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Abstract 
 

In practice crash and/or injury counts are modeled using a single equation or a series of 

independently specified equations, which may neglect shared information in unobserved error 

terms, reduce efficiency in parameter estimates, and lead to potential biases in sample databases. 

This paper offers a multivariate Poisson specification that simultaneously models injuries by 

severity. Parameter estimation is performed within the Bayesian paradigm, using a Gibbs 

Sampler for crashes on Washington State highways. Parameter estimates and goodness of fit 

measures are compared to a series of independent Poisson equations, and a cost-benefit analysis 

of a 10 mi/h speed limit change is provided as an example application. 
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Introduction
In the U.S. traffic crashes bring about more loss of human life (as measured in human-years) 
than almost any other cause – falling behind only cancer and heart disease (NHTSA, 2005). The 
annual cost of such crashes is estimated to be $231 billion, or $820 per capita in 2000 (Blincoe et 
al., 2002).  These costs do not include the cost of delays imposed on other travelers, which also 
are significant, particularly when crashes occur on busy roadways. For example, Schrank and 
Lomax (2002) estimate that over half of all traffic delays are due to non-recurring events, such as 
crashes, costing on the order of $1,000 per peak-period driver per year, particularly in urban 
areas.   Thus, while vehicle and roadway design are improving, and growing congestion may be 
reducing impact speeds, crashes are becoming more critical in many ways, particularly in 
societies that continue to motorize.  

There has been considerable crash prediction research (see, e.g., Hauer, 1986, Hauer, 1997 and 
2001, Abdel-Aty and Radwan, 2000, Ulfarsson and Shankar, 2003, Kweon and Kockelman, 
2005, Lord and Persaud, 2000, Lord et al. 2005).  Crash frequencies are commonly collected by
severity on relatively homogenous roadway segments.  In virtually all cases, frequency is 
modeled separately from severity; a simultaneous or joint system of counts by severity is not 
used.

There are several drawbacks to separate analyses.  First, such approaches may result in a 
substantial decrease in estimator efficiency, since any relationship between crash severity and 
frequency is ignored. (For example, more crash prone sites may exhibit higher proportions of 
less severe injuries.) Second, severity analysis can only be conducted once a crash has occurred –
and thus only on sites where crashes have transpired, resulting in a biased site sample.  Finally, 
joint probabilities (of crash occurrence and severity) better characterize overall risk than 
marginal or conditional probabilities. 

Using a multivariate Poisson specification, as well as Bayesian techniques, this paper presents a
joint model of crash frequency and severity (as measured in terms of crash-involved occupants).   
A Gibbs sampler was constructed to create distributions of all parameter estimates. The data 
come from all Washington State highways in 1996, using the Highway Safety Information 
System (HSIS) database.  The results lend themselves to recommendations for highway safety 
treatments and design policies.

This paper is organized as follows: Related research studies are reviewed first.  The model’s 
formulation and data sets are then discussed, followed by estimation results, concluding remarks,
and future research directions.

Literature Review
Models of crash (or injury) counts can be classified into two major streams: (1) the conventional 
univariate Poisson and related models, such as the negative binomial (NB); and (2) potentially 
more realistic specifications, like the multivariate Poisson (MVP). The first stream of models has
provided a means for investigating associations between crash frequency and many crucial
factors, such as traffic volume, access density, posted speed limit and number of lanes (see, e.g., 
Miaou et al., 1993; Miaou and Lum, 1993; Miaou, 1994, 1996 and 2001; Fridstrøm et al., 1995; 



Johansson, 1996; Vogt and Bared, 1998; Vogt, 1999; Balkin and Ord, 2001; Zegeer et al., 2002; 
and Pernia et al., 2004). There also has been considerable interest in models that allow for 
excessive zeros, such as zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) 
regression approaches. (See, e.g., Shankar et al., 1997; Garber and Wu, 2001; Lee and
Mannering, 2002; Kumara and Chin, 2003; Miaou and Lord, 2003; Rodriguez et al., 2003; 
Shankar et al., 2003; Noland and Quddus, 2004; Qin, Ivan and Ravishankar, 2004; and Lord, 
Washington and Ivan, 2005.)

Thanks to computational and statistical advances, panel data, in which a cross-section (of 
segments, intersections, etc.) is observed over time, have become more amenable to rigorous 
analysis.  In traffic crash analyses, there are a great many unobserved explanatory variables that 
affect frequencies and severities.  Panel data can be used to deal with heterogeneity in the 
individuals.  To address the heterogeneity issue across individuals, many recent studies have 
used (univariate) panel count data models, such as random-effect negative binomial (RENB) and
fixed-effect negative binomial (FENB) regression models (Chin and Quddus, 2003; Kweon and
Kockelman, 2005).  

Such past research endeavors, however, have neglected the role of unobserved factors across 
different types of counts (e.g., the number of fatalities and the number of debilitating injuries).
Recognizing the need for such considerations, Bijleveld (2005) examined the correlation 
structure between crash and injury counts.  As expected, he found significant correlations. 
However, he did not control for any covariates. Multivariate models (of count data) can correct 
for this.  A particular MVP application of such model is the focus of this paper.  

Ideally, the frequency of traffic crashes by severity is simultaneously modeled using multivariate 
count data models, such as a MVP or multivariate zero-inflated Poisson (MVZIP) regression 
model. (See, e.g., Li et al. [1999] for their MVZIP model of manufacture defects.)

Unfortunately, parameters in most MVP model specifications are difficult to estimate.  Karlis 
(2003) developed an Expectation Maximization (EM) algorithm for estimating the class of such
models that is described in the following section.  Christiansen et al. (1992) developed a 
univariate hierarchical Bayesian Poisson model for investigating crash counts. MacNab (2003) 
proposed and applied a Bayesian hierarchical model in his investigations of crashes using 
surveillance data.  Miaou and Song (2005) employed Bayesian methodologies in ranking 
roadway sites for safety improvements; they adopted a multivariate spatial generalized linear 
mixed model (GLMM) to predict crash counts by severity.  

However, it appears that no study has applied Bayesian methods to estimate MVP models of
injury frequencies, by severity. Of course, Bayesian methods generate a multivariate posterior
distributions across all parameters of interest, as opposed to the traditional maximum likelihood 
estimation, which only offers the mode of parameters (and relies on asymptotic properties to 
ascertain covariance).

This paper introduces an MVP approach to simultaneously model injury counts by severity. A 
Gibbs sampler as well as Metropolis-Hastings (M-H) algorithms are established to estimate the 



parameters of interest for the Bayesian statistical inference.  For comparison purposes, a series of 
independent (univariate) Poisson models for injury counts also are estimated.  

Model Structure and Estimation

Mathematical formulation
For ease of presentation, we describe a trivariate MVP mathematical formulation for analyzing 
counts of crash-involved persons across three levels of injury severity. Extending the 
specification to accommodate additional levels of severity (e.g., 5 levels) is conceptually and 
mathematically straightforward.  Suppose we have a sample { }nii ,,2,1; Κ=y from a trivariate 

Poisson distribution, where [ ]1 2 3, ,i i i iy y y ′=y denotes the number of crash-involved persons on 

the ith roadway segment in the sample experiencing no injury ( 1iy ), injury ( 2iy ), and fatal injury

( 3iy ), over a given time period (such as a year).  According to Karlis (2003), the general 

trivariate Poisson model is specified as follows: 

ii Azy = (1)
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Substituting matrix A  into Equation (1), one arrives at the following:
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 (2)

where all ikz ’s are independently Poisson distributed random variables with parameters ikθ , 

{ }123,23,13,312,2,1∈k .  Parameters ikjθ  are actually covariance parameters between ikY  and ijY , 

and ikjlθ  is a common 3-way covariance parameter among ikY , ijY , and ilY .

For ease of implementation, the following assumption is made for the trivariate Poisson 
distribution, as employed by Tsionas (2001) for his models of forest damage:
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where 1 2 3, , , i i i iz z z δ  have independent Poisson distributions with parameters 1 2 3, , ,i i iθ θ θ λ , 

respectively for each ni ,,2,1 Κ= .  



Like the univariate Poisson regression, the MVP regression model is constructed so that the 
parameters depend on explanatory variables isx ( )1,2,3s = .  
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where isx  and sγ are 1sp ×  column vectors. sEα  denotes an exposure measure (such as VMT), 

and the exponential transformation ensures non-negativity of crash rates.  Equation (4) can be 
further expressed as follows:
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In this way the set of regressors (and their number) may differ across isθ ’s.  It also is assumed 

that iδ  is independent of the isx ’s. 

For application of computational Bayesian models, the MVP regression model requires a 
distributional assumption for iδ , as well as knowledge of each observational unit’s contribution 

to the likelihood, , ,i iδy β x , where ( )′= 321 ,, ββββ and ( )1 2 3, , ′′ ′ ′=x x x x .  Here, the iδ  is assumed 

to come from a univariate Poisson distribution, with parameterλ .  According to Equation (3) the 
likelihood contribution by the ith segment is a product of univariate Poisson distributions with 
rate parameters 1 2 3, , i i iθ λ θ λ θ λ+ + + .  Thus, the joint probability function of , ,i iδy β x  can be 

expressed as follows:
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which is simply the product of the individual univariate probability mass functions for each of 

1 2 3, ,i i iy y y .  Let { }( ) ( )∏
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is the likelihood function.  According to Bayes’ theorem, the posterior distribution is 
proportional to the product of the likelihood function and the joint prior of all parameters, so it 



must be given by ( ) ( ) ( )
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distribution of the model is obtained as follows:
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where ( )1 2 3min , ,i i i iy y yδ ≤ , ni ,,2,1 Κ= .  This constraint is caused by the fact that the variables 

following Poisson distributions take on only nonnegative integers.  Simply put, it is assumed that 
β  and λ  are independent of x .  The parameters ( ),λβ  can be assumed to have the following 

flat (uninformative) prior.

( ) 1,p λ λ−∝β (7)

The nature of computational techniques for Bayesian analysis allows one to handle any arbitrary 
priors for the regression coefficients.  Both flat and conjugate priors are assumed in the following 
series of Markov chain Monte Carlo (MCMC) simulation techniques for parameter estimation.

Estimating parameters via MCMC

Bayesian inference is primarily based on the MCMC simulation techniques, such as the Gibbs 
sampler and the M-H algorithm (see, e.g., Metropolis et al. (1953); Hastings (1970); Tanner and
Wong, 1987; Gelfand and Smith, 1990; Smith and Roberts, 1993; Tierney, 1994; and Lee, 2004).  
The Gibbs sampler and the M-H algorithm set up a Markov chain in the parameter space. The 
Gibbs sampler is logically simpler, but requires knowledge of the conditional distributions.  It
generates random draws from a joint density ( ) ( )Kθθθππ Κ,, 21=θ , where θ  is the parameter 

vector.  Let ( )k kπ θ −θ  denote the full conditional density of kθ  given values of other 

components ( ),k j j kθ− = ≠θ , Kk ,,2,1 Κ= , and K  is the number of blocks of parameters.  

Given a starting point ( ) ( ) ( ) ( )( )0 0 0 0
1 2, , , Kθ θ θ=θ K , successive random draws are made from each of 

the conditional distributions ( )k kπ θ −θ , where Kk ,,2,1 Κ= , using the following subroutine:
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mm θθθθπ ,,, 3
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12 Κ+ ;
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Draw a value ( )1m
Kθ

+  from ( )( )1m
K Kπ θ +

−θ .

where Mm ,,2,1 Κ= .  Iterating the subroutine M  times produces M draws from the joint 

density ( )π θ .  Thus the problem of sampling a multivariate distribution is reduced to the much 

easier problem of sampling from a series of univariate distributions.  Under mild regularity 
conditions (Roberts and Smith, 1994), the sample ( ){ }Mmm ,,2,1; Κ=θ converges in distribution 

to ( )π θ .  In practice, one is often interested in the marginal distributions of parameters of interest.  

The Gibbs sampler and M-H algorithms are the best devices for exploring such distributions.

To make draws from the posterior distribution in Equation (6), one has to provide the conditional 
distributions of parameters and determine how one can obtain random draws from these 
distributions.  Such posterior conditional distributions can be easily extracted from the joint 
posterior distribution in Equation (6).  For example, the posterior conditional distribution of 
parameter λ  is given by
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which is a two-parameter gamma distribution with shape parameter 
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=∑  and scale parameter 

1 n .  

The posterior conditional distribution of each iδ  is shown as follows:
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The conditional distribution of iδ  given the values of ( ), , ,λβ x y  is discrete, so it is easy to make 

random draws.

The posterior conditional distribution of sβ ( )1,2,3s =  can be simplified as a posterior of 

regression coefficients in the following univariate Poisson regression model.  
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However, the conditional distribution of sβ  is non-standard, and thus it is difficult to generate 

random draws using the Gibbs sampler.  The M-H algorithm allows one to make random draws 
from such non-standard distributions.  

The M-H algorithm generates a sequence of samples from the probability distribution of 
variables of interest.The key to this algorithm is creating a sampling strategy which satisfies a 
“detailed balance” requirement: the probability of being in state aθ  and moving to state bθ must 

be the same as moving from bθ  to aθ . Notationally, this means:
( ) ( )( ) ( ) ( )( )1 1, ,m m m m

a b b ap pθ θ θ θ θ θ θ θ− −= = = = = .  The sequence of draws is accomplished by 

proposal and acceptance/rejection of candidate values *θ .  A candidate point *θ  is sampled

through a proposal function ( )( )1* mq θ θ − , the form of which is quite arbitrary.  To satisfy this 

balance requirement, a probability ( )( ) ( ) ( )( )
( )( ) ( )( )

1* *

1*

1 1*
min ,1

m

m

m m

p q

p q

θ θ θ
α θ θ

θ θ θ

−

−
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 =  
  

 is used here.  If 

( )( )1* mα θ θ −  is greater than U (where U  is uniformly distributed on ( )0,1 ), ( ) *mθ θ= ; otherwise,

( ) ( )1m mθ θ −= .  There are three commonly used options for the proposal function ( )( )1* mq θ θ − : 

random walk chains, independence chains and autoregressive chains.  Further details about the 
M-H algorithm can be found in Smith and Roberts (1993), Tierney (1994), Chib and Greenberg 
(1995), and Lee (2004).

Data Description

The crash data sets used here were collected from Washington State through the Highway Safety 
Information System (HSIS).  After filtering off unreasonable observations (such as segments 
with zero speed limits), a total of 40,718 Washington State highway segments remained.  Due to 
vehicular accidents, there were 299 fatal injuries, 1,637disabling injuries, 6,570 non-disabling 
injuries, 11,858 possible injuries and 20,100 crash-involved persons experiencing no injury along 
these segments in 1996.  These segments serve as distinct observational units and contain 
information on crash-involved vehicle and person characteristics, roadway design features 
(including speed limits), environmental conditions (at the time of crash), and basic crash
information (such as injury severity, time and type of crash).  Table 1 contains summary 
statistics of all variables expected to be of interest.

Model Estimation and Discussions

Model Estimation
The MVP regression model described in equations 3 through 6 was estimated using a Bayesian 
approach.  Starting values came from distinct univariate Poisson models (using the method of
maximum likelihood estimation (MLE)).  A Gibbs sampler (with nested M-H algorithms) was
coded in R language (an open-source statistical computing environment described at 
http://www.r-project.org/).  The Gibbs sampler was implemented to obtain M = 25,000 draws for 



each of the 96 parameters.  The initial 5,000 draws were discarded as burn-ins.  To help ensure 
chain convergence, the Gibbs sampler was implemented using two sets of initial values, and both
converges at the same posterior distribution of parameters. Estimation results are presented in 
Tables 2 through 6, along with MLE results for the univariate Poisson models.

Figures 1 and 2 illustrate the estimates of posterior distributions for these regression coefficients.  
Based on the posterior density of λ (shown in the right-bottom panel of Figure 2), positive 
correlations between crash counts at different levels of severity within the segment do appear to
exist in a statistically significant way among counts of different injury levels. The univariate 
models are a special case of the MVP, with λ  equal to zero, so the MVP predictions should 
prove better.  Calculation of average likelihood values for the estimated models versus constant-
only cases provide likelihood ratio indices (LRIs) as a measure of goodness of fit.  These are 
0.323 for the suite of univariate models and 0.766 for the MVP approach, suggesting that the 
latter is superior.  Both approaches predict total counts (by severity) across all roadway segments 
with almost no error.

Interpretation of Results
In addition to producing a substantially higher LRI and better estimates of total crash-involved 
persons (or “total injuries”), the MVP model’s estimation results offer more intuitive 
interpretations.  For example, fatal injury rates (per VMT) rise with speed limit in the MVP 
models. This potentially key variable was not found to be statistically significant in the 
univariate model for fatal crash counts.  However, the MVP model’s Bayesian results suggest far 
fewer statistically significant control variables.

The following discussion of results emphasizes fatal and disabling injuries (Tables 2 and 3), 
since these arguably are of greatest concern to agencies and policymakers.  Moreover, the data 
on such outcomes are more likely to be reported and more reliably recorded than that for other 
crash outcomes. Tables 4 through 6 provide person-count model estimates for the other three 
severity levels.  The signs of most coefficients are consistent throughout the models, indicating 
robust directions of effect for almost all control variables, at least in the case of severe injury 
(fatal and debilitating).

Parameter estimates shown in Tables 2 and 3 suggest that roadway design plays an important 
role in injury counts.  For example, holding all other factors fixed, more fatal injuries are 
expected on sharper horizontal curves, while wider shoulders tend to reduce rates of both fatal 
and disabling injuries.  Based on an average road segment’s attributes and the MVP model’s 
average parameter estimates, Table 7 provides estimates of percentage changes in crash 
frequencies as a function of various design details. For example, a 10 ft increase in shoulder 
width (from 10’ to 20’) is predicted to result in 18% and 23% fewer fatal and disabling  injury 
cases per 100 million VMT, respectively. Added lanes are predicted to reduce disabling injuries
by 11%; an added median by 8.8%. Removal of access control is predicted to increase the 
number of disabling injuries by 36%. Oddly, none of these three key variables was predicted to 
have a statistically significant impact on fatal injury counts (in the MVP model). Perhaps fatal 
crash counts are so rare on short homogeneous roadway segments that they cannot be clearly 
linked to many design attributes.  Nevertheless, disabling injuries may serve as a valuable proxy 



for fatal crash relationships.  And the MVP model offers several statistically (and practically) 
significant insights into these injury counts’ dependence on roadway design attributes.

Example Application: A Cost-Benefit Analysis of Raised Speed Limits

Results in Tables 2 through 7 offer several suggestions for design changes that transportation 
agencies might consider.  As indicated in Table 7, a speed limit increase 10 mi/h (from 55 mi/h 
to 65 mi/h, on the “average” roadway section in the database) is predicted to increase fatal and 
disabling injury rates by 0.95% and 11.13%, respectively (according to the MVP model’s 
average parameter values).  One might argue that travel time savings due to a raise in limits can 
offset the costs of increases in these and other crash outcomes.  This section considers this 
question, as an example application of the model results.

Table 8 presents estimates of injury costs.  Its first two rows summarize a National Highway 
Traffic Safety Administration (NHTSA) study by Blincoe et al. (2002). The first row presents 
the “market costs” of injuries (based on medical treatment, emergency services, losses in market 
and household productivity, insurance administration, workplace cost, and legal costs).  The 
second row gives comprehensive costs incorporating Quality-Adjusted Life Years (QALYs), and
accounts for pain and suffering by family members.  Since the HSIS database recognizes five
injury levels (rather than 6), injury costs were calculated using a weighted average of the six 
MAIS (Maximum Abbreviated Injury Scale)1 costs.  

Table 9 presents driving speed increases that have been observed in a variety of published 
studies following speed limit increases2. Based on Table 9, there is approximately a 3.1 mi/h 
increase in average, observed traffic speeds if speed limits are raised 10 mph.  Thus, the time 
savings per 100 million VMT due to a 10 mph increase in speed limits is estimated to be 106,879
hours.  This time savings is equivalent to $1,450,687, assuming a $15.04/vehicle-hour value of 
travel time savings (US DOT, 1997 and 2003).  A 10 mph increase in speed limits is predicted to 
result in 0.029 and 1.9 more fatal and disabling injuries, respectively, and in 4.87, 13.96, and 
17.16 fewer non-disabling, possible and no injury outcomes (per 100 million VMT), respectively.  
The equivalent average cost estimate for such shifts in injury types is estimated to be $3.34 
million (in 2000 dollars, using the values of crash costs in the last row of Table 83).  Therefore, 
the estimated cost-benefit ratio is 2.3:1. These results suggest that raising speed limits does not
offer adequate time savings benefits. However, if actual travel speeds were to increase one-to-
one with speed limits (i.e., by 10 mi/h, rather than 3.1 mi/h), this ratio would change to 0.71:1.  
Thus, the result very much depends on how much speeds change following a speed limit change.

Conclusions
This study developed a model that allows researchers to simultaneously model crash outcomes
by severity based on a type of MVP specification that can be estimated within a Bayesian 
framework using Gibbs sampling. Crash counts for over 40,000 homogeneous segments of
Washington State highways in 1996 were used to estimate the model.  As expected, positive 
correlation in unobserved factors affecting count outcomes was found to exist across severity 
levels, resulting in a statistically significant additive latent term.  



Thanks to MCMC simulation techniques, the marginal posterior distributions of all parameters of 
interest were obtained, and estimation results from the MVP approach offered more intuitive 
interpretations and better predictions than those from the univariate Poisson models.  As 
anticipated, the results lend themselves to several recommendations for highway safety 
treatments and design policies.  For example, access control and wide shoulders are key for 
reducing severe injury, as are medians and added lanes. Moreover, using a cost-benefit approach 
and assumptions about travel speed changes, model results suggest that time savings from raising 
speed limits 10 mi/h (from 55 to 65 mi/h) may not be worth the added crash cost.

There are several enhancements that can be made in this work.  The model specification relied 
on a one-way covariance structure, and assumed the presence of an added constant across all 
count types.  This implies that the covariances are non-negative and identical within the segment, 
and that within-segment covariances are the same across segments.  A more general covariance 
structure would allow for different correlations across all pairs of count outcomes, and a 
multiplicative approach may better reflect the distinctions in count magnitudes (across severities). 
Other forms of overdispersion and correlation also should be explored, including the mixed 
multinomial-Poisson model (Terza and Wilson, 1990), the multivariate negative binomial model 
(as employed by Kockelman [2001] and others, and currently under investigation by the authors).  
The use of panel data would allow one to distinguish sources of heterogeneity. And acquisition 
of other potentially valuable variables (such as distances to the nearest hospital and clear zone 
width) would also be helpful. Nevertheless, a Bayesian approach appears to offer great potential 
for new and different model specifications, offering richer sets of results and better predictive 
power.  Such approaches may be critical in an area as important to human health and welfare as 
highway safety, even in the presence of large data sets (where classical approaches also tend to 
perform reasonably).
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Endnotes

1 MAIS denotes the highest (maximum) abbreviated injury severity score (AIS) that corresponds to a crash victim’s 
incurred injuries.  It can take on values from 0 (minor injuries) to 5 (fatal injury).
2 Most of the studies listed here (except that in NCHRP Project 17-23) examined speeds on rural interstate highways, 
following a change from 55 mi/h to 65 mi/h.  The NCHRP (2005) study examined an urban an rural site, both with 5 
mi/h increase. (The resulting average speed change was therefore doubled in that case, to estimate the change that 
would have occurred has the speed limit change been 10 mi/h.)
3 Mrozek and Taylor (2002) investigated the value of a statistical life (VOSL) using a meta-analysis.  Based on 33 
previous studies, they recommended a VOSL of $1.5 to $2.5 million, which is considerably lower than NHTSA’s 
$3.37 million recommendation.  However, the average VOSL of the 33 studies is about $5.59 million.  If this $5.59 
million value (per life) were used here and other injury costs were inflated by a ratio of 1.66 (=5.59 million/3.37 
million), the cost-benefit ratio would become 1:2.21, suggesting that speed limits could offer some valuable time 
savings benefits.
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Table 1 Summary Statistics of Variables for Washington State Highway Segments in 1996

Variable Name Variable Description Mean Std.Err. Min Max
Dependent Variables

FATAL Number of fatal injuries in a segment per year 0.007343 0.1659 0 10
DISABLING Number of disabling injuries in a segment per year 0.04020 0.4222 0 13
NONDISAB Number of non-disabling injuries in a segment per year 0.1614 0.9290 0 30
POSSIBLE Number of possible injuries in a segment per year 0.2912 1.663 0 54
NOINJURY Number of no injuries in a segment per year 0.4936 2.250 0 84

Independent Variables

CURV_LGT Horizontal curve length (ft) 317.8 695.1 0 12683
DEG_CURV Degree of curvature  (°/100ft) 1.522 3.269 0 23.97
VCUR_LGT Vertical curve length (ft) 393.3 509.5 0 6000
PCT_GRAD Vertical grade (%) 1.804 1.833 0 11.22
RSHDWIDT Total right shoulder width (ft) 6.506 6.271 0 50
NUMLANES Total number of lanes 2.618 1.196 1 9
MEDIAN Indicator for presence of median (1: presence of median, 0: no median) 0.1787 0.3831 0 1
SPD_LIMT Posted speed limit (mi/h) 51.54 10.30 25 70
SPDLMTSQ Posted speed limit squared 2763 997.5 625 4900
MOUNTAIN Indicator for mountainous terrain (1: presence of mountainous terrain, 0: otherwise) 0.08338 0.2765 0 1
ROLLING Indicator for rolling terrain (1: presence of rolling terrain, 0: otherwise) 0.7182 0.4499 0 1
RURALCOL Indicator for rural collector (1: rural collector, 0: otherwise) 0.2187 0.4134 0 1
RURALINT Indicator for rural interstate (1: rural interstate, 0: otherwise) 0.05022 0.2184 0 1
URBANART Indicator for urban arterial (1: urban arterial, 0: otherwise) 0.1734 0.3786 0 1
URBANCOL Indicator for urban collector (1: urban collector, 0: otherwise) 0.007441 0.08594 0 1
URBANINT Indicator for urban interstate (1: urban interstate, 0: otherwise) 0.04924 0.2164 0 1
ACCCNTRL Indicator for access control (1: presence of access control, 0: otherwise) 0.2588 0.4380 0 1
VMT Annual vehicle miles traveled on a segment 319971 1040530 376.0 93420800
LNVMT Logarithm of annual vehicle miles traveled on a segment 11.23 1.687 5.929 18.35

#Observations 40718



Table 2 Fatal Injury Frequency Models for Washington State Crash Data 1996

Univariate Poisson Regression
(MLE)

Multivariate Poisson Regression
(Gibbs Sampler)

Coef. Std. Err. P-value Mean Std. Err. The 95% (2.5-97.5%) HDR

Constant -13.14 0.7778 0.000 -12.92* 1.433 -15.71 -10.10

CURV_LGT 1.894E-04 4.997E-05 0.000 -6.639E-05 9.423E-05 -2.522E-04 1.160E-04

DEG_CURV 0.01212* 0.006019 0.0003532 0.02395

VCUR_LGT -1.909E-04 1.105E-04 0.084 5.526E-05 1.246E-04 -1.875E-04 3.005E-04

PCT_GRAD 0.01286 0.01927 -0.02470 0.05098

RSHDWIDT -0.01992* 0.005541 -0.03088 -0.0091049

NUMLANES -0.2130 0.07369 0.004 -0.02792 0.07470 -0.1728 0.1195

MEDIAN -0.4290 0.2475 0.083 0.08228 0.3733 -0.6455 0.8162

SPD_LIMT 0.03435 0.009882 0.001 0.01214* 0.005055 0.002259 0.02202

SPDLMTSQ -9.432E-05 1.860E-04 -4.599E-04 2.702E-04

MOUNTAIN -1.782 0.5943 0.003 1.943 2.853 -3.657 7.524

ROLLING -0.3199 0.1335 0.017 0.2211 0.3013 -0.3655 0.8197

RURALCOL -0.7587 0.3087 0.014 0.08142 0.2868 -0.4803 0.6472

RURALINT 1.157 0.2793 0.000 -0.03326 0.3041 -0.6300 0.5658

URBANART 0.6766 0.1911 0.000 0.9335 1.285 -1.572 3.439

URBANCOL -29.37 32.26 -92.84 33.40

URBANINT 0.6593 0.3343 0.049 0.8876 1.168 -1.402 3.155

ACCCNTRL -0.4500 0.2025 0.026 -0.2981 0.3508 -0.9797 0.3906

LNVMT 0.6035 0.05141 0.000 0.5964* 0.1053 0.3887 0.8037

Note: An asterisk (*) signifies that parameters differ from zero in a statistically significant way, based on the 95% 
(2.5-97.5) high density region (HDR).



Table 3 Disabling Injury Frequency Models for Washington State Crash Data 1996

Univariate Poisson Regression
(MLE)

Multivariate Poisson Regression
(Gibbs Sampler)

Coef. Std. Err. P-value Mean Std. Err. The 95% (2.5-97.5%) HDR

Constant -13.46 0.5977 0.000 -13.80* 0.9266 -15.62 -11.97

CURV_LGT -8.342E-06 1.266E-05 -3.330E-05 1.673E-05

DEG_CURV -0.029889 0.01342 0.026 0.01656 0.01875 -0.02038 0.05278

VCUR_LGT -1.680E-05 4.585E-05 -1.075E-04 7.296E-05

PCT_GRAD -0.0007990 0.0007548 -0.002276 0.0006793

RSHDWIDT -0.010369 0.004750 0.029 -0.02583* 0.0037537 -0.03311 -0.01848

NUMLANES -0.07253* 0.01834 -0.10842 -0.03691

MEDIAN -0.09199* 0.01729 -0.1258 -0.05860

SPD_LIMT 0.07685 0.02420 0.001 0.1103* 0.005038 0.1004 0.1202

SPDLMTSQ -8.429E-04 2.585E-04 0.001 -7.478E-04* 1.262E-04 -9.944E-04 -5.026E-04

MOUNTAIN -0.1128 0.1061 -0.3216 0.09505

ROLLING 0.2266 0.06124 0.000 -0.1176* 0.04095 -0.1973 -0.03646

RURALCOL -0.3861 0.1252 0.002 0.02386 0.2950 -0.5587 0.5963

RURALINT 0.7683 0.1515 0.000 0.9377 1.168 -1.368 3.235

URBANART 0.4916 0.07447 0.000 0.7872 1.117 -1.388 2.956

URBANCOL 0.4243 0.4852 -0.5311 1.375

URBANINT 0.3399 0.1141 0.003 0.8374 1.143 -1.409 3.085

ACCCNTRL -0.4546 0.08604 0.000 -0.5668* 0.1488 -0.8576 -0.2726

LNVMT 0.6966 0.02237 0.000 0.6018* 0.0857263 0.4337 0.7693

Note: An asterisk (*) signifies that parameters differ from zero in a statistically significant way, based on the 95% 
(2.5-97.5) high density region (HDR).



Table 4 Non-disabling Injury Frequency Models for Washington State Crash Data 1996

Univariate Poisson Regression
(MLE)

Multivariate Poisson Regression
(Gibbs Sampler)

Coef. Std. Err. P-value Mean Std. Err. The 95% (2.5-97.5%) HDR

Constant -10.51 0.2777 0.000 -10.68* 0.6411 -11.94 -9.414

CURV_LGT -7.410E-05 1.912E-05 0.000 -3.011E-05 3.638E-05 -1.007E-04 4.071E-05

DEG_CURV -0.01315 0.006691 0.049 0.09084* 0.008010 0.07527 0.1065

VCUR_LGT -8.778E-05 2.532E-05 0.001 9.737E-05* 3.377E-05 3.005E-05 1.630E-04

PCT_GRAD -0.007937 0.008190 -0.02397 0.008120

RSHDWIDT -0.022034 2.48E-03 0.000 -0.01438* 0.0050373 -0.02424 -0.0044529

NUMLANES 0.1402 0.01271 0.000 -0.1204* 0.02506 -0.1692 -0.07163

MEDIAN -0.3593 0.05444 0.000 -0.1547* 0.06110 -0.2758 -0.03424

SPD_LIMT 0.02260 0.01157 0.051 0.01581* 0.0066693 0.002672 0.02888

SPDLMTSQ -3.528E-04 1.267E-04 0.005 -1.891E-04* 5.132E-05 -2.897E-04 -8.917E-05

MOUNTAIN 0.1759 0.08498 0.038 0.9582 1.481 -1.948 3.891

ROLLING 0.1946 0.03344 0.000 0.09585* 0.04854 0.00044875 0.1909

RURALCOL -0.6237 0.07331 0.000 0.1386* 0.03894 0.06282 0.2160

RURALINT 0.5760 0.08743 0.000 0.6055 0.9070 -1.134 2.379

URBANART 0.5305 0.04265 0.000 0.9056 2.071 -3.145 4.997

URBANCOL 0.4142 0.1401 0.003 1.925 3.143 -4.329 8.075

URBANINT 0.6587 0.07187 0.000 1.305 2.171 -2.949 5.589

ACCCNTRL -0.1219 0.04608 0.008 -0.1300 0.1747 -0.4716 0.2095

LNVMT 0.6583 0.01181 0.000 0.6859* 0.06625 0.5573 0.8168

Note: An asterisk (*) signifies that parameters differ from zero in a statistically significant way, based on the 95% 
(2.5-97.5) high density region (HDR).



Table 5 Possible Injury Frequency Models for Washington State Crash Data 1996

Univariate Poisson Regression
(MLE)

Multivariate Poisson Regression
(Gibbs Sampler)

Coef. Std. Err. P-value Mean Std. Err. The 95% (2.5-97.5%) HDR

Constant -12.21 0.2159 0.000 -12.74* 0.6148 -13.95 -11.54

CURV_LGT -5.735E-05 1.505E-05 0.000 -5.186E-05 6.551E-05 -1.792E-04 7.439E-05

DEG_CURV -0.04531 0.005896 0.000 0.05432* 0.01280 0.02934 0.07935

VCUR_LGT -1.148E-04 2.000E-05 0.000 -5.111E-05 6.231E-05 -1.732E-04 7.072E-05

PCT_GRAD 1.919E-05 5.309E-05 -8.368E-05 1.236E-04

RSHDWIDT -0.02654 0.001673 0.000 -0.02326* 0.00347 -0.02996 -0.01638

NUMLANES 0.1340 0.008782 0.000 -0.1147* 0.01599 -0.1458 -0.08345

MEDIAN -0.1094 0.03516 0.002 -0.1051* 0.02948 -0.1627 -0.04696

SPD_LIMT 0.07957 0.009240 0.000 0.08179* 0.001190 0.07944 0.08410

SPDLMTSQ -1.300E-03 1.030E-04 0.000 -8.133E-04* 6.558E-05 -9.417E-04 -6.841E-04

MOUNTAIN 0.1940 0.08537 0.023 0.4045* 0.1129 0.1817 0.6250

ROLLING 0.2380 0.02560 0.000 0.1598* 0.04869 0.06274 0.2554

RURALCOL -1.025 0.08422 0.000 -0.01044* 0.004692 -0.01955 -0.001110

RURALINT 0.8093 0.07637 0.000 1.107 2.035 -2.865 5.118

URBANART 0.7882 0.03455 0.000 1.092 3.023 -4.879 7.029

URBANCOL 0.4641 0.1101 0.000 1.298 3.148 -4.881 7.465

URBANINT 1.248 0.05267 0.000 1.713 4.060 -6.252 9.596

ACCCNTRL -0.009948* 0.003844 -0.01748 -0.002380

LNVMT 0.7758 0.009092 0.000 0.7520* 0.04727 0.6595 0.8436

Note: An asterisk (*) signifies that parameters differ from zero in a statistically significant way, based on the 95% 
(2.5-97.5) high density region (HDR).



Table 6 No Injury Frequency Models for Washington State Crash Data 1996

Univariate Poisson Regression
(MLE)

Multivariate Poisson Regression
(Gibbs Sampler)

Coef. Std. Err. P-value Mean Std. Err. The 95% (2.5-97.5%) HDR

Constant -7.967 0.09185 0.000 -8.875* 0.3890 -9.637 -8.108

CURV_LGT -9.409E-05 1.142E-05 0.000 1.987E-06 2.377E-05 -4.457E-05 4.846E-05

DEG_CURV -0.01209 0.003744 0.001 0.01880* 0.004550 0.009799 0.02760

VCUR_LGT -2.293E-05* 1.536E-06 -2.595E-05 -1.990E-05

PCT_GRAD 0.009696 0.004586 0.034 0.01110* 0.003297 0.004656 0.01756

RSHDWIDT -0.02215 0.001369 0.000 -0.02500* 0.002516 -0.02995 -0.02006

NUMLANES 0.1835 6.92E-03 0.000 -0.1563* 0.01467 -0.1852 -0.1274

MEDIAN -0.3139 0.03036 0.000 -0.3152* 0.04708 -0.4086 -0.2235

SPD_LIMT -0.03771 0.001096 0.000 0.01261* 0.004838 0.003166 0.02207

SPDLMTSQ -2.031E-04* 6.725E-05 -3.337E-04 -7.265E-05

MOUNTAIN 0.4520 0.04845 0.000 0.4736* 0.07205 0.3327 0.6142

ROLLING 0.1621 0.01941 0.000 0.1480 0.3594 -0.5581 0.8513

RURALCOL -0.7315 0.05075 0.000 -0.5923 1.050 -2.652 1.472

RURALINT 0.8061 0.04084 0.000 0.8565 1.873 -2.818 4.492

URBANART 0.6673 0.02553 0.000 0.8327 1.686 -2.404 4.144

URBANCOL 0.7253 0.06918 0.000 0.8854 1.421 -1.907 3.675

URBANINT 0.8895 0.04065 0.000 0.9667 2.042 -2.966 4.964

ACCCNTRL 0.08235 0.02710 0.002 0.1025 0.05967 -0.01394 0.2192

LNVMT 0.6752 0.006900 0.000 0.6817* 0.05125 0.5826 0.7820

Note: An asterisk (*) signifies that parameters differ from zero in a statistically significant way, based on the 95% 
(2.5-97.5) high density region (HDR).

Table 7 Expected Percentage Changes in Injury Rates Corresponding to Changes in 
Variables

Percentage change in injury rates (per 100 million VMT)
Variables Averages

Changes in 
Variable Killed

Disabling 
Injury

Non-disabling 
Injury

Possible 
Injury

No Injury 

DEG_CURV 2 (°/100ft) +2 2.45% -- 19.92% 11.48% 3.83%
VCUR_LGT 400 (ft) +100 -- -- 0.97% -- -0.23%
RSHDWIDT 10 (ft) +10 -18.03% -22.75% -13.40% -20.73% -22.14%
NUMLANES 3 +1 -- -6.99% -11.35% -10.84% -14.47%

MEDIAN No Yes -- -8.79 -14.36% -9.96% -27.00%
SPD_LIMT 55 (mi/h) +10 0.95% 11.13% -6.55% -14.56% -11.16%

MOUNTAIN No (Rolling) Yes -- -- -- 27.84% 38.50%
ROLLING Yes No (Level) -- 13.09% -21.31% -32.45% --

ACCCNTRL Yes No -- 36.22% -- 19.94% --

Note: The data set’s average VMT value (78,358 miles) was used in these calculations.



Table 8 NHTSA Estimate of Injury Costs (in 2000 dollars) (Blincoe et al., 2002)

PDO MAIS 0 MAIS 1 MAIS 2 MAIS 3 MAIS 4 MAIS 5 Fatal
Market Cost ($) 2,532 1,962 10,562 66,820 186,097 348,133 1,096,161 977,208

Comprehensive ($) 2,532 1,962 15,017 157,958 314,204 731,580 2,402,997 3,366,388
% Crashes 

Unreported (by 
type)

21.42% 22.74% 15.83% 6.52% 0.67% 0.00%

*persons involved 
in reported crashes

2002667 3599995 366987 117694 36264 9463

*persons involved 
in all crashes

2548571 4659585 436007 125903 36509 9463

Weight (% of 
persons involved)

25.62% 46.06% 4.70% 1.51% 0.46% 0.12%

Cost per injury ($) 2,532 10,351 232,890 2,402,997 3,366,388

Table 9 Speed Increases Following a 10 mi/h Speed Limit Increase (from 55 mi/h to 65 mi/h)

Studies Change in Observed Speeds (mi/h)
Brown et al. (1990) 2.4
Freedman and Esterlitz (1990) 2.8
Mace and Heckard (1991) 3.5
NHTSA (1989) 1.9
NHTSA (1992) 3.4
Parker (1997) 0.2-2.3
Pfefer, Stenzel, and Lee (1991) 4-5 
NCHRP (2005) (Speed Choice in NW Washington State) 3.4-4.8
TRB (1998) 4

Average 3.1



Figure 1 Posterior Density of Variables of Interest



Figure 2 Posterior Density of Variables of Interest
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