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ABSTRACT 
 

There is great interest in developing pricing models for congestion relief.  However, most of the 
work in the literature uses static transportation models for analysis.  The benefits of accounting 
for traffic dynamics under congestion pricing are unclear. This research performs a systematic 
comparison of static traffic assignment with the VISTA model, a simulation-based dynamic 
traffic assignment approach, and with an approximation to DTA using an add-in for TransCAD 
software.  A novel demand profiling algorithm based on piecewise linear curves is developed, 
and a method to enable reasonable comparisons of static traffic assignment and the TransCAD 
add-in is provided.  The results indicate that traditional static models have the potential to 
significantly underestimate network congestion levels in traffic networks, and the ability of DTA 
models to account for variable demand and traffic dynamics under a policy of congestion pricing 
can be critical. 

 
 
INTRODUCTION AND BACKGROUND 

 
As the number of drivers increases in urban areas around the world, the search for policies to 
counteract congestion continues in earnest, as does the search for models to reliably predict the 
impacts of these policies.  One such policy is congestion pricing, which assesses users a fee for 
traveling certain links at certain times, in an effort to efficiently allocate space on the network.  
While the idea of congestion pricing has existed for some time (see, for instance, (1), (2), and 
(3)), it has gained considerable acceptance in practice as technological advancements address 
various implementation issues.   

Techniques for finding first- and second-best pricing schemes under a variety of 
scenarios have been developed, as in (4, 5, 6, 7, and 8), and different versions of congestion 
pricing has been tested or implemented in a number of locations around the world (9). 

Techniques for predicting the impact of such policies also have improved in recent years.  
Dynamic traffic assignment models have attracted recent attention, due to their ability to account 
for time-varying properties of traffic flow (10).  However, these formulations generally lead to 
extremely complicated solution procedures.  Nevertheless, progress has been made using 
techniques such as simulation for solving large networks (11 and 12). 

In particular, many state agencies are currently evaluating pricing as a potential 
congestion relief policy, and the Texas Department of Transportation (TxDOT) is exploring the 
value of using DTA models to predict the impact of such policies.  This paper investigates the 
difference in results obtained from using static and dynamic traffic assignment (STA and DTA) 
to evaluate congestion pricing policies on a real traffic network, and its contributions of this 
paper are twofold.  First, an algorithm is proposed that quickly and reliably generates a time-
varying demand profile from aggregate demand data (static OD trip tables).  Such profiles are a 
required input to perform the DTA analysis.  Second, this investigation compares the results 
from a DTA approximation, a simulation-based DTA approach, and traditional static assignment 
when applied to the Dallas-Ft. Worth (DFW) network, where TxDOT is considering 
implementation of congestion pricing on selected links.   

This paper is organized as follows.  First, the TransCAD add-in and the VISTA model, 
which were used to perform the DTA analysis, are described.  Following this is a description of 
key issues that arise when attempting to compare static and dynamic assignment, and a method 



to facilitate comparison between the approximator and static assignment.  Next, an algorithm is 
presented that creates time-varying demand data from aggregate data, followed by the DFW 
network results.  Finally, the contributions are summarized and the principal findings reiterated. 

 
 
DTA APPROXIMATION USING TRANSCAD'S ADD-IN 

 
The add-in to TransCAD, developed by Caliper Corporation, approximates DTA by utilizing an 
algorithm developed by Janson and Robles (13) which converges to a dynamic user equilibrium 
solution.  This algorithm approximates the variability in travel demand and link flows by 
dividing the analysis period into smaller, discrete time intervals, over which demand is assumed 
to be uniform.  The procedure employs the notion of a node-time interval ,

,
d t
r iα , a binary variable 

which is set to unity if the last unit of flow leaving origin r during a particular time interval d 
passes through node i during time interval t, and set to zero otherwise.  Intuitively, the node time 
intervals trace the paths of the last vehicles leaving each origin at each time interval. 

While the mixed integer program developed by Janson and Robles is non-convex over all 
possible node time intervals, for a fixed set of node-time intervals, the problem is convex.  Thus, 
the algorithm employs an iterative procedure whereby a set of node time intervals is assumed 
and then the traffic assignment problem is solved.  A new set of node time intervals is calculated 
from the traffic assignment results, which are used to generate another traffic assignment.  This 
iterative process converges to a dynamic user-equilibrium solution within a given tolerance, 
defined as sufficiently few node-time intervals changing from one iteration to the next. 

Constraints in the mathematical program guarantee that FIFO conditions are satisfied, 
and the algorithm also includes procedures to resolve problems with spillback queues that may 
occur due to incidents or other changes in link capacity.  However, since the approximator in its 
current state only uses Bureau of Public Roads-type (BPR) link performance functions in 
TransCAD to calculate travel times, this feature cannot be used. 

 
 

SIMULATION-BASED DTA USING VISTA 
 

VISTA (Visual Interactive System for Transport Algorithms) is a network-enabled software that 
integrates spatio-temporal data and models for a wide range of transport applications: planning, 
engineering, and operational (14).  VISTA can be accessed via a cross-platform JAVA client or a 
web page.  In particular, VISTA can perform dynamic traffic assignment using a cell 
transmission model (CTM). 

The cell transmission model was developed by Daganzo (15) as a discrete version of the 
hydrodynamic traffic flow model.  The CTM can be thought of as a simulation-based model 
which divides network links into shorter "cells," which then tracks the number of vehicles in 
each cell through a series of discrete time steps on the order of five seconds.  Limits on the 
maximum number of vehicles in each cell and the maximum number of vehicles that can move 
from one cell to the next between iterations correspond to maximum densities and capacity for 
links in the network.  

A key feature of the CTM is that flows are explicitly prohibited from exceeding capacity.  
This is in contrast to static assignment methods, or the DTA approximator, where it is possible to 
have link volumes exceed capacity.  In the CTM, if demand for a cell exceeds the available 



capacity, queuing forms to maintain flows less than capacity.  This ability to model queues in a 
somewhat realistic manner is one of the prime attractions of the CTM. 

The simulator used in VISTA is an extension of the basic CTM.  The main enhancements 
over the basic cell transmission model are the concept of adjustable size cells that improves the 
flexibility, accuracy and computational requirements of the model, and a modeling approach to 
represent signalized intersections.  The basic cell transmission model along with the 
enhancements yields a model that can simulate integrated freeway/surface street networks with 
varying degree of detail.   

 
 
ISSUES IN COMPARING STA AND DTA RESULTS 

 
The question of how to compare static assignment to DTA is a nontrivial one.  Typical measures 
of comparison, such as volumes on individual links or total system travel time (TSTT), cannot be 
applied in a naïve fashion due to fundamental differences between the modeling approaches.  
Moreover, the behavioral assumptions are so different that parameter assumptions are not really 
comparable. 

With regard to the DTA approximator, the need for a more sophisticated way to compare 
results arose from preliminary investigations into a smaller test network, where, contrary to 
intuition, the DTA approximator predicted a lower total system travel time than a static 
assignment.  The cause of this phenomenon was determined to be the presence of clearance 
intervals in DTA after the assignment periods, which continue to model vehicles in the network 
until they reach their destinations, even though no additional trips are loaded.  Since this results 
in some links having volume for a longer period of time than in static assignment (which has no 
need for clearance intervals), the result is an effective increase in link capacities.  Fundamentally, 
this occurs because STA has no concept of arrival or departure times; thus, the issue of trips 
departing late in the peak period is not relevant. 

For this reason, a procedure was sought to make the results of static and dynamic 
assignment commensurable.  The procedure used here first assigns vehicles with DTA; then, for 
each link, the number of clearance intervals needed before the last vehicle leaves is noted.  
Finally static assignment is performed, with the capacity of each link altered based on the 
number of clearance intervals needed in DTA.  For instance, for a link with a two-hour capacity 
of 2000 veh/hr, if the last vehicle departed this link 15 minutes after the end of the assignment 
period, STA link capacity was increased by (2000)(15/120) = 250 veh/hr (for a total of 2250 
veh/hr).  Essentially, this procedure provides the same additional capacity that clearance intervals 
provide in DTA, on a link-by-link basis.  Capacities were only increased using this method (that 
is, if the last vehicle on a particular link left before the end of the assignment periods, no capacity 
reduction was made). 

This method was chosen for several reasons.  First, it is a fairly straightforward way to 
accommodate the effective increase in capacity provided by clearance intervals in DTA, and is 
specific to each link in the network.  Additionally, it avoids manipulation of DTA results, 
thereby preserving arrival times, departure times, and all the other time-varying properties of the 
network which make DTA attractive in the first place.  Furthermore, the additional 
computational burden imposed by this method is negligible. 

The issues in comparing DTA with STA are further compounded when attempting to 
compare STA with VISTA results.  While clearance intervals are a major issue in comparing 



results from the DTA approximator, the approximator still uses the same BPR link performance 
functions that static assignment used.  VISTA, on the other hand, uses no link performance 
functions at all, but instead uses the simulation-based cell transmission model to propagate traffic. 

For this reason, global measures of comparison were chosen to compare the two 
assignment procedures.  Individual link flows are not directly comparable because of the vast 
differences between the assignment procedures, and measures such as v/c ratios have different 
meanings (flow-to-capacity in VISTA, demand-to-capacity in static assignment).  For each of 
five functional classes of roadways (freeways, arterials, etc.), the total travel time was compared, 
as was the total system travel time for the entire network. 

 
 
DEMAND PROFILING 

 
Problem Description 

 
One issue in using DTA is the need for a time-dependent OD demand.  While a single OD matrix 
for the entire peak period suffices for static assignment, for DTA one needs to know how this 
demand changes during the peak period.  Many DTA routines approximate this by requiring an 
OD matrix for each of many small intervals, for instance, five or ten minutes in length.  
Unfortunately, such detailed data on travel demand is not readily available.  While loop detectors 
or observed traffic counts can possibly be used to extract these time-dependent demand matrices, 
for now one must often make do with demand data only for very coarse time intervals, such as 
AM peak, PM peak, and off-peak times.  The problem then becomes how to create time-
dependent demand at a much finer resolution from the aggregate data.  This is known as the 
demand profiling problem.  Much of the literature focuses on estimating profiles from observed 
traffic counts using techniques such as least squares; see, for instance, (16).  In this work, 
however, profiles are created using existing demand data used for static assignment. 

One rather naïve way to create a profile is to assume that demand is distributed uniformly 
throughout the period if interest.  For instance, if the demand for an OD pair in a two-hour peak 
period is 2,400 vehicles, and an OD matrix is needed for every five minutes, one approach is to 
simply assign a demand of 100 vehicles for each of those five-minute intervals, for a total of 
2,400 in the two hours.  This approach has some drawbacks, namely that the demand will not be 
“smooth.”  In general, between two abutting time intervals the demand will jump.  This is 
unlikely to be a realistic model of this demand profile, since one would not expect an 
instantaneous decrease from one time period to the next. 

An approach used by Kockelman et al. (9) uses quadratic programming to minimize the 
sum of the squares of the difference between successive time intervals, such that the total 
demand constraints over the coarse periods (e.g. peak and off-peak periods) are satisfied.  
Although this creates smooth curves, quadratic optimization is computationally expensive. 

 
Piecewise Linear Demand Functions 

 
An alternative approach developed here involves the use of piecewise linear functions to 
approximate demand profiles.  These functions are completely defined by the points at which 
they are not differentiable; that is, where the linear "pieces" intersect; thus, the aim of these 
procedures is determine the locations of these so-called "defining points" in an expedient manner.  



Once the defining points, and thus the function, are determined, it is easy to obtain the demand 
for the small time intervals to be used in DTA, as the area under the demand function between 
the endpoints of the time interval. 

It is important to keep in mind that the piecewise linear function E that we seek is a rate 
of demand and that its units are vehicles per some unit of time.  Thus, integrating E over a time 
interval will produce the total vehicular demand for that time interval.  Since E is piecewise 
linear, the area under any portion of the curve can be readily computed using the formula for the 
area of a trapezoid. 

The most general framework for this approach would be to choose defining points that 
optimize some objective function, taking as constraints the requirement that the total demand in 
the longer periods is the same as that given in the input (e.g., if given peak hour demand of 
50,000 for 7 AM to 9 AM, the demand function generated by the defining points should reveal 
the same thing.)  Since these constraints are linear, a linear objective function seems a natural 
choice, although it is not immediately clear what form this function should take to form a 
"smoothest" curve.  One option is to use a quadratic function, where the sum of the squares of 
the slopes of each line segment (possibly weighted according to length) is minimized, which can 
still be solved with relative ease because of the convex/concave nature of quadratic functions, 
and the relatively small number of decision variables involved, compared to the more general 
quadratic programming formulation mentioned above.  Another option would be to sum the 
absolute value of the slopes of each segment, and minimize this. 

 
A Quick Approach for a Specific Case 

 
An alternative method was developed that primarily uses basic geometric relations, involves only 
linear programs that can be trivially solved (or possibly none at all), and thus, is extremely fast.  
This method applies when given n consecutive coarse time intervals as input (e.g., AM Peak, 
Midday, and PM Peak time intervals), and the total demand for each is known.  Initially, the 
defining points will be established at the endpoints of each of the coarse intervals, although, if 
necessary, more will be created to ensure that the curve is everywhere non-negative. 

This method involves calculating successive defining points based on the value of the 
previous one.  Consider, for instance, an interval of length L0 whose endpoints correspond to 
defining points x0 and x1, with given demand D0.  Let E0

*
  = D0/L0 (one can think of  Ei

* as the 
average rate of demand for time period i, or the value of the function E(t) on this interval using 
the naïve approach described above).  If x0 is fixed, then there is only one possible value for x1 
that satisfies the requirement that total demand in this interval equal D, and this is readily found 
using geometry (x1 = 2E0

* – x0).   Now that x1 is known, we consider the next interval defined by 
x1 and x2 and proceed to calculate x2, and so forth.  The initial value x0 can be calculated using a 
formula that produces a reasonable seed value;  for instance, x0 = E0

* – (E1
* – E0

*)/2 considers 
the first two time intervals to generate a seed.  From here, knowing x0 fixes x1 = E0

* + (E1
* – 

E0
*)/2, and so forth. 

Two problems with this approach become apparent: 
First, the functions formed by defining points calculated in this way may oscillate or 

exhibit other bizarre behavior.  For instance, if E0
*

 = 500, and E1
* = E2

* = ... = En
* = 400, we 

obtain defining points x0 = 550, x1 = 450, x2 = 350, x3 = 450, x4 = 350, ... in sort of perpetual 
oscillation (see Figure 1a).  One possible solution to this problem is to take advantage of its 
speed by calculating the defining points starting with different intervals as seeds, and averaging 



the results.  (When starting with an interval that is neither the start nor end interval, we calculate 
defining points both forwards and backwards.  Initial xn and xn+1 values are chosen in a way 
similar to that described above).  For instance, taking the same example, although starting with 
the first interval produces oscillation, that is the only interval in which this is seen.  For instance, 
starting with the interval defined by x2 and x3 we obtain defining points x0 = 600, x1 = 400, x2 = 
400, x3 = 400, ...,  xn = 400 (Figure 1b).  Repeating this process for the other n intervals and 
averaging the curves, we see that the oscillation is significantly reduced (Figure 1c).  Intuition 
suggests that other anomalies from this approach can be controlled in a similar way, although 
this certainly is not guaranteed. 

The other immediate problem is that there is no guarantee that the defining points 
calculated in this way will be nonnegative.  For example, if x5 = 600, and E6

* = 200, then we 
would calculate x6 = –200 which clearly is meaningless for modeling purposes (see Figure 1d).  

A straightforward approach to dealing with the second problem is to subdivide the 
problematic interval into several smaller intervals and choose defining points, all of which are 
positive, such that the total area under all subintervals is equal to the demand in the original area 
(see Figure 1e).  More generally, suppose that instead of simply being non-negative, we require a 
defining point x to satisfy x ≥ T ≥ 0, where T is a user-specified lower bound for the defining 
points in a time interval (possibly a function of D or E*). 

 



 
 

(a) An example of problematic oscillation. 
(b) No oscillation is present when starting from a different seed interval. 
(c) Averaging the curves produced from different seeds reduces oscillation. 

  (d) An example of a nonnegativity violation. 
  (e) Solving the nonnegativity issue by subdividing the interval 

 
FIGURE 1 Potential Problems with Demand Profiles 

 



Consider some interval [t0, t1] (again, let L = t1 – t0) with demand D, and an associated 
lower bound T.  Assume that the defining point x0 associated with the endpoint t0 is known, and 
is such that 2D – x0 < 0.  As before let E* = D/L.  We consider the possibility of dividing this 
interval into n equal subintervals, so there will be a total of n + 2 defining points associated with 
this interval (x0 with t0; xi with (t0 + t1)i/n for i = 1, …, n; and xn+1 with t1).  We now construct a 
linear program to solve this problem. 

We want to choose x1, ..., xn+1 such that the area under this portion of the curve will equal 
D; that is, 
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Simplifying, this constraint becomes  

 
*

1 2 1 02 2 2 2n nx x x x E x−+ + + + = −L  (1) 
 

Likewise, we have constraints x1, ... , xn ≥ T (2) 
 
Now we need to choose an appropriate objective function.  One simple choice is to 

maximize x1, since the demand in the previous interval is greater than the demand in this interval. 
Thus, intuitively a large x1 would tend to create a "smoother" demand profile. 

This program can be solved easily: because the coefficients on all decision variables are 
positive in constraint (1), and our objective is to maximize x1, the optimal solution has  
x2 = x3 = ... = xn+1 = T, assuming the program is feasible and the resulting x1 is at least T.  Solving 
the program, we find x1 = E*n – x0/2 – T(n – 3/2), which is feasible if 
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Thus we see that this program is always feasible for sufficiently large n, and we have derived an 
analytical expression that shows the minimum value of n needed for feasibility. 

So, this method is complete and can be expressed as follows: Choose the first interval, 
pick x0 as described above, then starting with this seed value proceed to calculate x1, x2, and so 
forth using the formula xn = 2Dn – xn-1.  If any of these are negative, subdivide the interval into 
the minimum number of subintervals needed (choose n to be the least integer satisfying n ≥ (x0 – 
T)/2(E* – T), and calculate defining points for the endpoints of each subinterval using the 
analytical formulas described above.  Once this is done, repeat the procedure using the second 
interval as a seed, and so forth, until the procedure has been done for all intervals.  Take the 
average of the defining points from each run of the procedure, and let these be the defining 
points used to generate the final demand profile (interpolating where necessary, since the number 
of subintervals intervals are divided into need not be the same for all runs). 

 
 
 
 



Implementation 
 

The above procedure was coded in VisualBASIC, and runs external to TransCAD.  To create the 
time-dependent OD matrices, the OD matrices for the coarse intervals were exported into a text 
format, and the procedure was run to generate similarly-formatted text files representing the 
matrices for each of the finer time intervals used for DTA.  These matrices were then imported 
back into TransCAD for use with the approximator. 

Since demand profiling also was required to generate DFW demand inputs to VISTA, the 
program generated a second demand file in the proper format for VISTA, in addition to the one 
needed for TransCAD. 

Typical run times to generate a 24-hour profile for the 919-zone Dallas network (844,561 
origin-destination pairs and five aggregate times of day) at five minute resolution was on the 
order of one day.  The output files generated were quite large, on the order of 500-1000 MB 
depending on the required precision.  All runs were performed on a 2.8 GHz machine running 
Windows XP with 1 GB RAM. 

 
 

Extensions 
 

Although the method described above works for the specific case demand in each of the separate 
periods is known, it also would be useful to have a procedure that can work in a more general 
setting.  For example, if one is given data that contains total demand in the AM peak, PM peak, 
and off-peak times, but no information about how the off-peak demand is distributed between 
midday and nighttime traffic, the method in §5.6.3 cannot be directly applied. 

One possible approach for such a case is to use a quadratic programming approach on a 
few randomly-selected OD pairs, and to calculate how that approach divides the off-peak 
demand between midday and nighttime for those pairs, generating a distribution of this split 
among different OD pairs.  Ideally, this distribution will be fairly tight, and one can safely 
assume the same split across all OD pairs, divide them accordingly, and proceed to use the 
algorithm described above. 

If the distribution does not indicate that one midday/nighttime split is suitable for most 
OD pairs, another possibility is to try to find all defining points at once, rather than sequentially 
as done in this approach.  While the sequential approach runs very quickly, this speed comes at 
the cost of foresight: the algorithm is myopic and never considers any time intervals beyond the 
immediate one where defining points are being found. As such, it is impossible to capture a more 
general constraint such as that mentioned above.   

A more general mathematical programming approach could accommodate such 
constraints, and such an approach that preserves the notion of defining points should still run 
faster than an approach which attempts to set the demand values for each of the fine time 
intervals because far fewer decision variables would be involved.  The feasibility of such an 
approach has not yet been studied extensively, although it appears that the mathematical 
programs that arise would be nonlinear. 

With this method for generating the needed demand profile, and with a suitable method 
of comparison chosen, attention can be turned to how the results from the assignment procedures 
will themselves be evaluated and analyzed. 

 



 
APPLICATION TO THE DALLAS-FT. WORTH NETWORK 

 
TransCAD software was used to perform static assignment, and one of the dynamic assignment 
procedures for this investigation, the latter using the approximator add-in described in Section 2.  
Comparison was made both globally (TSTT) and on a link-by-link basis.  Additionally, a global 
comparison was made with the results from VISTA. 

The Dallas network used contains 919 zones; 15,987 nodes; and 56,574 links (92 of 
which are tolled in this application).  A three-hour AM peak period (6 – 9 AM) was chosen for 
analysis.  For the DTA approximator, this period was discretized into eighteen 10-minute 
intervals, with three additional 10-minute intervals provided for network clearance.  A total of 
2.56 million vehicle trips were assigned.  Since the TransCAD approximator in its current state 
cannot directly consider tolls, in this investigation the tolls were added to the free-flow travel 
time for each link, using an assumed value of travel time of $10/veh-hr.  Effectively, this 
changes the fixed-level tolls that exist in reality to marginal pricing for use in this model. 

The following table summarizes the results of static assignment and the DTA 
approximator by showing the average v/c ratios, weighed according to vehicle-miles traveled 
(VMT), for each functional class of links.  Additionally, a comparison was made between 
congested links (those with v/c > 1 in STA) and uncongested links.  Only links with positive 
flow are included in this analysis. 

 
 

TABLE 1 Comparison Between Static Assignment and DTA Approximator 
Vehicle-miles traveled 

(millions) Average v/c Category n 
Static Dynamic Static Dynamic 

Freeway 6292 25.88 29.86 1.02 1.64 
Principal Arterial 4936 6.46 5.39 0.72 0.86 

Minor Arterial 10434 7.65 6.25 0.43 0.52 
Collector 14596 2.97 2.74 0.77 1.39 

Frontage Road 2783 1.56 1.44 0.60 0.96 
Congested 2995 18.35 22.61 1.26 2.08 

Unongested 25997 28.61 25.11 0.62 0.79 
 
The most notable differences are seen in links that are predicted to be congested under 

the static analysis.  For these, DTA predicts an even higher level of congestion, often 
significantly so.  When calculating TSTT, this increase manifests itself in two ways: first, the 
convex nature of volume-delay functions amplifies the difference in travel times; and second, the 
calculation of TSTT weights links with higher VMT more than other links.  Static analysis 
predicts a TSTT of 1.27 million vehicle-hours, while DTA predicts 2.53 million vehicle hours, 
nearly double the static prediction.  Unfortunately, the approximator's use of BPR-type functions, 
which can allow arbitrarily high volumes (and thus arbitrarily high travel times) precludes taking 
advantage of the queue spillback features available in other DTA implementations (such as 
VISTA) which can provide added realism.  Additionally, it should be noted that much of this 
increased congestion can be found on freeways, which carry far more traffic than other 
functional classes. 



That DTA predicts increased congestion is not surprising, and is in accordance with the 
convexity properties associated with link performance functions, from which it can easily be 
shown that a nonuniform demand distribution produces a higher total travel time on individual 
links than would be produced by the same total volume distributed uniformly.  Using the BPR 
parameters α = 0.15, β = 4, and examining the congested links, we see that an increase in v/c 
ratio from 1.26 to 2.08 on a link increases travel times by 176%, which contributes heavily to the 
massive increase in TSTT seen in the approximator's results, when compared to static 
assignment. 

As mentioned previously, vast fundamental differences exist between the cell 
transmission model used by VISTA, and the link performance functions used by static 
assignment.  Thus, comparison between these two procedures was done through global measures, 
namely, the total travel time experienced on links of various functional classes.  These results are 
presented in the following table, along with the proportion of the total system travel time for both 
approaches.  Note that the network includes links not among the five functional classes listed 
here, such as centroid connectors and ramps; thus, the sum of the travel time values among the 
five classes is less than the total system travel time. 

 

TABLE 2 Comparison Between Static Assignment and VISTA 
Total travel time (hr x 103) Proportion Functional class Static Dynamic Static Dynamic 

Freeways 505 325 40.6% 10.5% 
Principal Arterials 174 543 14.0% 17.6% 

Minor Arterials 237 715 19.1% 23.2% 
Collectors 227 738 18.2% 23.9% 

Frontage Roads 45 390 3.7% 12.6% 
Total System 1266 3086 100% 100% 

 
As with the DTA approximator, TSTT is much higher under the dynamic method than 

under static assignment.  Another, perhaps more significant, result is that traffic is routed quite 
differently between the two procedures: static assignment tends to assign considerably more 
vehicles to freeways, whereas VISTA uses arterials and collectors more.  This result is in 
contrast to the DTA approximator, where the distribution of vehicle traffic among the roadway 
classes was more comparable.  This difference arises because the cell transmission model is a 
very different approach to traffic propagation than that used by static assignment or the DTA 
approximator, which is a link performance function-based approach.   

For instance, under static assignment, freeway links had an average v/c ratio slightly 
greater than one.  Since the cell transmission model explicitly prohibits flows from exceeding 
capacity, vehicles will route themselves differently.  Additionally, in the cell transmission model, 
flow on links decreases as they become congested and queuing forms.  This is a more realistic 
model than the link performance function approach, where link throughput always increases with 
increasing demand, even as travel times grow high.  Thus, the shift from freeways to arterials 
and collectors is consistent with CTM's more realistic traffic flow model. 

 
 
 



CONCLUSIONS 
 

While congestion pricing and dynamic traffic assignment have individually attracted 
considerable interest in recent years, efforts at using the latter to evaluate the former on large-
scale networks are relatively few.  Several issues arise when trying to do this.  For one, the 
comparison of static and dynamic traffic assignment is nontrivial due to fundamental differences 
between the models; however, the increase in capacity induced by clearance intervals in the DTA 
approximator can be accounted for by an appropriate increase in the capacities used in static 
assignment.  With models such as the CTM, which are vastly different from static assignment, it 
is much more difficult to compare the results on a link-by-link basis, and in this project only 
global measures of system performance were compared. 

Second, the problem of creating the time-dependent OD needed for DTA was addressed 
by creating an algorithm that uses piecewise linear functions to generate demand profiles 
significantly faster than previous approaches using quadratic programming. 

When static and dynamic assignment models were applied to the DFW network, although 
TSTT was significantly higher when predicted by DTA rather than static assignment, much of 
this increase is due to links which showed congestion under traditional static assignment.  On 
such links, the DTA approximator showed an even higher level of congestion, an impact which 
is amplified by the convex nature of delay functions.  This higher level of congestion on already-
congested links is not surprising, given that nonuniform demand (such as that in DTA) was 
shown to produce greater delay than a uniform demand (such as that assumed by static 
assignment).  Still, this result indicates that static assignment models have the potential to 
significantly underpredict congestion levels due to changes in demand over the peak period.  
Additionally, the distribution of trips among different classes of roadways is significantly 
different between the cell transmission model (used by VISTA) and the link performance 
function-based models (static assignment and the DTA approximator), due to the CTM's more 
realistic model which prohibits flows from exceeding capacities.  VISTA predicts significantly 
fewer freeway trips than static assignment or the approximator. 

Further insights could be gained if the DTA approximator in TransCAD provided 
additional capabilities.  In particular, the ability to extract path flows for each OD pair and 
departure time would greatly enhance modelers' ability to predict the impacts of policies at a 
more disaggregate level; in its current state, one is unable to show the impact of congestion 
pricing, or other policies, on the paths taken by various OD pairs, or on the equilibrium costs 
faced by each pair, and is limited to using information on the link flows.  Additionally, its use of 
link performance functions limits its ability to model queues due to congestion, which can be 
captured using other formulations such as the cell transmission model. With such improvements, 
investigations like this one could be extended to account for traffic dynamics under congestion 
pricing policies in greater depth. 
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