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ABSTRACT 

 
This study introduces dynamic features into the random-utility-based multiregional 

input-output (RUBMRIO) model. The RUBMRIO model predicts interzonal trade and travel 

patterns, as well as business and household location choices, using consumption and production 

process data. It equilibrates production and trade, labor markets and transportation networks 

simultaneously. Multinomial logit models predict the origins of productive inputs, including 

commute behaviors (for the input of labor). 

With household locations and expenditures/incomes relatively well known for the very 

near future, one can predict current trade patterns by making household consumption, as well as 

(foreign and domestic) export demands, exogenous to the model, resulting in short-term 

predictions. The long-run equilibrium, wherein household locations and consumption patterns are 

endogenous, will differ from this short-term image. This study specifies the transition 

mechanism from the short term to the long term, via dynamic adjustments in household 

consumption across zones, providing a prediction of the greater region’s evolutionary path. 

Results are examined for an evolution of Texas trade, jobs and population across 17 industry 

sectors and 254 counties, as ultimately driven by exports to foreign and domestic purchasers.
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1. INTRODUCTION 

Integrated transportation-land use models are valuable tools for planning and policy 
making. Many effort has been devoted to developing these, primarily for purposes of prediction. 
At the disaggregate level, Von Thünen’s (1966) isolated state model was extended by Wingo 
(1961) and Alonso (1964), who both incorporated budget constraints. De la Barra (1995) 
incorporated elastic demand and land use intensities. In all these models, an equilibrium pattern is 
generated from the utility maximizing behavior of individuals.  

Taking an aggregate perspective, Wilson’s (1970) entropy-maximizing methods have been 
used to model spatial interaction. Putman’s (1983 and 1991) Disaggregate Residential Allocation 
Model (DRAM) and Employment Allocation Model (EMPAL) are the well-known successors to 
Lowry’s (1964) model. These are the most widely used spatial allocation models in the U.S. 
today. 

Input-output (IO) theory also is widely used, for describing inter-industry productive 
relationships. When coupled with random utility theory for the distribution of productive input, a 
spatial IO model emerges. MEPLAN (Echenique, 1985; Hunt and Echenique, 1993; Hunt and 
Simmonds, 1993; Abraham and Hunt, 1999), TRANUS (de la Barra 1995), PECAS (Hunt and 
Abraham, 2002) and RUBMRIO (Kockelman et al. 2005; and Ruiz-Juri and Kockelman, 2004 
and 2006) are based on this theory. MEPLAN, TRANUS and PECAS represent dynamics by 
allowing the travel costs associated with freight and person flows to affect land use decisions in 
the next iteration of the model, along with network system changes (e.g., roadway expansions) 
and exogenous economic shocks (e.g., increases in export demands).  

Other spatial IO applications also exist. Kim et al. (2002) developed such a model for 
estimating interregional commodity flows and transportation network flows to evaluate the 
indirect impacts of an unexpected event (an earthquake) on nine midwest states. Canning and 
Wang (2005) tested an IO program for interregional, inter-industry transactions across four 
regions and ten sectors using a global database documented in McDougall et al. (1998). Rey and 
Dev (1997) introduced a series of specifications for extra-regional linking econometric and IO 
methods, and thus extending multiregional IO models (which, traditionally, have fixed inter-zonal 
flow shares). Ham et al. (2005) estimated interregional, multimodal commodity shipments via an 
equivalent optimization adding interregional and modal dispersion functions to their system’s 
objective function. 

Also promising are computable general equilibrium (CGE) models (e.g. Buckley, 1992; 
Bröcker, 1998; Logfren and Robinson, 1999; and Kim et al. 2002 and 2003). CGE models address 
three major limitations of IO models: they free up the fixed coefficients for productive 
relationships, they recognize price-expenditure interdependencies, and they allow for supply-side 
effects (rather than being solely demand driven). However, their intense data demands, including 
relative price information, are onerous if not impossible to adequately address, and system 
equilibration (for solution of factor and commodity markets) is complex and not necessarily 
convergent. Furthermore, most CGE models consider only a single region’s trade and production 
decisions. Multiregional CGE models do exist; for example, Kim and Hewings (2003) developed 
a CGE model for four sectors and five metropolitan areas in Korea, and Logfren and Robinson 



(1999) simulated a four-region economy with five commodity-producing activities. Li and He 
(2005) extended a two-region CGE model into a three-region model for China to simulate 
interregional trade patterns and environmental impacts. However, major multi-regional examples 
remain rare.  

This study builds on the work of Ruiz-Juri and Kockelman (2004), which developed a 
Random-Utility-Based Multiregional Input-Output (RUBMRIO) model of Texas trade. Their 
RUBMRIO model describes the production and trade patterns across Texas’ 254 counties. 
Production is driven by Texas’ 18 foreign exports and 50 other U.S. states, and trade flows are 
converted to vehicle trips, in order to capture the impact of network congestion on trade and 
production decisions. 

In this paper, the RUBMRIO model is extended to characterize near-term production and 
trade patterns based on current settlement and earnings patterns, and to introduce dynamic 
features which forecast the evolution of a region’s trade patterns – from a state of short-term 
disequilibrium to longer-run scenarios.   
 

2. THE ORIGINAL RUBMRIO MODEL  

The RUBMRIO model was developed to predict trade patterns, as well as business and 
household locations, using production and consumption data. It derives from IO-type productive 
dependencies across economic and social sectors, using nested logit models for inputs and 
transportation mode choice. Driven by final export demands, the model relies on a production 
process characterized by fixed technical coefficients derived from IMPLAN data. The choice of 
input origins is determined using random utility theory, by estimating the utility of purchasing 
commodity m from every possible provider zone j via the set of available transportation modes t.  

Recognizing that air and water modes carry only 3.3% and 2.5% of Texas’ $589 billion of 
traded commodities (according to the 2002 Commodity Flow Survey [BTS 2005]) and that these 
two modes generally require some surface transport (to and from their appropriate ports), the 
version of the RUBMRIO model used here does not predict such mode use. Moreover, since 10% 
of Texas’ commodity trade (and 23% of its shipped tons) is carried via pipeline (in the form of 
mined gas and gasoline) [BTS 2005], RUBMRIO assigns only 55% of mining sector flows to the 
modeled road and railway networks.  

Currently, RUBMRIO utility functions are a function of transport distance, and linear 
functions of logsum (expected minimum cost) terms emerging from upstream production 
decisions. These purchase-weighted logsums of upstream inputs serve as input sales prices, in 
utility-consistent units. Kockelman et al. (2005) calibrated the origin choice models using CFS 
1997 data (BTS 2001), which do not offer travel cost information. Zhao and Kockelman (2004) 
applied fixed-point theory to examine existence and uniqueness conditions for RUBMRIO’s 
model solutions. Under weak assumptions on output sales prices and spatial purchase 
probabilities, the solution prices and commodity flows were shown to be unique. Ruiz-Juri and 
Kockelman (2004) extended the base application by incorporating domestic demands from all 
other U.S. states (including the District of Columbia), wage relationships, and land use constraints. 
The model converts monetary trade flows into vehicle trips, thus allowing for congestion 
feedbacks. 

As is shown in Figure 1, the model’s long-run application is driven by export demands, 
both foreign and domestic, by commodity type. Transport costs or distances, and network 
capacity and performance assumptions are also key inputs.  By simply assuming initial 



commodity sales prices, the model runs iteratively to equilibrate trade and network traffic flows. 
In this way, exogenous final demands seek expected-cost-minimizing distributions of suppliers 
(across production zones). Intermediate production then is generated to meet these final demands, 
and distributed according to trade utilities. Average input prices (in units of utility) are 
purchase-weighted logsums, which generate (output) sales prices, via recognition of technical 
coefficients (the production process). The newly computed output prices feed back, into 
origin-choice utility functions, thus launching a new trade iteration.  

Given information on labor demand per capita of production, the equilibrated production 
levels for each sector imply levels of demanded labor. These labor linkages result in work trips 
via Ruiz-Juri and Kockelman’s (2006) multinomial logit model of origin choice. By converting 
monetary trade flows into vehicle flows, and applying deterministic user equilibrium to assign 
traffic flows to highway networks, the model recognizes congestion feedbacks via a distance 
updating factor. This factor is the ratio of congested (shortest–path) travel time to free-flow 
(shortest–path) travel time. This allows for a second, outer feedback loop, for a new iteration of 
trade and traffic, using the updated distance values, which serve as a proxy for travel times and 
cost.  

The existing RUBMRIO model takes a long-term, equilibrium view of inter-regional 
interactions, and the household sector (see Table 1 for sector descriptions) is endogenous to the 
model.  In Ruiz-Juri and Kockelman’s (2004) implementation, state-level population was given 
and distributed based on wages that equilibrate labor supply and demand at the county level. In 
the short term, however, household locations and expenditures/incomes are relatively well known, 
and one may better predict trade patterns by making household consumption, as well as (foreign 
and domestic) export demands, exogenous to the model. By dynamic adjustment of household 
consumption (as a function of county-level supply-demand imbalances), the model provides a 
prediction of each region’s evolutionary path. This is the approach taken here. 
 

3. SPECIFICATION OF THE DYNAMIC RUBMRIO MODEL 

This section specifies a short-term RUBMRIO model for prediction of current trade 
patterns, as well as a transition mechanism from the short-term to the long-term model. 

 

Short-Term vs. Long-Term Model Structures 

The long-term model used here is the equilibrium state for inter-county and inter-sectoral 
interactions – including an endogenous household/labor sector.  In reality, household locations 
and household expenditures are relatively fixed in the near term, which leads to what we refer to 
as the “short-term” model structure. Essentially, households in every zone (i.e., every Texas 
county, for the application in question) can be regarded as residing in a port with an export 
demand for commodities. Any disequilibria of the supply and demand for labor in the zones 
motivate households to move, resulting in a corresponding change of household expenditures, 
thus moving the short-term prediction to a longer-term perspective. The basic structure of the 
model is unchanged, but short-term and long-term labor supply solutions are clearly distinguished, 
and form the basis for the transition mechanism. Figure 2 illustrates the connected procedures, 
and perspectives. 

Thus, in this short-term model, household demands are exogenous to the model, and 
essentially added to the final demand which drives Texas’s economy. Correspondingly, the 



household sector is removed from the IO table of productive sectors. As with any transaction in 
this spatial IO model, a zone’s households’ purchases may come from any of the other zones. 
Purchases are assigned using the random utility principles defined in Eqs. 1 and 2, using 
parameters estimated by Ruiz-Juri and Kockelman (2004). Eq. 3 illustrates the new, short-term 
production function that incorporates a fourth term ( m

ijH ), in order to account for household 
demands. 
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In Eq. 1, m
ijUh  is the (systematic) utility of zone j’s households when purchasing goods from 

sector m in zone i, the mδ ’s are logit model parameters calibrated using Austin Travel Survey 
(ATS) data for home-based non-work trips (Ruiz-Juri and Kockelman, 2004), and highwayijd ,  is the 

road-network distance between zones i and j.  In Eq. 2, m
jH  is zone j’s (total) household 

demand for commodity m, and m
ijH  is zone-j household purchases of commodity m from zone i. 

In Eq. 3, m
ix  is the production of commodity m in zone i, m

ikY  are flows of commodity m from 
producing zone i to foreign export zone k, and m

isZ  are domestic export flows from zones i to 
states s. 

The 2002 IMPLAN data (MIG, 2002) provide information on household expenditures by 
sector at the county level. Table 1 bridges the CFS commodity codes, NAICS and IMPLAN codes 
adopted here. Table 2 summarizes household expenditures profile. The $418 billion annual 
expenditures by Texas households represent nearly 63 percent of the total final demand that drives 
the state economy in the short-term model application. Household demands need to be met, and 
these clearly should be a major factor in near-term trade predictions. 
 

Transitioning from Short- to Long-Term: Model Dynamics 
By assumption, the main distinction between the short- and long-term models is treatment 

of the household sector. Household migration in response to trade pressures and demand/supply 
imbalances thus provides the mechanism for transitioning from short- to long-term. Many factors 
determine a county’s attractiveness, for population migrations, including environment and 
topography, wages and educational opportunities, risk of natural hazards and access to artistic and 
cultural institutions. While, no model can control for all such factors explicitly, this work 
currently allows households to move in proportion to the long-run/equilibrium and short-run labor 
supply-demand imbalances.  

As is shown in Figure 2, the labor force (and associated household members) moves 
toward zones of excess demand, increasing production and easing the local labor market 
imbalance (at least temporarily). Eq. 4 describes the change in labor supply, and Eq. 5 illustrates 
the proportionality assumed between labor and households. 
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 Here, 1t

jLabSupply −  and t
jLabSupply  represent the number of workers supplied in zone j at 

time points t-1 and t, respectively; *
jLabDemand  is the long-run equilibrium number of workers 

demanded by industries in zone j at time t-1; and K  represents change in labor as a fraction of 
the current excess supply (or excess demand).  Thus, K reflects the speed of evolution in worker 
and household locations toward the long-term equilibrium state. Based on intuition regarding 
flexibility in population movements, K  was set equal to 0.05 per one-year interval in these 
applications of the dynamic RUBMRIO model. If imbalances are significant, predicted growth 
rates can be dramatic (e.g., over +100%, as well as approaching -100%).  Nevertheless, it is 
useful to note that during the 1990-2000 period only four of Texas’ 254 counties experienced an 
annualized population increase over 5%. A K factor of 0.05 is an important assumption, and future 
model extensions will focus on calibrating this parameter more rigorously.  
 In Eq. 5 1−t

jH  and t
jH  are total household demands across all sectors in zone i at time point 

t-1 and t, as in Eq. 2.  These are assumed to be proportional to worker numbers (i.e., labor 
supply).  
 

A Comparison of Model Dynamics 
As spatial input-outut models, MEPLAN and TRANUS model economic interactions and 

trade flows in a manner very similar to RUBMRIO. Their dynamics are rather different, however. 
Three key things affect TRANUS and MEPLAN dynamics: changes to the transportation network 
(e.g., added capacity and pricing), changes in the location and levels of (exogenous) basic 
production, and land constraints (reflected through pricing signals).In MEPLAN, the "exogenous" 
production of basic goods is located via a separate model, based on Cobb-Douglas-like cost 
calculations and tempered by inertial terms (so that new levels are proportional to prior 
levels).  The land use model keeps track of floorspace availability and developable land 
constraints (Abraham and Hunt, 1999). TRANUS is very similar in the sense that interactions rise 
to meet demand, while congesting the network and affecting contemporaneous accessibility 
measures. Transport system improvements may then be undertaken that affect accessibility 
measures in the following time steps (Donnelly et al., 1999).  

By introducing household movements as the dynamic feature of RUBMRIO and making 
household demands exogenous to the short-term model, RUBMRIO tempers unrealistic 
equilibrium-based predictions, producing predictions that should prove closer to reality. Since the 
long-term equilibrium will never be reached (thanks to system shocks, in terms of export demand 
levels, for example), the dynamic model offers an evolutionary path which is valuable for 
near-term planning and policy making. 

Other techniques may also be useful for achieving robust dynamics. For example, a 
combination of average wage and land rent information could produce measures of zonal 
attractiveness for new entrants.   
 



Incorporation of Domestic Import Traffic Flows 
According to CFS 2002 data, Texas attracted $215.8 billion commodities annually. Those import 
purchases are considered in the production process via a “leakage” technical coefficient table. 
However, their impacts on transportation network need to be addressed explicitly. The commodity 
price in one state to all the purchasing counties is assumed to be the same, which lead to the 
assumption that the import amount solely depends on the transportation cost between the origin 
and destination. Therefore, the import purchases are based on the utility defined in Eq.6, and the 
generated trips are obtained by using Eq.7 and Eq.8 sequentially.  
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In Eq.6, m
sjUi  is the (systematic) utility of acquiring commodity m in U.S. state s and transporting 

it to producing zone j’s, the β ’s and λ ’s are logit model parameters calibrated using CFS 1997 
(Kockelman et al., 2005), and highwayijd ,  is the road-network distance between state s and zone j.  

In Eq. 7, m
sI  is state s’s (total) export to Texas for commodity m, and m

sjI  is zone-j’s purchase of 
commodity m from state s. In Eq. 8, sjITrips  is the total vehicle trips generated from 

transporting commodities from state s to zone j, m
highwaysjprop ,  is the proportion of import flows of 

commodity m transported by highway from state s to producing zone j, mTCF  is the Truck 
Conversion Factor for commodity m (Ruiz-Juri and Kockelman, 2004), and PCE is the 
truck-to-car equivalent factor, which is assumed to be 2 vehicles per truck unit.  
 

Data Sources 
Distances between Texas’ 254 county zones and all U.S. states, over both highway and 

railway networks were estimated using TransCAD’s shortest-path routine. The two networks are 
based on Caliper’s (2002) national railway network and the FHWA’s (2005) National Highway 
Planning Network. Foreign exports were derived from Texas Business and Industry Data Center 
(2004), and domestic demands were taken from the CFS 2002 data (BTS, 2005).  IMPLAN’s 
(MIG 2002) household and population values for Texas counties were used for the short-term 
population profile, and TWDB (2006) state level population projections for 2010 and 2020 were 
applied for calibrating the new county population for short-term model application in 2010 and 
2020. The State’s population additions in 2010 and 2020 are allocated according to the long-term, 
equilibrium labor demand shares across counties. Due to the small number of data periods 
available and the limited accuracy for long-range projection, Texas’ future foreign export 
demands are estimated based on trends derived from the 1997 and 2002 annual export data. 
Similarly, Texas’ future domestic demands are estimated based on trends derived from the 1997 
and 2002 CFS data by applying exponential five-year growth rate to move the data forward from 
2002 to 2010 and then 2020. Of course, the 1997-2000 period was a booming period, which 
capitalized on the North American Free Trade Agreement; actual rates of growth in export 
demand through 2020 may be quite a bit lower. Texas’ future import data (not including foreign 



imports) are estimated in a similar way, based on the trends derived from CFS 1993, 1997 and 
2002 data.  

 

4. MODEL APPLICATION 

Description of Scenarios 
This study applies a dynamic version of the RUBMRIO model to anticipate changes in 

Texas trade patterns over the next 20 years.  The base year for the application is 2002, based on 
TBIDC and IMPLAN demand data (for foreign and domestic exports, as well as county 
population and household expenditures). The equilibrium version of the RUBMRIO model was 
used to simulate the long-term optimal state of trade patterns and population distribution. When 
compared to current population numbers, these equilibrium estimates indicate locations of worker 
imbalance, thus providing the levels of dynamic adjustment (in workers and households, by 
county) for the subsequent time point. The model runs in 1-year time steps for 18 years, until 
2020. 

Application Results 
This section describes and compares the model outcomes of the three time points, in terms 

of production and population levels, and their associated trade flows. 

In the 2002 scenario, Texas’s economy is driven by $121 billion in foreign exports, $124 
billion in domestic demands and $418 billion in household expenditures. The short-term model 
generates $1,238 billion of total trade flows (of which over 33% are value added), while the 
long-term model generates $1,366 billion total trade flows. The positive $127 billion difference in 
the total trade flows is expected, considering that the long-term equilibrium tracks toward a more 
uniform distribution of household and firm location and production choices, spatially – thanks to 
use of logit model average probabilities.  In reality, of course, locations (and trade) may remain 
reasonably concentrated, since development decisions are reasonably discrete, even at the county 
level. Table 3 shows RUBMRIO predictions of vehicle trip percentages. The short-term model’s 
predictions are much closer to reality, as determined using Texas 2002 Vehicle Inventory and Use 
data sets. 

Texas’ 254 counties can be grouped into five super-regions (Figure 3): north, west, 
northwest, east, and south. Figure 4 illustrates the trade patterns among these regions. The 
short-term model predicts that nearly 70% of total trades are intra-super-regional trades (Figure 
4A), with trade flows declining with trading distance (as expected).   

Figure 4’s comparison of equilibrium and dynamic disequilibrium predictions is quite 
dramatic. The long-term equilibrium approach predicts a relatively even distribution of trade 
(Figure 4B), with total intra-super-regional trades accounting for less than 22% of total trade flow 
values, and each region actively trading with all others. Essentially, the decision to model 
household demand endogenously or exogenously plays a major role in prediction.  Households 
constitute a major consumption force in any economy, and their current, clustered locations 
strongly shape the future. 

As time marches forward, current population and trade patterns are predicted to shift, in 
response to market forces. During the 2002-2020 periods, Texas’ northwestern region is predicted 
to experience rapid (near-term) growth, at an annual rate of 2.37%.  The northern and eastern 
regions are predicted to continue their moderate growth, at annual rates of 0.2% and 0.14%, 



respectively (Figure 5A). The corresponding population change in these five regions is shown in 
Figure 5B. From 2002 to 2020, the northwest region is predicted to gain 2.8 million in population; 
the rapid population increase in the northwest region plays a major role in its trade growth. Since 
the long-term model does not take into account the concentration effects and the northwest region 
is in a better location to trade with domestic markets, the northwest region’s economy grows fast, 
which in turn attracts more population and results in the increase of household demand. The trade 
and population interaction causes the striking performance of the northwest region. The south 
region maintains the same population level and thus the same trade level. It is reasonable that if 
the exogenous final demand does not change, then the activeness of trade depends on the 
population. Population shifts (Figure 6) toward a long-term equilibrium in the 18-year time 
horizon modeled here tend to mirror the shifts in trading.  

Since trade utilities are a function of transport distances and input prices, with commodity 
prices generated endogenously by the model, transport distance or cost is the fundamental factor 
affecting trade patterns in these models. Of course, productive technologies (in the form of 
somewhat distinction IO tables for the five regions) and export demands are also key. And, in the 
near term, as discussed above, meeting household demand is paramount, as this dominates final 
demand. In the longer term, the rates of growth in export demand ultimately tip the balance 
toward domestic trade (50% of the total demand expected in 2020), and labor and households are 
expected to shift, to locations with greater latent demand for labor. In terms of producing exports, 
the northwestern and northern regions dominate trade with other U.S. states, and 16 of Texas’ 31 
major ports. The western and southern regions enjoy greater market shares in supplying foreign 
exports. 

  

5. CONCLUSIONS 

This paper introduces and applies a dynamic RUBMRIO model for Texas’ 254 counties, 
with production, population and trade patterns driven by foreign, domestic and household demand. 
By removing the household sector from the spatial IO tables, and assuming stickiness in 
migration, the model recognizes the strong evolutionary impacts that existing populations have on 
the State’s future.  

In addition, Texas’ domestic imports are now recognized, via inbound goods movements, 
making predicted traffic patterns more realistic. All traffic assignment for congestion feedback is 
now accomplished using C++ codes, bypassing external assignment routines, speeding the overall 
model run times. 

The dynamic RUBMRIO model described here can be further enhanced, by introducing a 
size term for input origin, thus reinforcing the attractiveness of such centers (and their associated 
agglomeration economies) to recognize the supply power of existing centers of population and 
production. By recognizing the power of path dependence and historic advantage, such a 
specification would slow the system’s evolution to any long-run “equilibrium” trade pattern, but 
may be far more realistic for prediction. A more formal calibration of population migration, in the 
presence of supply-demand imbalances and regional attraction factors, including market wages, 
also would be valuable. Finally, translation of trade distances to generalized cost values will 
permit roadway-pricing applications of the model. It is a pity that the CFS data do not offer 
information on such key variables. However, data from other sources (e.g., Reebie’s 
TRANSEARCH estimates of trade) may fill this void, allowing reasonable parametric 
modifications to the current model coefficients.  



In summary, the dynamic features of this model of spatial interaction and location choice 
offer valuable predictions of future trade patterns and assessment of regional transportation 
conditions. Such specifications should prove a powerful tool for policy makers, transportation 
planners and developers, particularly for network level policies, including the coming Trans Texas 
Corridors (e.g., TTC69 and TTC35), as well as tolling and trade policies. It is clear that long-run 
equilibrium solutions can differ dramatically from their short-term, current-population 
constrained versions. It is critical that we get the dynamics of spatial and trade evolution right.  
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TABLE 1. Description of economic sectors in RUBMRIO model 
 

 Description IMPLAN NAICS SCTG 

1 Agriculture, Forestry, Fishing and 
Hunting 

1~18 11 1,3,4,25 

2 Mining 19~29 21 10~18 
3 Construction 33~45 23 -- 
4 Food Manufacturing 46~84 311 2, 5~9 
5 Chemicals Manufacturing 147~171 325 19~24 
6 Primary Metals Manufacturing 203~223 331 32 
7 Fabricated Metals Manufacturing 224~256 332 33 
8 Machinery Manufacturing 257~301 333 34 
9 Electronic and Electric Equipment 302~343 334,335 35,38 
10 Transportation Equipment 344~361 336 36, 37 
11 Other Durable & Non-Durable 

Manufacturing 
85~111, 
112~146, 
362~373, 
374~389 

312~316, 339, 
321~324, 337 

26~31, 
39~43 

12 Transportation, Communications 
& Utilities 

391~397, 
398~400, 
413~424, 30~32 

48, 49, 51, 22 -- 

13 Wholesale trade 390 42 -- 
14 Retail trade 401~408, 

409~412 
44, 45 -- 

15 FIRE (Finance, Insurance & Real 
Estate) 

425~436 52, 53 -- 

16 Services 437~509 54~56, 61~62, 
71~72, 81, 92 

-- 

17 Households    
18 Government    
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE 2. Foreign, domestic and household demands (in billions of 2002$) 
 

Sector Name Foreign 
Exports 

Domestic 
Demand 

Household 
Demand 

Agriculture, Forestry, Fishing and Hunting 3.010 0.931 0.299 
Mining 7.182 1.034 1.719 
Construction 0 0 0 
Food Manufacturing 3.781 8.758 8.807 
Chemicals Manufacturing 18.39 30.45 1.586 
Primary Metals Manufacturing 0 5.026 negligible 
Fabricated Metals Manufacturing 6.055 7.986 negligible 
Machinery Manufacturing 37.95 27.90 0.502 
Electronic and Electric Equipment 11.84 6.685 0.292 
Transportation Equipment 12.00 1.421 0.074 
Other Durable & Non-Durable Manufacturing 21.10 34.27 6.451 
Transportation , Communications & Utilities 0 0 32.23 
Wholesale trade 0 0 34.49 
Retail trade 0 0 116.0 
FIRE (Finance, Insurance & Real Estate) 0 0 91.68 
Services 0 0 117.0 
Households 0 0 0 
Government 0 0 7.016 
Total  121.3 124.5 418.1 

Note: Foreign export is estimated from the trend line of the data of 1993, 1997 and 2001; 
domestic demand is calculated from CFS 2002; household demand is from IMPLAN data 
of Texas (2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

TABLE 3. Truck trip generation (2002) 
 

Sector Name VIUS Short-Term 
RUBMRIO 

Long-Term 
RUBMRIO 

Agriculture, Forestry, Fishing and Hunting 11.17% 6.36% 6.88% 
Mining 34.36% 37.13% 34.63% 
Food Manufacturing 7.44% 7.37% 7.83% 
Chemicals Manufacturing 15.27% 16.04% 18.46% 
Primary Metals Manufacturing 0.87% 2.91% 3.86% 
Fabricated Metals Manufacturing 0.49% 2.64% 2.81% 
Machinery Manufacturing 1.61% 1.60% 1.49% 
Electronic and Electric Equipment 1.20% 0.45% 0.98% 
Transportation Equipment 0.19% 0.36% 0.48% 
Other Durable & Non-Durable Manufacturing 27.39% 25.15% 22.59% 
Note: VIUS data are quoted from Ruiz-Juri and Kockelman (2006), and were computed 
using the 2002 Texas Vehicle Inventory and Use Survey.   

 
 
 
 
 
 
 
 
 
 
 
 
 



 
FIGURE 1. Original RUBMRIO model structure 
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Note: i and j are indices for zones/counties; k indexes export zones, and m and n stand for economic 
sectors. m

railway
m
highway

mm βββλ ,,, 0  are the logit model parameters, mn
jA  and mn

jA0 are the technical 

coefficients with and without import considerations (see Kockelman et al., 2005). highwayijrailwayij dd ,, ,  

are railway and highway distances between counties. Initial values of m
ip  and m

ijX  are typically set 
to zero. 



FIGURE 2. Dynamic RUBMRIO model structure 
 

 

 
 
 
 
 



FIGURE 3. Texas’ five county groups 

Regions
East Region

North Region

West Region

North-West Region

South Region

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FIGURE 4. Short-term and Long-term (equilibrium) RUBMRIO model predictions 
of trade patterns (2002) 
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A. Short-term prediction  
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B. Long-term (equilibrium) prediction 
 



FIGURE 5. Model predictions of trade patterns for 2002-2020 
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B. Population Change  
 

  



FIGURE 6. Model predictions of population distribution for 2010 and 2020 
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