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Abstract 
 

As an essential part of integrated land use-transport models, prediction of land cover 

changes and illumination of the many factors behind such change are always of interest to 

planners, policy makers, developers and others. Using a mixed logit framework, this paper 

studies land cover evolution in the Austin, Texas region, recognizing distance-dependent 

correlations -- both observed and unobserved -- over space and time, in a sea of satellite image 

pixels. The paper describes the computational methods used for model estimation and 

application, including generalized Cholesky decomposition and likelihood simulation. Results 

indicate that neighborhood characteristics have strong effects on land cover evolution: Clustering 

is significant over time, but high residential densities can impede future development. Model 

application produces graphic predictions, allowing one to visually confirm these results and 

appreciate the variability in potential urban futures. 
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Introduction

Over the years, researchers have put considerable effort into understanding relationships
between populations, travel and land cover (e.g., Fujita [1989], Nelson and Hellerstein [1997], 
Clarke [1997] and Munroe et al. [2001], and several land use-transport models have resulted 
(e.g., de la Barra’s TRANUS [1989], Waddell’s UrbanSim [2002] and Klosterman’s Whatif? 
[1999]). However, due to the complexity of the real world, no existing models are perfectly
satisfactory in application. There is growing interest in more disaggregate data sets as well as the 
temporal and spatial correlations that underpin urban patterns.  Fortunately, developments in 
remote sensing via satellites provide opportunities for modeling improvements through
temporally consistent and spatially detailed information. 

As part of an integrated land use-transport model’s development, this paper presents a 
model of land cover change based on data derived from satellite imagery. The derived panel data 
allows direct incorporation of temporal and spatial correlation into a model’s specification.  In 
addition to the smaller spatial units (measuring 30 m x 30 m), another advantage of satellite data 
is that it offers much more precise information on vegetation, which can be critical to air quality, 
due to biogenic sources of (and sinks for) various chemicals of interest. This implies that using 
satellite data may be an optimal choice for integrated land use-transport-environment (ILUTE) 
models, which are required in many regions in order to demonstrate compliance with air quality-
related planning standards. Moreover, with further development in the satellite image precision 
and classification techniques, such data may provide a very promising future.  It is important that 
researchers and planners begin working with such data sets now, in order to begin harnessing 
their potential for future planning and prediction efforts.

In many cases, proximity produces correlation.  In contrast to time-series data sets, spatial 
relationships are two dimensional – and time adds an important third dimension. Obviously, 
knowing what land covers presently exist – and where – is very helpful in formulating future 
year predictions. A rigorous recognition of spatial and temporal correlations across observational 
units, both latent and observed, can be critical.

In this study, a model incorporating the effects of both time and space is used.  It can be 
viewed as an extension to Wooldrige’s (2002) dynamic unobserved effect model because the 
lagged (both temporally and spatially) dependent variable is used as an explanatory variable and 
individual specific effects are correlated across observations (in both space and time). Such a 
model also falls within the mixed-logit (ML) framework, as described by Greene (2000) and 
McFadden and Train (2000), where slope parameters can berandom, and a correlation structure 
can be specified. The ML model is normally estimated using maximum simulated likelihood 
estimation (MSLE), and in this study a randomly shuffled sequence of Halton draws is used.

The following sections review related works, present the methodology and applications of 
this research, and draw some conclusions. The data come from the Austin, Texas region and 
model results are applied to a 2.1 km square area for predictions of pixel-level predictions of 
land cover in the year 2005.

Previous Research and Motivation

In a review of existing land use/land cover models Parker et al. (2003) concluded that no 
one approach yet “dominates this nascent field”. However, some approaches are more common 
than others and have already been used in the land use/land cover part of integrated land use-
transport models. For example, Waddell’s (2002) UrbanSim has been rather broadly applied in



the U.S. It offers a module for simulating land development at the 150m x 150m grid cell level. 
Explanatory variables include regional, neighborhood and cell characteristics. 

The recently designed PECAS model (Hunt and Abraham, 2003) has a structure similar to
TRANUS (de la Barra, 1989). Like UrbanSim, PECAS’ land development model relies on very
standard MNL specifications. But PECAS recognizes inter-industry trade flows via a separate
input-output-based sub-model. Finally, the cellular automata (CA)-based SLEUTH model 
(Candau et al., 2000) is also receiving much attention. SLEUTH is one of the few models that is 
designed to work with satellite image data. It consists of Clarke et al.’s (1996, 1997) Urban 
Growth Model (UGM) and Deltatron Land Use/Land Cover Model.Though SLEUTH simulates 
land cover change recognizing the temporal and spatial context of each cell, it can only share 
information across immediate cells, so that more dispersed interactions and correlations are 
largely ignored. In addition, SLEUTH is not (yet) designed to flexibly accommodate the effects 
of many influential and related human factors (such as land prices, employment and population 
density.) Finally, it relies on rule-driven algorithms, rather than more behavioral or statistical 
models.

Most present models are not adept at analyzing satellite data, which its highly disaggregate 
units and large sample size, and clear potential for various inter-observation correlations.
Therefore, the goal of this study is to a rigorous econometric method to appreciate the many facets of this 
particular data source. However, few studies have used econometric methods to address both 
temporal and spatial effects. As Anselin (1988, 1999) explains, spatial econometrics allows such 
interactions. He suggests three principal methods for addressing the spatial effects that exist in 
land use, home price, air quality, and other data sets: use of spatial stochastic processes, a direct 
representation of correlations, and a non-parametric framework. 

The relatively common spatial autoregressive (SAR) and spatial moving average (SMA)
specifications (see, e.g., Besner [2002], Miyamoto et al. [2004] and Frazier and Kockelman 
[2005]) are examples of spatial stochastic processes. In contrast to their time-series counterparts,
where a single serial correlation parameter is used, SAR and SMA use a spatial lag operator (or 
weight matrix), which essentially produces a weighted average of the neighbors’ values. A 
frequently encountered issue in spatial stochastic process is the lack of stationary covariance 
terms, which can violate asymptotic property assumptions established based on the central limit 
theorem and laws of large numbers. (Anselin, 1999). By using a “direct representation”, the 
covariance matrix among unobservable components can be directly expressed as an inverse 
function of distances. In this way, it also will meet stationary requirements (Anselin 1999). 
However, the formulation of this inverse function is often restricted, because flexible expressions 
may suffer from estimation and identification problems. The third approach, using non-
parametric methods, is seldom found in practice because it requires a long panel of data, with a 
time dimension (T) that is much greater than the cross-sectional dimension (N) (Anselin 
1999).None of these three methods is simple; and, as far as the authors are aware, only the first 
has been applied in a discrete-response context (see Beron and Vijverberg 2004). In such cases, 
the model calibration becomes intractable and requires approximation via simulation of the 
associated distributions.

Many studies recognizing spatial effects have tried to either remove all spatial correlation 
through strategic sampling (to provide a dispersed sample, with minimal interactions and/or 
spatial effects) or constructing and controlling for a variety of neighborhood attributes. For 
example, Nelson and Hellerstein (1997) sampled selectively and created exogenous variables 
from neighboring land covers when studying the effect of roadways on deforestation. Wear and 
Bolstead (1998) controlled for prior land uses in the neighborhood of each data cell. 



Munroe et al. (2001)’s paper on land cover change is one of the few that also considers
temporal correlations. They attempted to filter out spatial correlations through sampling and then 
removed the residual spatial dependence through a “trend surface” approach (Cliff and Ord 
1981). Mohammadian et al. (2004)’s study on housing type choice also attempted to control for 
neighborhood attributes in a mixed logit framework. However, issues remain in previous 
approaches because spatial correlation generally cannot be perfectly removed through sampling 
and spatially lagged (in contrast to temporally lagged) variables are not strictly exogenous. 

Frazier and Kockelman’s (2005) land cover model probably follows Anselin’s (1988, 1999) 
standard approach most closely, by using an SAR specification in their continuous models of 
population and logistic model of land development (using 300 m x 300 m aggregates of satellite 
pixels in the Austin region). Miyamoto et al.’s (2004) work is most similar to this paper in nature: 
Relying on relatively few zones (a sample of just 163), Miyamoto et al. used a SAR formulation 
and Monte Carlo MSLE of a logit model for location choice. However, standard SAR 
specifications require information on all correlated units, which is problematic with very large 
data sets, such as those based on satellite images. In such situations, inversion of the weight 
matrix becomes practically infeasible and a sampling method must be used, rendering SAR 
unsuitable.  For this reason, the specification pursued here relies on a direct representation of the 
correlation structure. 100 randomly selected samples of 1,000 observation units (pixels) were 
used, rather than the roughly 3 million pixels available in the satellite images for the Austin 
region.

Data Description

The data used for the following analysis comes from two sources: 1) land cover 
information derived from satellite images and 2) Census of Population data. These two datasets 
are processed and combined to the same spatial and temporal coordinates. 

The satellite images used for deriving land cover information come from Landsat 4, 5 and 7 
systems and cover the urban area of Austin, Texas. (See Frazier and Kockelman (2005) for more 
details.) The processing of remote sensing data is computationally intensive work, so only four 
years’ data were available, for 1983, 1991, 1997 and 2000. The data was originally classified by 
students supervised by Dr. Barbara Parmenter at the University of Texas of Austin, using 
ERDAS Imagine’s ISODATA classifier (Jensen, 1996). For each year, the dataset covers a 48.5 
km x 55.8 km area that contains around 3 million 30 m x 30 m grid cells. Each of these cells is 
indexed as one of the nine land-cover types: water, barren, forest/woodland, shrubland, 
herbaceous natural/semi-natural, herbaceous planted/cultivated, fallow, residential, or 
commercial/industrial/transportation. To focus on human development of land, the nine cover 
types were aggregated into three categories: undeveloped, residential and 
commercial/industry/transportation. 

Since pixels were classified based on their spectral qualities (i.e., reflected light), rather 
than information of how humans actually “use” the land, the terms residential and 
commercial/industrial/transportation are best interpreted as lands developed at low and high 
intensities, respectively (i.e., exhibiting only moderate or little to no vegetation). Therefore, the 
term “land cover” will be used throughout this paper, rather than “land use”. A comparison of these land
cover designations, aerial photos and parcel-based land use data suggests that the classes generally 
correspond to residential or commercial/industrial/transportation uses, respectively. However, residential 
land is sometimes coded as intensely developed (if the entire 30 m cell is covered by concrete or roofing 
materials, without any vegetation). Moreover, land visibility is affected by a number of factors, 
including cloud cover and humidity. As a result, image classification techniques are imperfect 



and errors can (and do) occur in dataset overlays. For these and possibly other reasons, about 5% 
of the region’s 3 million grid cells present unrealistic changes. (For example, one cell’s 
classification changes from undeveloped to residential in the year 1991 but changes back to 
undeveloped in the following years). To neutralize this data imperfection, the model allows land 
to change from developed to undeveloped, recognizing the uncertainty inherent in the 
classifications. If desired, restrictions could be imposed in the model’s specification, in order to 
prevent such land cover changes.

The U.S. Census of Population also provided key data, in years 1990 and 2000. The typical
census block encompasses dozens of 30 m grid cells. In order to combine the datasets (across 
space and time), each block’s population was assumed to increase exponentially with time, 
according to its own growth parameter. Block populations outside the decennial years (1990 and 
2000) were interpolated/extrapolated, and these inter-decennial block group populations were
distributed uniformly across all residentially-classified cells within the block. 

The Euclidean distance to the nearest highway and that to the central business district 
(CBD) also were computed for each grid cell (and then controlled for in the land cover change 
models). These distances were computed in TRANSCAD (Caliper, 2004) based on a network 
composed of Interstate, U.S., and state highways. The network in the study area contains a total 
length of 199 centerline miles.  

Methodology

As discussed in the literature review, land use/land cover change is discrete in nature. 
Meanwhile, to incorporate the temporal and spatial correlations across observations units, a 
specification more flexible than the basic MNL may be required. This leads to the choice of 
mixed (or random parameter) logit model, in which the parameters are assumed to be random 
across individual cells. Furthermore, the total number of observations in this study is too large 
and a set of randomly selected samples has to be used, which abolishes the necessary condition 
for using SAR. Therefore, the direct representation method is used to deal with the spatial 
correlation across observations. The following sections describe the model specification and the 
related estimation considerations, including generalized Cholesky decomposition and the choice 
of simulation methods.

Model Specification

The development of urban land is essentially the outcome of decisions made by households, 
developers and planners, under a fair amount of uncertainty. It is helpful to apply random utility 
theory, in which the land cover type of a cell is determined by the following equation:
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where m
ity  is an indicator of observed land cover type m  for cell i  in time period t ; m

itU  is its 

latent variable (utility) and M  is the set for all land cover alternatives. m (or n) =1 denotes 
undeveloped land, 2 denotes residential (i.e., less intensively developed land), and 3 denotes 
commercial/industrial/transportation (i.e., more intensively developed land). t =0 in 1983, t =1 in 
1991, t =2 in 1997 , and t =3 in 2000. 

As usual, the latent variable U  is composed of two parts: a deterministic part V and a 
random part ε : 

m m m
it it itU V ε= + (2)



In order to allow for both temporal and spatial correlations across observations, the random 
part ε is assumed to have two independent components:

m m m
it i ituε ξ= + (3)

where m
iu  is an individual-specific random effect (constant over time) and m

itξ  is assumed to be 

iid Gumbel across land cover types and observations. This results in the logit model:
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where m
itπ  and 1itx −  are the vectors of parameters and explanatory variables comprising m

itV , 

respectively. Based on data availability and inspired by previous studies, the explanatory 
variables include distance to the nearest highway , 1HW td − , distance to the CBD , 1CBD td − , 

neighborhood population, and neighborhood land cover types. That is,
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, where 1jtPOP −  is the population in cell j  at time 1t − and 

1
n
jty −  indicates the land cover type of cell j  at time 1t −  (e.g., 2

1 1jty − =  if cell j  is residential 

land at time 1t − , and 0 otherwise). iS  is the 6.03 km x 6.03 km square neighborhood centered 

on cell i  (which consists of 201x201, or 40,401 cells). 

The fact that time 1t −  is used in this model instead of time t helps ensure exogeneity of 
control variables.  In this way, each neighborhood’s control-variable values can be preprocessed 
and stored. Thus, unlike Frazier and Kockelman’s (2005) and Miyamoto’s (2004) methods, the 
necessary neighborhood information is not lost through sampling. Finally, because the time 
intervals between the panel’s four data years differ, a time adjustment coefficient is included in 
all cases. The coefficients POP

ijtρ  and n
ijtρ  also are assumed to be related to distance, via the 

following expression:
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where t∆  is the time interval between two periods (e.g., 1997 1991t∆ = − , or 6 years, for t =2); 
and ijd  is the distance between cells i  and j , using the pixel coordinates as scale ( i.e., 1 unit is

30m and the distance between cell i  and its furthest “neighbor” is 2 200× ). ( )2

ijd was chosen 

as the denominator because it yielded the highest likelihood ratio among ijd , ( )2

ijd , ( )exp ijd

and ( )( )2
exp ijd . 



From Equation (5), one finds that 1ity − serves as an explanatory variable, which means this 

model is in fact a dynamic, unobserved-effects model. As Wooldrige (2002) discusses, in such a 
model, treating m

iu  as a single parameter does not result in consistent estimators. Instead, the 

unobserved effect should be integrated out by proposing a density for m
iu , given 0iy . Here, m

iu is 

assumed to be normally distributed with mean ( )2 3
0 1 0 0

m m
m m i iy yα α = =+ +  and a standard deviation 

mσ :
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In Equation (7), if m
iζ  is iid across cells, this model is the same as an MNL model for panel 

data, with random effects (Greene, 2000). However, in this study this random effect also needs to 

capture the spatial correlation among cells, which means the covariance matrix of m
iζ

r
 is no 

longer an identity matrix. 

As mentioned earlier, the method of direct representation is used here, in order to avoid the 
problem caused by sampling.  This also has the advantage of making the relationships between 
spatial correlation and distance more obvious and ensuring stationary of the covariance matrix. 
Here, the correlation between cells i  and j  is assumed to be inversely proportional to the 
distance between them:
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Several other correlation patterns also were examined (e.g., ( ) 1.5
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 offered the highest log likelihood value, as well as more intuitive coefficients. 

Overall then, the model’s final likelihood function is as follows:
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which can be estimated using MSLE  (as described by Greene [2000], Bhat[2001] and Train 
[2003]). The random variable values m

iu were generated according to Equations (7) and (8).

Simulation Methods and Other Computational Issues

Simulation can be computationally intensive work. In order to recognize the correlation 
across observations in time and space, one must generate 2 (for m=2,3) N-dimensional normally 
distributed random vectors with the correlation matrix given by Equation (8). Computational 
issues encountered in the simulation process, and the methods to address these, are discussed 
below.

Generalized Cholesky Decomposition

Normally, the multidimensional normal distribution is generated using a Cholesky 
decomposition, which decomposes the covariance matrix into a triangular matrix. The triangular 
matrix is then multiplied by N iid normal values in order to obtain the required N-dimensional
normal vector. However, in the study of spatial effects, the correlation matrix between 
observations can only be guaranteed to be symmetric, not positive definite, which can make it 
impossible to apply a Cholesky decomposition. In this study, 60 of the 100 samples did not offer 



positive definite covariance matrices. Therefore, Gill and King’s (2004) generalized Cholesky 
decomposition method was used. In this method, when a symmetric matrix is not positive 
definite, a nonnegative diagonal matrix with element values as small as possible is added to the 
original matrix, in order to produce a positive definite matrix. Gill’s (2004) GAUSS code was 
modified and integrated into Train’s MSLE code (1999). The method performed well with the 
samples in this study: the largest element in the added diagonal matrix is less than 0.01 and 100 
sample estimates (rather than just 40) resulted. With generalized Cholesky decomposition 
providing the pseudo triangular matrices needed, the MSLE focus turned to generating N iid 
normally distributed random values. 

Randomly Shuffled Halton Sequence

Four commonly used methods for drawing random numbers were considered for the 
simulation: pseudo Monte Carlo (PMC), Halton sequence, scrambled low discrepancy (SLD) 
method, and randomly shuffled Halton sequence. While PMC has been most broadly used, in 
recent years researchers have sought better efficiency via quasi Monte Carlo methods (such as 
Halton draws), in order to cover the number space more uniformly. (Bhat [2001] and Train
[2003]). However, the correlation between successive Halton draws results in a very periodic 
correlation across observations that may not be desirable. (Usually, when the correlation across 
observations is not specified, Halton draws are favored for low dimension integration because 
correlation patterns cause a relatively low asymptotic variance of coefficients and the mean 
squared error is still less than that from PMC. However, when using such draws to generate 
multivariate normal distributions, it is very likely that this potential correlation may be confused 
with the specified correlation pattern.)

Another popular method, the SLD approach evolves from a standard Halton sequence. The 
basic idea of this method is that instead of radical inverse function for the base prime, this 
method uses a scrambled radical function. Many have suggested different scrambling methods −
for example Faure (1992), Tuffin (1996), Braaten and Weller (1979), Atanassov (2004) and 
Mascagni and Chi (2004). However, successive draws from the same scrambled sequence still 
generate periodic correlation. Figure 1 compares these methods. (Each observation uses 250 
numbers in sequence based on the prime number 17. For SLD, Faure’s (1992) permutation was 
used.) Figure 1 shows that when the draws come from the same sequence, the Halton and its 
scrambled version make the first observation periodically correlated with all successive 
observations (shown through 40 here). The highest correlation between observations reaches 1, 
at multiples of 17.

It seems that to generate uncorrelated random terms, in order to avoid introducing 
unintended covariance in the model, the PMC method may be best among these. However, PMC 
methods lose the efficiency given by the coverage of Halton draws. To avoid correlation 
problems yet maintain the coverage of a Halton draw, one may wish to treat each observation as 
a dimension (rather than as a separate draw). Unfortunately, when the dimension increases, most 
Scrambled Low Discrepancy sequences are hard to generate because the permutation requires a 
higher dimension matrix. (For example, with Faure’s permutation method, if 1000 dimensions 
are required, a 7917 x 7917 triangular matrix will have to be used for calculating the 
permutation.) In light of all these considerations, a random shuffled Halton sequence (Hess et al., 
2003) was finally chosen. The idea of generating a random shuffled Halton sequence is very 
simple: (1) Generate Halton sequence to cover the space; (2) For each dimension, randomly 
order the numbers in the original Halton sequence. In this way, the numbers still cover the space 
uniformly so it should be more efficient than PMC. Moreover, this method requires less memory 
and computation time than a scrambled Halton sequence. The correlation between observations 



also is very low 1, as shown in Figure 1. (The original Halton sequence contains 250 draws based 
on prime number 17.)

In this study, each sample uses 1000 observations. Hence, 2000 shuffled Halton sequences 
(m = 2, 3 for each observation) were generated. The original Halton sequence contains 300 
draws based on the prime number 3.2 The model’s estimation proves that this random shuffled 
Halton sequence is more efficient than PMC. (Ten samples were run using these two different
methods, based on the same convergence criteria, and only one PMC sample converged with 
fewer iterations.) 

Results

As mentioned, the study area contains about 3 million cells. However, cells around the 
region’s edge are not usable since they lack information on their 6.03km x 6.03km 
neighborhoods. This results in a population size of 2.3 million cells, which is still too large for 
model estimation. Instead, this study uses cell sampling to reduce the burden: 100 samples were 
randomly selected, each containing 1000 cells. Of these 100 samples, 64 converged while others 
resulted in singular Hessian matrices for their likelihood functions. One of the reasons for 
causing these singular Hessian matrices is that the commercial/industrial/transportation land 
accounts for only 8 percent of the whole area. In some samples, the proportion of developed land 
may be too small for model estimation. 

The coefficients and t-statistic values shown in Table 1 are the mean values of the estimates 
from these 64 samples. As Greene (2000) indicates, the means of sample coefficients are 
consistent estimates of the corresponding coefficients for the whole population. Though means 
of the t-statistics are not consistent estimates of the population’s t-statistic values, they still 
provide some information of the significance level across samples. 

Elasticities of land cover change probabilities were computed for 100,000 randomly 
selected observations using average parameter values, as follows:
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The resulting elasticities were averaged, using land cover probabilities as weights (as in 
Hensher and Johnson (1981)). The results of these elasticity calculations are discussed below.

The neighborhood’s land cover type is estimated to have a strong effect on future 
development. As the share of neighboring land cover becomes more residential or 
commercial/industrial/transportation, so does the likelihood of that cell’s future cover. Moreover, 
these effects are estimated to increase with time. They suggest a strong clustering effect in land 
development, as discussed by Fujita (1983), especially for commercial/industrial/transportation 
land, since the estimated elasticity for this variable is more than 9. Everything else constant, 
however, neighboring population densities reduce the likelihood of such transitions, particularly
for commercial/industrial/transportation land, with an elasticity estimate of nearly -3. Higher 
population densities may imply higher land prices as well as stronger zoning (and neighborhood 

1 If the original Halton sequence has R draws (normally, R is at least 100), there are R! possible ways to shuffle the 
sequence. Even when there are millions of observations, there is still little chance of seeing high correlation between
observations because 106<<100!.
2 With fewer than 300 sample draws, sequences based on other relatively small prime numbers were found to leave
large, uncovered spaces. Thus, such sequences were avoided here.



resistance to development) in order to preserve what undeveloped space remains. These results
suggest that development happens sooner in neighborhoods that are less populated but more 
developed. 

As expected, as the distance to the nearest highway increases, the probability of 
development falls, though this effect diminishes over time (i.e., as the time interval increases). 
The results also suggest that development is more likely to emerge away from the CBD, where 
land development restrictions are likely to be fewer, land values lower, and construction costs 
lower. Evidently (and somewhat intuitively), infill is a slower process than green-field 
development.

Finally, the results show that it is necessary to consider the individual-specific error terms 
associated with each cell; the mean and the standard deviation on both alternatives are highly 
statistically (& practically) significant. The standard deviation for residential land is somewhat 
smaller than that of commercial land, indicating lesser variability in development potential. 

Prediction and Validation

Prediction using the calibrated coefficients can provide helpful insights into the future land 
cover patterns. In the case of unequal time intervals, this dynamic model’s explicit accounting
may produce more reliable results. Prediction into year 2005 and the consequent comparison 
with actual land cover information also provide a credible way for evaluating model performance.

A 2.1km x 2.1km squared area (i.e., a sample of 70 x 70 = 4900 cells) in north Austin was 
selected as an example site for model application. The correlation matrix Ω  was first generated 
based on the distance between cells, resulting in a 4900x4900 matrix. This was decomposed 
using generalized Cholesky methods. And 9800 randomly shuffled Halton sequences (each 
containing 300 values) were generated and multiplied by the triangular matrix, producing the 
random vectors m

iζ  ( 1,2,...4900; 2,3i m= = ). 

As mentioned above, in order to validate the model, the prediction year was selected to be 
the current year (2005), and the explanatory variables come from the year 2000 values (resulting 
in a t∆ =5 year time interval). For each draw and for each cell, the utilities of all three land cover 
types were calculated, and the type offering the highest utility became the cell’s 2005 predicted 
land cover. 300 such draws were made, and the most common land cover type for each cell is 
shown in Figure 2. 

Of course, Figure 2’s “most likely” pattern will not occur with a high likelihood. The 
predictions are really a set of 300 simulations’ averages, or highest likelihoods, so more dramatic 
clustering and the lack of a fine-grained diversity in cover is expected, as shown. In fact, there is 
great flexibility and uncertainty in the future of this complex site, with its 4900 cells. It is very 
helpful for planners to quantify and visualize such uncertainty. As in SLEUTH (Candau et al. 
2000), uncertainty can be calculated based on the predicted frequencies of different land covers
taking hold. This study relies on an entropy statistic to quantify predictive uncertainty. (See, e.g., 
McKay [1995] and Kotz and Johnston [1982].) That is, the uncertainty associated with the set of 
potential land covers in cell i  is formulated as follows:

( )
3

1

1
ln

ln(3)i im im
m

uncertainty P P
=

−= ∑ (11)

This formulation generates a value between 0 and 1 for each cell. The higher the value, the 
more uncertain is the prediction for that cell. When all three future land cover alternatives have 



equal probabilities (Pim = 0.33 ∀ m), the uncertainty index equals 1, indicating maximum 
uncertainty. When the land cover type remains the same for all 300 simulations, this index equals
0. The land cover uncertainty associated with this site and this set of predictions can be 
visualized, as shown in Figure 2. Higher uncertainty appears at the border of two different land 
cover types and decreases with land cover uniformity. 

The 2005 predictions were compared to detailed aerial photos and parcel-based land use 
maps of the site, as a form of validation. Figure 2 shows the 2000 data alongside the actual 2005 
land cover classes. It seems the 2000 data were 25% misclassified, resulting in most of the “mis-
prediction” evident in the 2005 image. Partly as a result, undeveloped land was seriously under-
predicted while lightly and intensely developed lands were over-predicted by17% and 26%, 
respectively. This does not mean that the model is not performing well, but rather, the start data 
was not as reliable as it should be. Improvements in satellite image quality and data classification 
are expected to resolve some of these issues. Anyone wishing to project forward can classify the 
area of interest manually, and then apply the model, in order to avoid such issues with current 
classifications. Another possible reason for over-prediction of 2000-2005 land development is 
the economic slowdown that began in 2000, particularly for the Austin region. With model 
parameters calibrated using 1983 through 2000 data, the estimated rate of development is 
probably faster than the actual speed between 2000 and 2005, contributing to the over-prediction. 

Conclusions

Satellite imagery presents a promising future to those interested in land cover change 
dynamics.  However, the data points are profuse, land cover classifications are discrete, and 
spatial and temporal effects are fundamental. For these reasons, new specifications and 
computational methods are very much needed. In light of these challenges, this work undertakes 
several relatively unusual techniques using a series of Austin, Texas images. Sampling of 
observations is central to these techniques. Halton sequences are randomly shuffled and 
Cholesky decomposition of non-positive definite matrices is achieved. Likelihood values are 
simulated (for parameter estimation via maximization), as are images of Austin’s future. Lagged 
variables are key to the model’s specification, as is explicit recognition of unequal time intervals 
between each of the three satellite images. A series of neighborhood variables, computed for 
each cell in turn, control for population and local development. And uncertainties in predictions 
are quantified via an entropy statistic.

Model results suggest strong clustering effects, by developed land cover type. After 
controlling for neighboring land covers, future development is most likely in areas offering lower 
residential densities. Model application to a 4900-cell area in the year 2005 confirms these 
results, via simulation of 300 futures for each cell.  Uncertainty indices (i.e., entropy terms) 
indicate greatest land development uncertainty at the “edges” of distinct land cover types where 
land cover transition tends to occur.

It is hoped that the methods and conclusions of this work will offer valuable tools and 
insights for researchers, planners, policy makers, developers and others seeking to predict the 
future. New techniques should allow us to tap the potential of satellite databases.
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Table 1. Summary Statistics for All Variables

Variable Statistics
Variable Year

Min Max Mean S.D.
  Dependent Variables

1983 0 1 0.052 0.223

1991 0 1 0.138 0.345

1997 0 1 0.216 0.412

Indicator for residential 
(1 if residential; 0 otherwise)

2m
ity =

2000 0 1 0.237 0.425

1983 0 1 0.089 0.285

1991 0 1 0.080 0.271

1997 0 1 0.087 0.281

Indicator for commercial/industrial/transportation
(1 if commercial, industrial or transportation; 0 otherwise)

3m
ity =

2000 0 1 0.106 0.308
  Explanatory Variables

Distance to the nearest highway (km) 
 (constant over time)

, 1HW td −

--- 0.020 20.60 5.088 3.963

Distance to CBD (km) (constant over time)

, 1CBD td −
--- 0 42.65 20.24 9.414

1983 0 230.8 4.977 11.13

1991 0.033 384.7 8.567 15.19

1997 0.117 447.4 11.560 18.81

Weighted sum of the neigborhood’s population

1

2
i

jt

j S ij

POP

d
−

∈
∑

2000 0.045 590.2 12.797 20.01

1983 0 25.34 1.760 3.75

1991 0.094 27.04 4.560 4.952

1997 0.305 25.13 7.209 5.505

Weighted sum of the neighborhood’s residential land

( )
2
1

2
i

m
jt

j S
ij

y

d

=
−

∈
∑

2000 0.077 28.44 7.889 7.001

1983 0.027 26.92 2.941 4.084

1991 0.007 26.15 2.678 4.212

1997 0.020 26.05 2.855 3.735

Weighted sum of the neighborhood’s 
commercial/industrial/transportation

 land

( )
3
1

2
i

m
jt

j S
ij

y

d

=
−

∈
∑ 2000 0.027 27.35 3.555 4.599

Note: Neighborhood is defined as a 6.03 km x 6.03 km square area centered on the observation, which 
consists of 201x201, or 40,401 cells.



Table 2. Model Estimation Results

Coef. Stat. across 100 Samples
Parameters Coef. t-stat. Elasticity

Max Min S.D

Attributes for Residential Land Cover (m=2)

β0
m,HW

-1.035E-02 0.768 -0.043 1.390E-01 -1.569E-01 6.533E-02Distance to the nearest highway
, , ,

0 1
m HW m HW m HW tβ β β= + ∆ β1

m,HW
5.801E-03 0.891 0.140 2.669E-02 -3.447E-02 1.278E-02

β0
m,CBD

2.079E-02 0.946 0.359 5.993E-02 -1.555E-02 1.843E-02Distance to CBD
, , ,

0 1
m CBD m CBD m CBD tβ β β= + ∆ β1

m,CBD
5.954E-04 0.567 0.060 7.726E-03 -7.546E-03 3.401E-03

θ0
m,POP

-3.528E-02 1.563 -0.159 1.349E-02 -8.190E-02 1.884E-02Population in the neighboring cell

( )
, ,

, 0 1
2

m POP m POP
m PO P
ijt

ij

t

d

θ θρ + ∆= θ1
m,POP

-1.005E-02 1.976 -0.253 -4.154E-04 -2.146E-02 4.929E-03

θ0
m,n

5.096E-01 6.947 1.093 6.814E-01 3.215E-01 7.582E-02Neighboring cell is residential (n=2)

( )
, ,

, 0 1
2

m n m n
m n
ijt

ij

t

d

θ θρ + ∆= θ1
m,n

2.490E-02 2.048 0.248 5.520E-02 -1.385E-03 1.329E-02

θ0
m,n

1.932E-01 1.954 0.241 4.229E-01 -6.462E-02 1.086E-01Neighboring cell is 
commercial/industrial/transportation (n=3)

, ,
, 0 1

2

m n m n
m n
ij t

i j

t

d

θ θρ + ∆= θ1
m,n

1.406E-02 1.084 0.106 5.626E-02 -3.412E-02 1.797E-02

α0
m

-6.860 11.565 --- -5.514 -9.383 5.750E-01

α1
m

-6.525E-02 0.689 --- 1.213 -3.615 6.422E-01
Individual Specific Effect

( )2 3
0 1 0 0

m m m m m m m
i i i iu y yα α σ ζ= == + + +

σm
1.380 5.614 --- 2.065 0.828 2.212E-01

Attributes for Commercial/Industrial/Transportation Land Cover (m=3)

β0
m,HW

-3.265E-02 0.796 -0.148 1.471E-01 -2.988E-01 9.809E-02Distance to the nearest highway
, , ,

0 1
m HW m HW m HW tβ β β= + ∆ β1

m,HW
7.228E-03 0.900 0.228 4.974E-02 -3.521E-02 1.663E-02

β0
m,CBD

3.846E-03 0.701 0.057 9.701E-02 -7.533E-02 3.394E-02Distance to CBD
, , ,

0 1
m CBD m CBD m CBD tβ β β= + ∆ β1

m,CBD
6.751E-03 1.303 0.716 1.741E-02 -7.194E-03 5.023E-03

θ0
m,POP

-6.166E-02 1.984 -2.872 2.646E-02 -1.672E-01 3.264E-02Population in the neighboring cell

( )
, ,

, 0 1
2

m POP m POP
m PO P
ijt

ij

t

d

θ θρ + ∆= θ1
m,POP

-5.355E-03 1.152 -1.426 9.664E-03 -2.279E-02 6.469E-03

θ0
m,n

3.491E-01 3.696 1.138 5.371E-01 1.171E-01 9.037E-02Neighboring cell is residential (n=2)

( )
, ,

, 0 1
2

m n m n
m n
ijt

ij

t

d

θ θρ + ∆= θ1
m,n

-1.521E-02 1.143 -0.288 3.492E-02 -5.043E-02 1.673E-02

θ0
m,n

8.547E-01 6.506 9.741 1.195 6.173E-01 1.268E-01Neighboring cell is 
commercial/industrial/transportation (n=3)

, ,
, 0 1

2

m n m n
m n
ij t

i j

t

d

θ θρ + ∆= θ1
m,n

2.483E-03 0.818 0.181 5.862E-02 -3.318E-02 1.811E-02

α0
m

-8.671 9.160 --- -6.974 -10.447 8.355E-01

α1
m

-9.401E-02 0.761 --- 1.854 -1.948 7.573E-01
Individual Specific Effect

( )2 3
0 1 0 0

m m m m m m m
i i i iu y yα α σ ζ= == + + +

σm
2.000 5.532 --- 2.570 1.022 3.333E-01
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Figure 1. Correlation between Observations Generated by Different Simulation Methods
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