11

11W~1    (16) 

 
and  
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Next, given β-1, λ and κ2 are estimated using an MLE routine.  The entire routine is iterated until 
suitable convergence is achieved.  
 
Panel Data Spatial Logistic Regression Model 
 Because it must lie within the [0,1] interval, fractional land-cover data should not be 
modeled using the spatial linear regression model described above.  However, a modification of 
that model can be applied that allows for fractional response in a fairly straightforward manner.  
The technique used to model the proportion land-cover data is a new technique, representing an 
extension of the logistic regression method (see, e.g., Greene (2000)).  This method models 
binary data, so it is applied here when modeling one land use type versus another (for example 
“developed” vs. “undeveloped“).  Because of space considerations, many of the methodological 
details are not included here; those interested are referred to Frazier (2004).  

The technique begins by using the inverse of the logistic cumulative distribution function 
(CDF): 
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to transform the proportions data, itP , to the ),( ∞−∞  interval.  This variable, with certain 
assumptions concerning the random effects term and appropriate corrections for 
heteroscedasticity (see Frazier (2004) for details), can be modeled using the panel data spatial 
regression technique described previously.  Using earlier definitions for  X, v , and ξ , the final 
model form is: 
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where Q is a variance-normalizing diagonal matrix defined as: 
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with F(·) being the logistic CDF: 
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This technique works only for binary proportions data.  That is, binary distinctions such as 
developed versus undeveloped can be modeled, but residential versus commercial versus 
undeveloped cannot. In order to distinguish more than two categories of land-cover, this 
technique may be performed iteratively.  For example, if the residential proportion of cell i in 
time t is Res

itP , and the developed proportion is Dev
itP , then the quantity  
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can be modeled using the methods described above.  However, because ( ) 1DevDev|Res −

∝ itit PP , 

estimates of ( ) 1Dev −

itP  from the developed versus undeveloped model results should be used to 
instrument the sub-model (i.e., this inverse probability should act as an explanatory variable), 
since leaving these out potentially would deprive the model of important information. Doing so 
requires further assumptions concerning the random effects term and a more complicated version 
of the variance-normalizing matrix (equation 20), but the method is essentially the same as 
described above (see Frazier (2004) for further details). 
 
Time Adjustment 
 Because time differences between successive satellite images is not constant (one gap is 
three years, one is six years, and one is eight years), simply using time-lagged variables without 
accounting for this difference may lead to inaccuracies and/or misleading results.  In order to 
account for this, a “time adjustment” factor is introduced for the coefficients of all time-lagged 
variables.  If tτ is the time difference between panel t and the previous panel, then an estimated 
parameter from the models representing explanatory variable k and time period t is transformed 
according to: 
 
 t

ktktk a τββ )(,, →        (35) 
 
where ka  is the time adjustment factor.  For variables that are not time lagged, ka  is equal to 
one; for time-lagged variables, ka  is estimated.  To simplify estimation, ka  is assumed to be the 
constant across all time-lagged variables in each model. 
 
MODEL RESULTS  
 In this section the results are presented for applications of the spatial panel data 
regression model as applied to population and vehicles per household variables; as well as for 
land cover (developed, residential developed, and agricultural undeveloped) as modeled by 



spatial logistic models for panel data.  Because of data set size, sampling had to be employed 
before model calibration; this technique is discussed as well.  
 
Linear Regression Model for Spatial Panel Data 
 Two dependent variables are modeled using the spatial panel data linear regression 
model; they are population and the number of vehicles per household.  Though not reported here 
due to space restrictions, models without lagged variables or time adjustment also have been 
estimated, and the results suggest that the models perform similarly, generally with only small 
changes for the effect of time lags and adjustment (Frazier 2004).  

Due to computational demands in finding eigenvectors and eigenvalues of a spatial 
weight matrix involving all observations available (30,000 grid cells translates to  size 30,000 × 
30,000 matrices), cell sampling is used to reduce the burden.  All results reported are the means 
from 25 models run on 25 random samples of 1,000 observations each.  With the exception of 
the parameters relating to random effects and spatial autocorrelation, the  means are consistent 
estimators of the population parameters (Greene 2000).   The means of the standard errors and t-
statistics are not consistent estimates of these secondary parameters, but they do provide an idea 
of statistical significance.  At a 95% confidence level, some of the parameter estimates for some 
of the samples do not differ (in a statistical sense) from zero; however, these are still included in 
the final models (see Table 1) because in some of the samples they were statistically significant 
(i.e., t-statistic > 1.64) and because the only risk of leaving these variables in the model is 
possible model over-specification or “over-interpretation.” Also reported are elasticities for the 
variables for the three years modeled (the final year, 1983, was dropped to permit use of time-
lagged variables).  

The random-effects and spatial autocorrelation parameters are specific to each random 
sample of 1000 observations, and this must be taken into account before using the results 
reported below for predictions or simulations.,  The reason for this is that the effects only 
account for the error terms from a random sample of observations, and not from the entire data 
set.  
 The population model uses the natural log of population as the response variable, in order 
to ensure non-negativity of predictions and to recognize the fact that population may have an 
exponential relationship with some or all of the independent variables (as with time, for 
example).  The results of the spatial regression model with lagged independent variables and 
time adjustment are presented in Table 1.  The distance measures are not time lagged because, at 
least in the scale of this work, they are time invariant.  A square-root of the distance measure is 
used as an explanatory variable, since it is expected that there should be some added dampening 
of its effect.  (For example, the effect on cell population of moving one kilometer away from the 
CBD is expected to be much more pronounced the closer that cell is to the CBD; intuitively, this 
is because the effect of a change in distance (to the CBD or nearest highway) matters at a 
relative, as opposed to an absolute, level (Frazier and Kockelman 2003).)     
 As expected, population is predicted to fall with distance to the CBD and rise with 
entropy and mix statistics, and with residential and commercial land coverage.  Interestingly, it 
also is predicted to rise slightly with agricultural land coverage and with distance to the nearest 
highway (perhaps due to highway externalities, particular after having controlled for a distance-
to-CBD variable, which may account for many network intensity effects). From the reported 
elasticities, it is evident that the distance to the CBD is the variable with the greatest impact on 



the model, followed by the distance to the nearest highway.  This indicates that the location of a 
cells, as opposed to its land cover levels, is the most important factor determining its population.   
 More importantly, it is seen that the parameters measuring the spatial autocorrelation (λ), 
random effects (κ), and the time adjustment of lagged variables are all highly statistically 
significant, as is the time adjustment factor (estimated to be 0.943).  As expected, the effect of 
spatial autocorrelation is positive, which indicates that neighboring cells tend to have similar 
populations. 
 Table 2 presents the results from the vehicle ownership model (for average vehicles per 
household per zone). Ownership is estimated to increase with distance to the CBD, distance to 
the nearest highway, and land cover mix.  It is estimated to fall rather quickly as the fraction of 
land in commercial use increases, as one might expect (since households may be smaller in more 
commercially developed locations and rely less on vehicles for access to commercial services 
and employment).  It also falls slightly with residential and agricultural land coverages.  Again, 
the parameters representing the effects of spatial autocorrelation and random effects are highly 
statistically significant.  And, as with the population model, the time adjustment factor is 
estimated to be less than one, implying that the magnitude of the effects of past land cover on the 
present level of vehicle ownership decrease with time (see Frazier (2004) for a more detailed 
discussion of issues concerning and interpretations of the time adjustment factor).  
 
Logistic Regression Model for Spatial Panel Data 
 Three models of land cover proportions, based on two binary-split levels (one 
conditioned on the other, for a total of four land cover classifications), were run using a logistic 
model for spatial panel data.  The first split is for the fraction of land that is developed; the 
second conditions on that information for the proportions that are residential/non-residential 
(given the proportion that is developed) and agricultural/non-agricultural (given the proportion 
that is undeveloped).  As in the estimation of the previously discussed models, separate models 
were run for each of 25 randomly selected sets of 1000 cell observations, and their estimates 
averaged.  The same caveats discussed previously, concerning the primary parameter estimates, 
standard deviations, and t-statistics, hold here as well.  Tables 3 through 5 present the average 
results from the three models.  It should be noted that for the proportion of land that is residential 
given the proportion that is developed (hereafter called the residential model), three of the 
samples were thrown out because the maximum likelihood procedure’s Hessian calculation 
failed (and extra-long estimation , of 5 to 12 hours per sample) prevented re-estimation of the 
models for these samples).  
 All of the models’ random effects, spatial autocorrelation, and time adjustment 
parameters are statistically significant.  Interestingly, the average level of spatial correlation is 
nearly identical for all three models, indicating that there may be similar unobserved spatial 
information across all models that is not being accounted for by the explanatory variables.  

As expected, the fraction of land that is developed is predicted to fall with distance to the 
CBD, along with that that is residential in nature.  Developed land is predicted to rise with 
distance to the nearest highway, however, probably to counter the effects of the increasing 
distance-to-CBD term.  Residential land falls with this distance. 

For the agricultural model component of this two-tiered model system, agricultural land 
will tend to lie farther from the CBD, but closer to highways, than non-agricultural, undeveloped 
land.  It should be noted that the reported levels for the land cover mix and entropy variables for 
this model are heavily skewed by one of the 25 sample model results. Removing that sample’s 



results from the averages causes the mix and entropy parameters to not only be smaller in 
magnitude, but also to change sign, indicating that the sample may have introduced significant 
estimator bias.  However, there is no mathematical or statistical reason to drop the sample from 
the averages, so it was left in (see Frazier (2004) for more information).  
 
SIMULATIONS FOR PREDICTION 
 To test the practical performance of the estimated models, simulations were run to 
develop predictions for population and developed land cover for Austin’s downtown in the year 
2020.  A 15 km × 15 km (or 50 cells × 50 cells) section of the CBD was selected for application, 
rather than the entire region, in order to economize on calculation times. (The results presented 
here took about 1 day each, for population and land cover predictions, due to the necessity of 
inverting a large number of 1,000 × 1,000 cell matrices.) 
 Though random effects were used to estimate the time-constant parts of the models, a 
method more akin to “fixed effects” is used to generate predictions for the population and 
developed land cover.  The random effect method estimates the parameters for a normal 
distribution which best fits the time-constant parts of the dependent variables in the model.  One 
natural method for using this information in a prediction would be to take a random draw from 
the estimated distribution for each cell to estimate the time-constant effect.  However, this 
disregards important information contained in the data used to estimate the models.  That is, it is 
possible to extract the exact time-constant effect for every cell from which the random-effect 
distribution is estimated.  The estimate for the time-constant effect, denoted as v*, is determined 
by using the estimates for the β coefficients vector, denoted as β*(t) (which, for simplicity, is 
assumed to include the time-adjustment factor from equation 35), in the following equation: 
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Here the overbar indicates an average over time.  To generate predictions, the above 
approximation of the random effect, along with the 2000 data, the coefficient estimates using the 
correct time-adjustment factor (to predict ahead the desired number of years), and an 
approximation for the random error, θ* (discussed below) are used together: 
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 The process for simulating the spatial autocorrelation required maintaining the sampling 
strategy used in the model estimations.  To begin with, a single random term for each cell in the 
entire data region was drawn from the distribution estimated in the models to generate the error 
terms, ξ, from equation 7.  Then, 999 cells were randomly sampled from the entire data region 
for every one of the 2,500 downtown cells, and their sampled error terms, ξ, used to account for 
spatial autocorrelation.  Because the calculation of the spatial autocorrelation for every cell 
required the inversion of a 1000 × 1000 matrix, the process of generating the predictions took a 
large amount of computing time, which is why the prediction region was limited to a 50 × 50 cell 
region. 
 The results of the population prediction, along with 2000 Census data for reference, are 
presented in Figure 2.  Because of the logarithmic form of the model in which small errors can 
grow exponentially, some of the predictions are unrealistically large (over 3000 persons for a 



300 m x 300 m grid cell).  Such predictions (there were 5 of these) were removed and replaced 
with averages of neighboring cell predictions for purposes of plotting the population simulation 
results.  Quite clearly, the present distribution of downtown population in this 1.5 km x 1.5 km 
neighborhood is preserved in the 20-year predictions.  However, the population is, in general, 
expected to decrease over the region (total population for the region dropped from 309,361 in 
2000 to 239,892 in 2020).  This indicates that though the model itself is able to account well for 
the population distribution in the region, the time dynamics of population change are not being 
correctly accounted for, at least with respect to predictions.  Further analysis is required to 
determine why this non-intuitive result occurred, but most likely it is due to a misunderstanding 
of how the time adjustment factor actually affects the model.  In future research, different ways 
to account for the time differences in the lagged variables will be examined. 
 
 

 
Figure 2. Population plot for downtown Austin: actual data from 2000 (left) versus average 
prediction for 2020 (right).  
Note: Area of plot is 15 km x 15 km.  Each plotted point covers 300 m x 300 m.  Darker areas represent higher 
population levels. 
 
 The results of the developed land cover predictions, along with 2000 reference data, are 
presented in Figure 3.  As with the population predictions, the distribution of the proportions of 
developed land cover are well maintained, but the effects of time seem to be incorrectly 
accounted for.  That is, the proportion of developed land cover is expected to decrease from 
2000 to 2020 (average developed proportion across the region dropping from 0.709 in 2000 to 
0.630 in 2020).  Again, this indicates that the way that time is accounted for in the model is 
flawed in some respect, and further analysis is required to find out exactly why this is happening. 
 



 
 
Figure 3 Proportion of developed land cover in the downtown Austin area: actual data from 
2000 (left) versus average prediction for 2020 (right). 
Note: Area of plot is 15 km x 15 km.  Each plotted point covers 300 m x 300 m; darker areas represent higher 
proportions of developed land cover. 
 
 From the simulation results it is obvious that using the models presented in this work do 
not perform well in a predictive capability.  Though they capture the spatial distribution of the 
variables well, they do not account for the expected growth over time of population and urban 
development.  As mentioned  before, it is unclear why these results emerge as they do, but it is 
most likely due to inadequacies associated with the time adjustment factor.  One possible cause 
is the fact that a single time adjustment factor was used, as opposed to having a separate one for 
each lagged variable. 

Other issues also may have affected the predictions.  An extension of this work might 
further investigate the methodology used to incorporate spatial autocorrelation in the predictions.  
Another issue is the fact certain, potentially important information was left out of the model; for 
example, population levels in the proportion of developed land cover model.  Another would be 
accounting for the possibility that different model forms might exist for areas with different 
characteristics; e.g., distinct population models might exist for areas of high and low levels of 
development (see Frazier (2004) for examples of such models using sample selection methods).     
 Despite all of these issues, what the simulations do show is that the models, despite their 
flaws in the temporal dimension, perform very well in capturing the spatial diversity and 
distribution of variables across the region.  Obviously future work on the models is required 
before they can actually be applied in a practical setting, but these results provide a promising 
start towards that end.  
 
CONCLUSIONS 
 This paper presents a variety of innovative models for land cover and other data 
important for transportation engineers, geographers and planners.  The work rigorously 
recognizes both space and time effects by incorporating spatial autocorrelation, temporal random 
effects, and adjustments for differences in time lags into linear regression and logistic regression 
model forms.  Using both Census data and land cover data derived from satellite imagery, 
models for population, average vehicles per household, and developed, residential, and 
agricultural land cover are developed.  Because of computational difficulties, a series of samples 



were used for estimation.  Not only were the results of the models informative, but the spatial 
and temporal effects were shown to be highly statistically significant, suggesting that their 
recognition and formal inclusion in the models is likely to be of great value.  Positive spatial 
autocorrelation shows that, for example, areas of similar population or land cover proportions 
have a tendency to cluster. Also, the adjustment factor for the differences in time lags, though 
statistically significant, indicates that the effects of these differences are not that large (at least 
not in the time scale of the data). 
 In the estimated models, Census data is not used as explanatory information.  The 
motivation behind this was that the potential error introduced by the approximation for non-
Census years could cloud evaluation of model performance.  Furthermore, a structural equations 
framework integrating the models is also not explored.  Both of these issues would serve as 
interesting investigations for future research. 
 Applying the model results in a practical application (simulating  population and 
developed land cover levels in 2020) exposes both strengths of the models and some potential 
problems. Specifically, the local spatial diversity of the region is accounted for fairly well in the 
predictions, however the effects of time on the region’s development are not intuitively captured. 
 Notwithstanding the issues raised by prediction results, the models’ ability to explore 
interesting aspects of the data and rigorously accommodate panel data and spatial interactions is 
of substantial value.  They provide important information about relationships among 
demographic and geographic variables at both general and regional levels.  This information can 
be of great use for transportation researchers and planners; it leads to an improved understanding 
of the interrelations which affect the development of urban regions which, in turn, can lead to 
more informed and improved policy decisions.  Moreover, the statistical methodologies used in 
this work for spatial panel data analysis are largely new; they can be viewed as stepping stones 
towards models that more fully account for spatial and temporal heterogeneities and effects in 
transportation data.  Though they suggest a need for future research (to more fully explore the 
power and practicality of these methods), the results are very promising. 
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Max Min Standard 
Error 2000 1997 1991

Constant 4.985 0.174 28.660 5.347 4.485 0.187
Square root of Distance to 

CBD -0.717 0.0347 20.689 -0.629 -0.782 0.0325 -1.416 -1.536 -1.726

Square root of Distance to 
Nearest Highway 0.125 0.0463 2.696 0.194 0.0523 0.0360 0.115 0.125 0.140

Proportion of Commercial 
Land Cover* 0.224 0.0652 3.439 0.345 0.100 0.0585 0.00600 0.00499 0.00580

 Proportion of Residential 
Land Cover* 0.575 0.0444 12.997 0.786 0.404 0.103 0.0407 0.0236 0.00852

ln(Proportion of Rural Land 
Cover)* 0.00096 0.00163 1.030 0.00404 -0.00388 0.00181 -0.00120 -0.00150 -0.00144

ln(Land Cover Mix)* -0.00751 0.00533 1.429 -0.00165 -0.0141 0.00367 0.00336 0.00368 0.00361

Land Cover Entropy* 0.232 0.0453 5.079 0.738 0.122 0.119 0.010 0.00748 0.00662

κ 8.360 0.232 35.993 9.538 4.455 0.956

λ 5.363 0.032 212.524 6.794 3.940 0.747

Time Adjustment 0.943 0.0108 5.235 0.985 0.876 0.027

Error Variance 0.032
Random Effect Standard 

Deviation 1.439

R-Squared 0.5533

Number of Valid Samples 25

Estimation Sample Properties
Variable Beta S.E. T-statistic

Elasticities

 
 
Table 1. Results for spatial linear regression model of Y = ln(population). 



Max Min Standard 
Error 2000 1997 1991

Constant 1.810 0.0358 50.640 1.846 1.740 0.0266
Square root of Distance to 

CBD 0.0383 0.00700 5.484 0.0527 0.0290 0.00637 0.0887 0.0876 0.0855

Square root of Distance to 
Nearest Highway 0.00818 0.00917 1.137 0.0222 -0.0095 0.00848 0.00883 0.00873 0.00852

ln(Proportion of Commercial 
Land Cover)* -0.170 0.0631 2.738 -0.0116 -0.359 0.0835 0.352 0.277 0.166

 Proportion of Residential 
Land Cover* -0.0101 0.00163 6.162 -0.00456 -0.0160 0.00313 -0.00409 -0.00487 -0.00523

Proportion of Rural Land 
Cover* -0.00911 0.0281 0.720 0.0548 -0.0599 0.0288 -7.04E-04 -2.80E-04 -3.32E-04

Land Cover Mix* 0.145 0.0949 1.525 0.295 -0.0382 0.0894 0.0186 0.0103 0.00710

Land Cover Entropy* -0.166 0.0829 1.946 2.98E-04 -0.432 0.107 -0.0622 -0.0768 -0.0837

κ 2.150 0.0640 33.583 2.588 1.954 0.152

λ 5.283 0.0411 182.255 8.082 4.111 1.127

Time Adjustment 0.871 0.0208 6.308 0.980 0.787 0.048

Error Variance 0.0186
Random Effect Standard 

Deviation 0.292

R-Squared 0.9593

Number of Valid Samples 25

Variable Beta S.E. T-statistic
ElasticitiesEstimation Sample Properties

 
 
 
Table 2. Results for spatial linear regression model of Y = average number of vehicles per household. 



Max Min Standard 
Error 2000 1997 1991

Constant 0.293 0.226 1.331 0.549 -0.0779 0.174
Square root of Distance to 

CBD -0.332 0.0403 8.254 -0.271 -0.404 0.0326 0.720 0.691 0.367

Square root of Distance to 
Nearest Highway 0.00736 0.0532 0.632 0.096 -0.103 0.0447 -0.00745 -0.00716 -0.00380

Land Cover Mix* 3.629 0.622 5.834 4.932 1.868 0.781 -0.697 -0.600 -0.308

Land Cover Entropy* -1.732 0.555 3.007 -0.592 -9.207 1.638 0.105 0.086 0.0418

κ 0.0966 0.034 9.262 0.154 0.0558 0.0206

λ 4.311 0.0812 59.814 4.808 3.892 0.286

Time Adjustment 1.018 0.00938 1.789 1.083 0.966 0.0264

Error Variance 1.555
Random Effect Standard 

Deviation 0.387

R-Squared 0.08999

Number of Valid Samples 25

Variable Beta S.E. T-statistic
Estimation Sample Properties Elasticities

 
 
Table 3. Results from panel data spatial logistic regression model run on land cover proportion variables: Proportion of developed 
land cover. 



Max Min Standard 
Error 2000 1997 1991

Instrument Variable -0.378 0.168 3.357 1.011 -1.895 0.618 -0.263 -0.252 -0.208

Constant 0.249 0.387 2.019 2.439 -1.718 0.953
Square root of Distance to 

CBD -0.0157 0.106 2.345 0.906 -0.845 0.363 -0.0158 -0.0140 -0.0113

Square root of Distance to 
Nearest Highway -0.0522 0.0620 1.155 0.103 -0.229 0.0782 -0.0244 -0.0217 -0.0176

Land Cover Mix* 1.651 1.589 2.258 12.071 -6.460 4.247 0.135 0.0984 0.0729

Land Cover Entropy* -0.928 0.991 1.483 2.951 -4.692 1.585 -0.0239 -0.0166 -0.0117

κ 0.0164 0.0705 2.108 0.0828 0.000 0.0205

λ 4.512 0.0388 135.447 5.708 3.966 0.489

Time Adjustment 0.990 0.0196 0.686 1.117 0.883 0.0675

Error Variance 1.488
Random Effect Standard 

Deviation 0.153

R-Squared 0.1095

Number of Valid Samples 22

Elasticities
Variable Beta S.E. T-statistic

Estimation Sample Properties

 
 
Table 4 Results from panel data spatial logistic regression model run on land cover proportion variables: Proportion of developed land 
cover that is residential. 



Max Min Standard 
Error 2000 1997 1991

Instrument Variable 1.793 0.654 3.265 4.466 -3.340 1.592 0.622 0.525 0.429

Constant -6.626 1.418 4.997 4.923 -12.638 3.491
Square root of Distance to 

CBD 0.569 0.128 4.754 1.122 -0.439 0.303 -0.605 -1.436 -0.681

Square root of Distance to 
Nearest Highway -0.00123 0.0745 0.878 0.208 -0.449 0.123 6.10E-04 0.00145 6.87E-04

Land Cover Mix* -1.321 6.982 5.094 201.795 -20.174 42.563 0.105 0.190 0.0778

Land Cover Entropy* -22.941 19.370 5.995 12.538 -729.427 147.206 0.577 0.989 0.385

κ 0.0385 0.0474 4.642 0.0881 0.000 0.0266

λ 4.600 0.0399 125.784 5.898 3.971 0.551

Time Adjustment 0.963 0.0130 2.768 1.076 0.393 0.124

Error Variance 1.253
Random Effect Standard 

Deviation 0.218

R-Squared 0.204

Number of Valid Samples 25

Variable Beta S.E. T-statistic
Estimation Sample Properties Elasticities

 
 
Table 5. Results from panel data spatial logistic regression model run on land cover proportion variables: Proportion of undeveloped 
land cover that is rural. 
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