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ABSTRACT 

Econometric models are a powerful tool for analyzing regional issues. Complex models 

are normally intractable and require special estimation methods. Maximum simulated 

likelihood estimation (MSLE) techniques have become popular in recent years, and are being 

included in new software releases (such as STATA and Limdep). It is important that analysts 

understand the relative performance of different simulation techniques under various data 

circumstances. This especially true in regional studies, where observations are often spatially 

correlated. 

This paper studies the performance of several simulation techniques with spatially 

correlated observations. Quasi Monte-Carlo (QMC) methods are found to impose a strong 

periodic correlation pattern across observations. While some forms of sequencing, such as 

scrambled Halton, Sobol and Faure, can sever correlations across dimensions of error-term 

integration, they cannot remove the correlation that exists across observations. When a data 

set’s true correlation patterns clearly differ from the simulated patterns, model estimation 

may become inefficient; and, with finite samples, statistical identification of parameters may 

suffer. Fortunately, here we find that, at least within the mixed logit framework, even when 

observations are correlated, QMCs and hybrid methods are typically preferred to pseudo 

Monte-Carlo methods, thanks to their better coverage. These findings offer an important 

supplement to existing studies of spatial model estimation and should prove valuable for 

future work that requires simulated likelihoods with spatially correlated observations. 
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INTRODUCTION 
Simulation is an indispensable tool in many research fields for studies of complex 

systems. Thanks to enhanced computational power, simulation has become more popular in 
recent years. One important application is the estimation of statistical models where 
analytical derivation is impractical (for example, when a likelihood function involves a 
multidimensional integral). In regional studies, a typical application is the estimation of 
complex spatial econometric models, especially those that are nonlinear in nature. In this 
study, simulation techniques are explored within the framework of a mixed (random-
coefficients) logit model, where observations are spatially correlated.  

McFadden (1989) first applied MSLE for discrete choice.  Ideally, simulated draws 
should be randomly chosen points from the given (typically standard uniform) distribution. In 
practice, however, random numbers have to be generated using a deterministic routine. For 
example, the widely used pseudo Monte-Carlo (PMC) method generates numbers in a 
deterministic fashion, but in a way that appears to be random under simple statistical tests 
(Niederreiter, 1992). This type of simulation causes integration errors1 to converge on zero at 
a rate of N , where N is the number of observations (Spanier and Maize, 1994).  

In contrast to PMC, quasi Monte-Carlo (QMC) methods do not generate apparently 
random values. Their major advantage is that they are uniformly distributed with better 
coverage, offering a faster convergence rate for the upper bound of integration error (Bhat, 
2003). There are many ways to generate QMCs: commonly used approaches are the Faure 
sequence (Faure, 1992), Sobol sequence (Sobol, 1967), Halton sequence (Halton, 1960) and 
the Halton’s various scrambled and shuffled versions (see, e.g., Braaten and Weller, 1979, 
Hellekalek, 1984 and Hess and Polak, 2003). As Bhat (2003) explains, a scrambled Halton 
works better than a standard Halton for high dimension integration. One limitation of QMC is 
that “there is no practical way of statistically estimating the integration error” (Bhat, 2003, pg 
839). Another potential issue, as this paper will discuss, is the periodic correlation pattern 
inherent in QMC. For samples with independent observations, the effect of this correlation 
pattern is not significant; however, it may become problematic when the model involves 
correlation across observations.  

As Bhat (2003) suggests, an attractive alternative to PMC and QMC is their combination, 
also called randomized QMC. Bhat (2003) proposed shifting a Halton sequence by adding a 
random number to the standard Halton sequence. In this way, the integration error can be 
statistically estimated. However, shifting will not break the cycling of a standard Halton 
sequence. Thus, it does not help remove the correlation pattern (across observations) in QMC. 
Hess and Polak (2003) suggested another hybrid method, a shuffled Halton sequence. By 
randomly shuffling (reordering) a short Halton sequence for each observation, sequences 
avoid correlation in higher dimensions while speeding sequence generation time. However, 
because the shuffled Halton sequence uses the same numbers (though in different orders) for 
all observations, the simulation noise is likely to increase with sample size, instead of 
canceling. As discussed here, this method may lead to inconsistent estimates. 

In summary, many studies seek improved simulation techniques to produce unbiased, 
consistent, and maximally efficient estimates. Most existing evaluations of simulation 
techniques focus on asymptotic properties using assumptions of inter-observational 
independence (see, e.g., Ben-Akiva et al., 2001, Bhat, 2003 and Hess and Polak, 2003). When 
there are repetitive choice experiments, researchers tend to add an individual effect into the 
model specification (see, e.g., Hensher and Green, 2003).In regional studies, observations are 
often spatially correlated. For example, in models of land use change, land development of a 

                                                 
1 Integration error, or discrepancy, is the difference between true value (derived via integration) and the 
simulation-derived approximation. 



specific site often depends on neighborhood conditions. In other data sets (e.g., traffic counts), 
observations are interrelated through network connectivity. Spatial and serial autocorrelation 
in such situations are systematic. In these cases, simulation techniques relying on an 
independence assumption may be problematic; simply specifying unit-specific random 
effects is not adequate either. 

Thus, the objective of this study is to explore various simulation techniques in 
circumstances where continuous and systematic correlation across observations exists. Six 
simulation methods are compared: PMC, standard Halton, scrambled Halton, shuffled Halton 
and two other hybrid methods referred to here as “long shuffled Halton” method and 
“randomized shuffled Halton” sequence. (Two other QMC sequences, Sobol and Faure, are 
also briefly discussed, but not further compared because of their similarity to standard Halton 
sequences.) 

As explained in greater detail below, the “long shuffled Halton” sequence has a 
generation rule similar to the shuffled Halton. Instead of shuffling the same sequence for all 
observations, the “long shuffled Halton” approach shuffles a long standard Halton sequence 
and then splits it for each observation. The “randomized shuffled Halton” is a hybrid version 
of Bhat’s (2003) shifted Halton sequence and Hess and Polak’s (2003) shuffled Halton 
sequence: It adds a uniformly distributed random number to each value in a shuffled 
sequence. The relative performance of these six techniques is then compared based on theory 
and an empirical study using synthetic data. As this paper highlights, standard and scrambled 
Halton methods import periodic correlation across observations. Thus, in situations where 
correlated observations exist, Halton and scrambled Halton sequences may cloud or 
counteract the true correlation pattern, leading to inconsistent (or at least inefficient) 
estimates. 

The following sections describe existing studies of mixed logit model estimation and 
simulation techniques, along with potential problems for different simulation methods. These 
methods are applied to a synthetic dataset exhibiting spatial correlation. The results of 
different simulation methods are compared. 
 
MIXED LOGIT MODEL 

The mixed logit model, also called the random parameters or kernel logit model, has been 
widely used for a number of years. It has been applied to topics in finance, biometrics and 
social science, among others. Its application in regional science is also very broad. For 
example, Rouwendal and Meijer (2001) used it to study preferences for housing and jobs, 
Wang and Kockelman (2006) used it to study the spatial and temporal evolution of land cover 
in urban area, and Hensher and Greene used it to analyze urban commuting.  

Initially, the mixed logit model was designed to incorporate heterogeneity and correlation 
across alternatives. Thanks to its great flexibility, its applications were extended. Srinivasan 
and Mahmassani (2005) proved that mixed logit models are capable of approximating any 
random utility model. And Greene (2002) notes how mixed logit models can conveniently 
incorporate panel effects.  

McFadden and Train’s (2000) work depicts a general formulation for mixed logit models, 
where parameters are assumed to be randomly distributed with a density distribution function 
( )|f β θ .β  denotes the random coefficients, and θ  parameters characterize their random 

distribution. For observation i , the probability of choosing alternative q  is  

( ) ( ) ( )exp exp |iq iq ip
p

P x x f dβ β β θ θ
⎛ ⎞′ ′= ⎜ ⎟
⎝ ⎠

∑∫      (1) 



where iqx  is the vector of explanatory variables. This integration can be approximated using 
simulation: 

( )
1

1 R
ir

iq iq
r

SP P
R

β
=

= ∑         (2) 

where iqSP  is the simulated probability for observation i ’s choice of alternative q , irβ  is the 

rth of R draws for observation i  from its density ( )|f β θ . By construction, iqSP  is an 
unbiased estimate of iqP ; and, therefore, the simulated likelihood value iSL  is also an 

unbiased estimator of the true likelihood value iL : ( )i iE SL L= . 
The log likelihood of observation i  choosing alternative q  is  

1
ln ln

J

i ip ip
p

L d P
=

= ∑         (3) 

where ipd  equals 1 if observation i  chooses alternative q , and 0 otherwise. Unfortunately, 
the log transformation leads to bias in the simulated log likelihood. As Train (2003) shows,  

( )( ) ( )( )ln ln ln ln ln lni i i i i iSL L E SL L SL E SL= + − + −    (4) 

The second part of this expression ( )( )ln lni iE SL L−  indicates the bias caused by the 
transformation, denoted here as B . A second-order Taylor expansion suggests that  

( ) ( )2

1ln ln var
2i i i

i

B E SL L SL
L

= − ≈ −      (5) 

As Train (2003) explains, ( )var iSL  is inversely proportional to the number of draws, R. 
Therefore, when R is fixed, this bias B will accumulate with sample size, making MSLE 
inconsistent. Only with an increase in R will bias disappear.  

The third part of equation (4), ( )ln lni iSL E SL− , defines the simulation noise, which is 
caused by the difference between draws actually used for iSL  and its expectation over all 
possible draws. It is referred to here as C, which also has a variance inversely proportional to 
R. As long as iSL  is an unbiased estimator of iL , the major concern is to reduce the 
summation of B  and C  over the entire sample. With PMC, this can always be achieved by 
increasing R. The remaining issue is to find the simulation technique that achieves these goals 
most efficiently. Train (2003) suggests that if draws are negatively correlated within one 
observation and/or across observations, the sample summation of B  and C  tends to fall. 
Train (2003) supported this assertion by using R=2 as an example: The variance of 

( ) ( )( )1 2
ˆ 2t t tε ε= +  is ( )( ) ( )( ) ( )( ) ( )( )1 2 1 2var var 2cov , 4t t t tε ε ε ε+ + : A 

negative ( ) ( )( )1 2cov ,t tε ε  reduces the variance of average. Negative correlation within a 
given observation’s draws, which can reduce B , actually provides good coverage. 
Correlation across observations, which influences the total variance of simulation noise C , 
depends on the relationship across draws used for different observations. Based on all these 
relationships, studies of simulation techniques seek a simulation method that provides good 
coverage and negative correlation across observations. 
 
SIMULATION TECHNIQUES 
Standard Halton sequence 

As previously mentioned, Halton sequences (Halton,1960) are deterministic series of 
values between zero and one that provide uniform coverage in this number space. Each 



sequence is generated via a prime number, also called its base. Bhat (2003) explains the 
generation of Halton sequences with formulations, and Train (2003) illustrated how a 
standard Halton sequence draws numbers cyclically on the [0,1] interval. To make the 
following explanation clearer, Train’s (2003) illustration is briefly described here: 

Using prime number 3 as an example, the first cycle divides the interval into three 
sections, their left edges labeled as A, B, and C (shown in Figure 1). Then each section is 
divided into three parts, and each subsection is labeled lexicographically, as for the first cycle. 
The Halton sequence is generated with a modified alphabetical order: B for 1/3, C for 2/3, 
BA for 1/9, BB for 4/9, BC for 7/9, CA for 2/9, CB for 5/9 and CC for 8/9. The draws 
continue cycling in this way, filling in the interval’s gaps. Zero and duplicated points (e.g., 
AA=A=1, AB=B, AC=C) are ignored.  

Train (2003) noted that Halton sequences exhibit a negative correlation within one 
observation’s sequence, as well as across adjacent observations. Thus, Halton sequences can 
perform much better (in reducing simulation bias and noise) than independent draws. 
However, one potential issue is the incomplete consideration of cross-observation correlation. 
When additional correlation terms are considered, the conclusions may change. For example, 
if R=3, ( ) ( )( )1 2cov , 0t tε ε <  and ( ) ( )( )2 3cov , 0t tε ε < , it is quite possible that 

( ) ( )( )1 3cov , 0t tε ε > . If this positive value exceeds the sum of those two negative values, the 
final variance will be larger than the variance resulting from independent draws. 
Unfortunately, this is quite common with Halton sequences. As illustrated by Figure 1, a 
Halton sequence’s cyclical draws pick up the spaces left by prior draws and ultimately pick 
positions close to a series of earlier draws. Thus, it is reasonable to expect positive periodic 
correlations. Wang and Kockelman (2006) noted this pattern across draws and touched on it 
in their mixed logit models of land use change, based on satellite imagery. In their study, the 
correlation across observations is discussed based on the correlation between generated 
sequences. Here, the correlation across observations’ simulated probabilities is examined in 
depth using a method Train (1999) described: A single observation is treated as 1000 
different observations, so that the variation pattern in variables is avoided. In this way, the 
correlation across observations’ simulated probability is exclusively generated by the 
simulation technique.  

The difference between this method and the one described by Wang and Kockelman 
(2006) is that when calculating correlations between two sequences of random numbers, the 
order of these numbers is important. For example, consider a shuffled Halton sequence, 
where the randomly ordered sequences show no correlation across observations. Simulated 
probabilities, in contrast, diminish the re-ordering effect by averaging a transformation of the 

simulated values over the set of draws: ( )
1

1 R
ir

iq iq
r

SP P
R

β
=

= ∑ . This means that when using 

simulated probabilities, the order of r  has no influence. From this perspective, Train’s (1999) 
method indicates that shuffled Halton sequences result in perfectly correlated simulated 
probabilities. 

In order to clearly illustrate the effect of simulation technique on observation correlation, 
a simple model specification was used: A three-alternative mixed logit model with two 
alternative-specific constant (ASC) terms and one alternative-specific variable. The 
alternative-specific variable was generated from a standard uniform distribution and has a 
fixed coefficient 1. The first alternative serves as the base or reference alternative, and thus 
has a fixed ASC of zero. Alternative two’s ASC is fixed as 0.5. The ASC for alternative three 
is normally distributed with mean 0.2 and standard deviation 2. .  



Figure 2 shows the correlation pattern generated using different numbers of draws (R) 
from the same base of 3 for alternative 3. The vertical axis shows correlation of simulated 
probabilities, ( ), ,,q k qcorr SP SP• •+ , where ,qSP•  is the vector of all observations’ simulated 
probabilities for choice of alternative q . (Figure 2 shows the pattern for q=3; the q = 1 and 2 
patterns are virtually the same.) The numbers on the horizontal axis indicate the “distance” 
between observations, i.e., k . That is, 1 indicates adjacent observations, while 3 means every 
third observation. Similar to Train’s (1999) findings, the correlation between adjacent 
observations is around -0.4. However, correlation between pairings of every third observation 
jumps to +0.6. In fact, with R=25, the same results emerge for all numbers that are multiples 
of 3. As the number of draws increases, the variations in correlation values softens a bit, but 
for certain numbers (e.g., k=27), the correlation remains quite high.  

The base 3 results are very similar to those seen in Halton sequences generated using 
other prime numbers (i.e., other bases). As shown in Figure 3, the correlations across 
observations always present approximately periodic patterns, with multiples of the bases 
always associated with high positive values, and the peak correlations can be very high. For 
example, when the base is 5 and R equals 100, the correlation between observations and their 
25th nearest observations is 0.975. This means that Halton sequences impose a strong 
correlation pattern on observations’ simulated probabilities. Within a given model 
specification, the cycle and the magnitude of this periodic correlation depend on its base and 
the number of draws.  

When observations are independent, summation can cancel out these negative and 
positive correlations, making this effect of correlation across observations insignificant. 
Meanwhile, the good coverage of a Halton sequence within an observation helps to reduce 
the value of Equation (5). Thus, when observations are independent, the Halton sequence is 
generally preferred to PMC. Munizaga and Alvarez-Daziano (2001), Bhat (2003), Hess and 
Polak (2003) all confirm this conclusion.  

However, if observations are correlated, this correlation pattern imposed by use of Halton 
sequences becomes more problematic.  
 
Scrambled Halton Sequence 

Bhat (2003) proposed application of scrambled Halton sequences to estimate mixed logit 
models. There are many ways to scramble a Halton sequence (e.g., Braaten and Weller, 1979 
and Hellekalek, 1984). The scrambling method discussed here is the one proposed by Braaten 
and Weller (1979), and applied by Bhat (2003) and Train (2003). By re-ordering coefficients 
in the number generation rule, scrambling actually exchanges numbers’ positions in the 
original standard Halton sequence (see, e.g., Bhat, 2003). As can be derived from the rule, the 
first several numbers in the sequence only exchange positions in their near neighborhood. As 
the sequence length increases, the exchanged positions are further apart, but then the values 
of those numbers will not differ by much. In other words, though scrambling can disrupt the 
correlation across dimensions (i.e., sequences generated with different prime numbers), 
within each scrambled Halton sequence, an unbroken correlation pattern remains. Compared 
to the original Halton sequence, a scrambled Halton sequence simply cycles in a different 
way.  

Train’s (2003) illustration helps the drawing rule of a scrambled Halton sequence. Still 
using Figure 1, a scrambled sequence is obtained by reversing the order of B and C. That is, 
the listing becomes: C, B, CA, CC, CB, BA, BC and BB. The positions of the first eight 



numbers in standard and scrambled Halton sequences can be shown as follows: 

 
As can be inferred from this analysis, scrambled Halton sequences change number 

positions only slightly. When considering correlation across observations’ simulated 
probabilities, where the ordering of numbers for a single observation does not have any 
influence, standard and scrambled Halton results will not differ much. In fact, with base 3, 
the correlation pattern generated by these two methods almost overlaps. Only with higher 
prime numbers does scrambling change sufficiently such that the difference between standard 
and scrambled sequences can be observed. Figure 4 shows the correlation across observations 
induced by a scrambled Halton sequence, with base 7. As shown, the sequence still generates 
a periodic correlation pattern, very similar to that emerging from a standard Halton sequence. 
In general, the peaks are slightly lower, but the maximum correlation (e.g., at 7k =  and its 
multiples) remains quite high. 

Therefore, while scrambling will remove a standard Halton’s correlation across high 
dimensions, it still has the same problem as a standard Halton sequence when it comes to 
inter-observation correlations. 

The main features of a scrambled Halton sequence are representative of several other 
QMCs, including Sobol and Faure sequences. These two sequences remove correlation across 
high dimensions in a slightly different way (though within each dimension they work 
essentially the same as a Halton sequence). In other words, from the perspective of 
correlation, Sobol and Faure sequences function similar to scrambled Halton sequences. Thus, 
the scrambled Halton sequence is used here, as an example of this type of QMC simulation. 

 
Shuffled Halton: 

Hess and Polak (2003) first proposed to use the shuffled Halton sequence2 in a mixed 
logit model. Compared to a scrambled sequence, the generation of a shuffled sequence is 
more straightforward: the same Halton sequence is randomly shuffled for different 
observations and alternatives. That is, if there are Q alternatives, and each has just one 
random coefficient and N observations, a total of Q N×  short sequences need to be generated. 
If each sequence contains R draws, with a standard or scrambled Halton sequence, Q long 
sequences, each having N R×  numbers, need to be generated. This means that with large N  
and R , these two approaches will require considerably large memory and computational time. 
With a shuffled Halton sequence, only one standard Halton sequence of length R needs to be 
generated. This short sequence is shuffled Q N×  times.  

One easy way to shuffle a sequence of numbers is to generate a vector of uniformly 
distributed random values and sort the sequence according to their order. There are !R  ways 
to permute a sequence containing R different numbers, and in most applications R is at least 
50. Therefore, normally Q N×  is much less than !R , making these Q N×  sequences 
uncorrelated (see, e.g., Wang and Kockelman [2006]). This shuffling process can effectively 
disrupt correlations between alternatives. However, since this method uses the same sequence 

                                                 
2 While Morokoff and Caflisch (1994) were the first to suggest a mathematically equivalent version of the 
shuffled Halton sequence, Hess and Polak (2003) developed their work independently and are the first one to 
use the term “shuffled Halton”. They also were the first to apply this technique with a mixed logit model. 
 

Standard Halton  3 6 1 4 7 2 5 8 

Scrambled Halton  6 3 2 8 5 2 7 4 



of numbers, the asymptotic properties may be problematic. In the perspective of correlation 
across simulated probabilities, a shuffled Halton sequence imposes perfect positive 
correlation across observations, as shown in Figure 4. This implies that shuffling a single 
Halton sequence for all observations is likely to cause a higher estimator variance through 
simulation noise. It should be less efficient than standard and scrambled Halton sequences 
(but not necessarily less efficient than PMC, thanks to its better coverage). When shuffling is 
used for correlated observations, this strong correlation pattern may obscure the true 
correlation patterns and harm prediction. 

Therefore, shuffled Halton sequences should be used with some caution. The initial 
position and sequence length must be chosen carefully, in order to ensure that the sequence 
has optimal coverage and does not obscure any behavioral relationships of interest.  
 
Long Shuffled Halton Sequence 

In order to provide a more comprehensive comparison, two new methods are proposed 
and used here. The first one is referred to as “long shuffled Halton” sequence, because, when 
compared to Hess and Polak’s shuffled sequence, the original Halton sequence used here has 
a length N R× . The whole long sequence is first shuffled, then divided into N segments for 
those N observations(instead of first dividing and then shuffling, because as discussed 
previously, reordering a sequence within an observation does not influence the simulated 
probabilities. This means if a sequence is first cut and then shuffled, in terms of observation 
correlation, it is equal to using the original sequence and the correlation between simulated 
probabilities is still not broken.) Therefore, its coverage of each observation’s distribution is 
not as uniform as that of a standard or scrambled Halton sequence. However, correlation 
across observations is low, as shown in Figure 4. By construction, this long shuffled Halton 
sequence should perform like PMC. The second method is a randomized shuffled sequence, 
as described below. 

 
Randomized (Shifted) Shuffled Halton Sequence 

In the second method, a shuffled Halton sequence is randomized, through shifting. A 
random number (drawn from a standard uniform distribution) is added to each shuffled 
Halton sequence. (If the resulting value exceeds 1.0, a value of 1 is subtracted.) As Bhat 
(2003) and Train (2003) describe, this operation preserves the sequences uniform distribution 
in the number space. 

As noted earlier, shuffling offers good coverage within each observation. Its problem is 
the repeated usage of the same sequence of numbers. By adding different random numbers to 
different sequences (though the same random number is used within one sequence), the 
problems of shuffling are avoided. As shown in Figure 4, the observation correlation 
generated by this method is close to zero. Meanwhile, this method maintains good coverage. 
With all these characteristics, this method is expected to outperform PMC and all QMC 
methods discussed above, especially when observations are correlated.  And this is indeed the 
case shown here.  In the following sections, all five methods of number generation, together 
with PMC, are applied to a synthetic dataset for MSLE. 
 
CORRELATED SYNTHETIC DATA 

A synthetic dataset can be developed for any context, as long as the data-generating 
process is not internally inconsistent. Here, in order to make the correlation pattern more 
meaningful, the synthetic data may be interpreted as a case of land development. In this 
example, each observation stands for a grid cell of land at a specific location. There are 
totally 1500 observations, composing a rectangular area (shown in Figure 5). The value of the 



dependent variable y  may be interpreted as the land use type. There are three alternatives: 1 
indicates residential use, 2 indicates commercial use, and 3 indicates industrial use. 

Observation i ’s random utility for alternative q  is specified as follows: 

( )iq COST iq REV iq q q iq iqU COST REVENUEβ β α σ η ε= ⋅ + ⋅ + + +    (6) 

iqCOST  is generated from a uniform distribution with mean 1 and standard deviation 
0.577. In a land development example, iqCOST  can be interpreted as the general cost of 
developing a grid cell, and is affected by zoning regulations and construction costs. COSTβ  is a 
fixed coefficient set to -3. iqREVENUE  is drawn from a uniform distribution (mean 1.5 and 
standard deviation 0.866). It may be interpreted as a property’s revenues, as determined by 
floorspace prices and/or rents. Its coefficient REVβ is fixed to equal 2.  

There also is a variable ASC-component to the random utility function, that is normally 
distributed with mean qα  and standard deviation qσ . This component can be interpreted as a 
constant term plus one normally distributed unobserved error term. Alternative one’s constant 
term 1α  is -1, and its standard deviation 1σ  is 10. Alternative 2 has 2α  =1 and 2σ  =5. 
Alternative 3 is the base alternative and thus has corresponding parameters of 0 and 0. This 
example only considers correlation across observations: iqη  is uncorrelated across 
alternatives, but within one alternative, it follows a multivariate normal distribution with a 
mean vector of zeros and unit variance terms. In the first of the two test data sets, there is no 
correlation across these terms.  In the second data set, the covariance terms, ( )cov ,iq jqη η , are 
specified to depend on Euclidean distances between observations i  and j , as described 
below. This is the genesis of dataset 2’s spatial nature.  

As is common in kernel logit models, iqε  follows a standard Gumbel distribution with 
location parameter equal to 0 and scale parameter equal to 1. It is uncorrelated with the two 
explanatory variables and η . The total random term per observation and alternative is 
therefore q iq iqσ η ε+ . The covariance structure of iqη  produces spatial correlation in the 
random utilities for land use development. Thus, all told, there are six parameters requiring 
estimation: COSTβ , REVβ , 1α , 1σ , 2α and 2σ . 

For each observation, the alternative with maximum utility becomes the outcome. Figure 
5’s first graph shows the land use outcomes when the iqη  terms are independent across 
observations (dataset 1). For dataset 2 (Figure 5’s second illustration), a predetermined 
correlation pattern is assumed to exist across pη•  values : The correlation between two 

observations is calculated as ( )exp 10ijdis− , where ijdis  is the Euclidean distance between 
the centroids of observations i  and j , standardized by the length of one unit’s edge. Thus, 
the correlation matrix is of size 1500 1500× , and the correlation of η  values between 
immediate neighbors is around +0.9. The correlation between observations i  and j  is 

( ) ( )2

2 2

cov ,
,

6
q iq jq

iq jq
q

corr U U
σ η η

σ π
=

+
      (7) 

This means that for alternative 1, the correlation between adjacent observations (grid cells) 
is around +0.89; for alternative 2, it is around +0.85. (These differ slightly due to differing 
variance assumptions on their error components.) The correlation here seeks to capture 
correlations in unobserved attitudes and attributes related to developing parcels within 
neighborhoods.  



 
RESULTS ANALYSIS 

The five simulation methods discussed above, along with PMC, were applied to the 
synthetic data. Each technique is used seven times, with the number of draws (R) varying 
from 5 to 50, 100, 200, 500, 1000 and 2000. In order to avoid potential identification problem 
(Ben-Akiva et al., 2001), the fixed coefficient 

COST
β  was constrained to equal its true value 

while all other parameter estimates were allowed to change during the MSLE process. All 
starting values were set to their true values, so that problems of local extreme are avoided. 
For QMCs and their hybrid methods, the bases used to generate ,1iη  and ,2iη  were 3 and 5, 
respectively.  

1,500 observations is not a very large sample size (As can be inferred above, N 
systematically correlated observations lead to a correlation matrix of size N N× . Thus a 
larger sample size will make the above synthetic data generation practically infeasible with 
its excessive computational burden.) Hence, data sampling variance and bias may contribute 
to differences observed here between estimates and the datasets’ true values. To account for 
this, the study uses 10 samples (or 20 data sets total), each drawn from the same distribution 
described above (with 10 exhibiting spatial independence and 10 exhibiting spatial 
correlation in random error components). Average values of estimates from these samples 
were compared to their true values. Since each model requires 5 parameter estimates, to 
illustrate the overall accuracy, the roots of the sum of squared errors (RSE) of these five 
parameters were calculated. This measure can be interpreted as the Euclidean distance 

between the vector of estimated values and the vector of true values:
2

β β−
)

. From this 

perspective, this measure serves as a generalized bias. 
Table 1 shows this generalized estimate of bias with independent observations (i.e., 

dataset 1). As expected, standard and scrambled Halton sequences outperform PMC. With 
R=50, the simulation bias is already quite low using either of these two methods, while PMC 
does not achieve equivalently low bias until R exceeds 200. Also as expected, the shuffled 
Halton sequence performs better than PMC but not as well as standard and scrambled Halton 
sequences. The long shuffled Halton sequence performs much like PMC, in terms of trend, 
maximum and minimum biases. The randomized shuffled Halton does not produce good 
estimates with low R  values (e.g., R=50); however, once R  exceeds 100, this method yields 
a smaller generalized bias than PMC, shuffled Halton and long shuffled Halton. The overall 
findings here confirm conclusions from previous studies, in that scrambled Halton sequences 
perform better than shuffled and other Halton sequences when nothing is amiss in the data 
series. In addition, it supports the notion that randomized shuffled Halton sequences yield 
fairly satisfactory results.  

Table 2 shows the generalized bias values for dataset 2’s correlated observations. With 
this example, the 6 methods of MSLE sequence generation yield almost the same results. 
This result suggests that concerns relating to observation correlation generated by QMCs may 
be unnecessary. However, it should be noted that the spatial correlation pattern inherent in 
dataset 2 does not differ too much from the patterns generated by standard, scrambled and 
shuffled Halton sequences: The correlation between error terms of nearby observational units 
in space is always positive, paralleling the shuffled Halton’s perfect positive correlation 
pattern. The rule for generating this synthetic data also suggests that the correlation peaks 
somewhere between every 30th and 50th observation pairing. These are multiples of 3 and 5, 
which were used as the bases for all five types of Halton sequence used here. If the synthetic 
data set has a different pattern and it is completely counter to the sequences, the pattern 
falsely imposed by sequences may obscure the real data correlation pattern and affect 



estimators, especially those associated with the variance covariance matrix. Therefore, if 
Halton sequences must be used, a safe approach may involve shuffling the data prior to 
analyzing it, so that the potential correlation can be removed (unless, of course, the order of 
observations is important to the model specifications, as in serial or spatial correlation 
analysis, where estimation methods are much facilitated by proper ordering of observations).  

As to the performance of the randomized shuffled halton sequence, thanks to the benefits 
of Halton sequence coverages, only when R=1000 does PMC perform better. With all other 
draw numbers, the randomized shuffled Halton sequence appears to yield smaller errors. The 
results from this experiment suggest that, even when observations are correlated, QMCs and 
hybrid methods may be preferred to PMC, thanks to their better coverage.   

Table 3 shows estimates from just one of the 10 samples. For this sample, the estimates 
that result from assuming fixed coefficients on the COST and REVENUE terms are more 
accurate than those for the true random coefficients. These results also suggest that estimates 
from standard and scrambled Halton sequences are the most stable as R  increases. With 
empirical datasets, where true parameter values are not known, one signal for convergence, as 
Hensher and Greene (2003), Train (2003) and Walker (2001) have all suggested, is the 
stabilization of estimate values. Therefore, this feature of standard and scrambled Halton 
sequences also makes them preferable for practice. 

 
CONCLUSIONS 

With the growth of computational capability in recent years, simulation has been broadly 
adopted for complex model estimation. Significant effort has been devoted to developing 
more efficient simulation techniques. This paper discusses the advantages and potential 
problems of several simulation techniques, including standard, scrambled, shuffled and long 
shuffled Halton and randomized shuffled Halton sequences. Standard sequences are found to 
generate periodic correlations across observations, with cycle lengths equal to their bases (or 
multiples of their bases, for higher dimensions). Though a scrambled Halton sequence can 
effectively disrupt a standard Halton’s high correlation across alternatives, it cannot break the 
correlation across observations. A shuffled Halton sequence uses the same sequence of 
numbers for each observation, thus imposing perfect correlation across observations. 

This issue of observation correlation deserves some attention, because in some spatially, 
temporally, or otherwise correlated data sets and models, there may be no alternatives for 
multi-dimensional integration. In these cases, there will be no need to consider shuffling or 
scrambling, in order to break correlations across alternatives (in a model of discrete choices 
across alternatives). However, the inter-observation correlation caused by a standard Halton 
sequence may be just as much of an issue: The correlation patterns across observations, when 
significantly different from the data set’s true correlation patterns, may increase the 
simulation variance of the likelihood function and resulting estimates. For finite samples, this 
also may contribute to a situation of empirical unidentifiability, where the true log likelihood 
function is already flat, due to large sampling variance.  

In this work, a standard Halton, scrambled Halton, shuffled Halton, long shuffled Halton, 
and randomized shuffled Halton, together with PMC sequences were applied to a synthetic 
data set where random coefficients correlated across observations, thanks to spatial processes. 
Fortunately, the results suggest that when the generic and imposed correlation patterns are not 
at odds, these QMC and hybrid methods are at least as good as PMC, thanks to their better 
coverage.  

Furthermore, the randomized shuffled Halton sequence was found to perform fairly well, 
with both independent and correlated observations. Considering that this method requires less 
computational time and memory than the scrambled sequence, this hybrid method may serve 
as a good alternative to standard and scrambled Halton sequences. Finally, it should be noted 



that, as realized in many prior studies, properties of a QMC sequence depend on its base, 
number of draws, and number of observations, as well as its initial position. Our knowledge 
of QMC is still quite limited, so these newly developed techniques should be used with 
caution. When the model is complicated and there is reason to believe potential observation 
correlation exists, PMC may be the safest choice. 

Many opportunities for further study exist in this domain, including variations on inter-
observational dependence and comparisons of Bayesian and classical (MSLE) approaches for 
estimation of these complex models. As Bolduc et al. (1997) suggests, a Bayesian procedure 
requires about half as much computer time as MSLE with PMC. It would be interesting to see 
how Bayesian simulation techniques perform with correlated observations, and how results 
compare to those based on QMC sequences for MSLE. 
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Table 1. Generalized Bias (for All Parameters) with Independent Observations (Dataset 
1) 

Number of 
Draws (R) PMC Standard 

Halton 
Scrambled 

Halton 
Shuffled 
Halton 

Long 
Shuffled 
Halton 

Randomized 
Shuffled 
Halton 

5 6.333 9.803 1.900 4.742 6.686 4.380 
50 0.451 0.190 0.156 0.310 0.472 0.524 
100 0.286 0.223 0.132 0.389 0.275 0.208 
200 0.224 0.153 0.167 0.167 0.158 0.154 
500 0.174 0.151 0.144 0.162 0.267 0.161 

1000 0.161 0.159 0.160 0.184 0.163 0.175 
2000 0.196 0.163 0.161 0.180 0.158 0.139 

 
Table 2. Generalized Bias (for All Parameters) with Correlated Observations (Dataset 2) 

Number of 
Draws (R) PMC Standard 

Halton 
Scrambled 

Halton 
Shuffled 
Halton 

Long 
Shuffled 
Halton 

Randomized 
Shuffled 
Halton 

5 6.998 2.776 2.550 8.443 7.145 2.786 
50 1.563 1.310 1.294 1.417 1.681 1.404 
100 1.430 1.452 1.425 1.143 1.555 1.368 
200 1.555 1.380 1.341 1.398 1.366 1.436 
500 1.521 1.416 1.427 1.344 1.420 1.361 

1000 1.396 1.384 1.400 1.446 1.327 1.468 
2000 1.429 1.407 1.409 1.395 1.399 1.385 

 



 
Table 3. Parameter Estimates with Different Methods and Datasets 

 
No. of 
Draws 

(R) 

Dataset 1  
(Independent Observations) 

Dataset 2  
(Correlated Observations) 

REVβ  1α  1σ  2α  2σ  REVβ 1α  1σ  2α  2σ  
Method 

True 
Value 2 -1 10 1 5 2 -1 10 1 5 

5 0.988 0.223 5.166 0.710 1.629 1.360 -0.390 3.283 0.848 1.603 
50 1.722 -0.975 9.408 0.888 4.986 1.990 -2.127 6.924 1.043 3.408 
100 1.737 -1.045 9.427 0.837 4.962 2.115 -2.253 7.218 1.096 3.606 
200 1.847 -1.136 9.917 0.781 5.074 2.108 -2.289 7.231 1.079 3.597 
500 1.828 -1.064 9.863 0.816 4.962 2.156 -2.177 7.355 1.092 3.643 

1000 1.818 -1.059 9.693 0.796 5.003 2.141 -2.152 7.120 1.077 3.624 

PMC 

2000 1.824 -1.107 9.810 0.796 4.940 2.128 -2.145 7.123 1.090 3.605 
5 1.260 -1.475 9.350 0.536 3.406 1.728 -1.047 5.205 0.847 3.056 

50 1.815 -0.864 9.115 0.729 5.076 2.146 -2.096 7.070 1.066 3.684 
100 1.851 -1.120 9.931 0.787 5.013 2.112 -2.176 7.102 1.084 3.585 
200 1.835 -1.122 9.882 0.804 5.007 2.137 -2.102 7.023 1.085 3.665 
500 1.828 -1.099 9.813 0.804 4.964 2.135 -2.149 7.110 1.086 3.633 

1000 1.836 -1.123 9.903 0.811 4.985 2.133 -2.155 7.113 1.087 3.624 

Standard 
Halton 

2000 1.832 -1.114 9.853 0.811 4.980 2.133 -2.155 7.113 1.087 3.622 
5 1.392 -0.587 7.871 0.482 5.029 1.716 -1.202 5.275 0.846 3.421 

50 1.871 -1.048 9.689 0.770 5.223 2.108 -2.117 7.037 1.048 3.677 
100 1.820 -1.083 9.783 0.813 4.954 2.130 -2.141 7.115 1.085 3.657 
200 1.847 -1.115 9.945 0.808 5.043 2.126 -2.187 7.196 1.086 3.600 
500 1.838 -1.124 9.935 0.812 4.976 2.136 -2.138 7.071 1.086 3.642 

1000 1.830 -1.093 9.796 0.807 4.991 2.136 -2.164 7.139 1.089 3.621 

Scrambled 
Halton 

2000 1.833 -1.119 9.876 0.812 4.979 2.132 -2.156 7.116 1.087 3.622 
5 1.344 -3.118 12.545 0.804 3.505 1.863 -9.976 20.681 1.109 3.117 

50 1.813 -1.119 9.997 0.953 5.084 2.075 -2.364 7.639 1.236 3.493 
100 1.785 -0.965 9.550 0.820 4.996 2.104 -2.235 7.353 1.120 3.621 
200 1.820 -1.058 10.055 0.911 4.908 2.113 -2.059 7.034 1.141 3.636 
500 1.825 -1.110 9.972 0.843 4.939 2.129 -2.220 7.332 1.108 3.605 

1000 1.826 -1.104 9.932 0.847 4.959 2.128 -2.166 7.175 1.107 3.630 

Shuffled 
Halton 

2000 1.837 -1.219 10.198 0.847 4.953 2.137 -2.164 7.165 1.103 3.617 
5 0.946 0.012 4.101 0.690 2.240 1.333 -0.654 3.473 0.904 1.421 

50 1.841 -0.797 9.197 0.614 5.447 2.087 -2.260 7.441 1.055 3.587 
100 1.834 -1.093 10.026 0.793 5.354 2.053 -2.104 7.028 1.076 3.515 
200 1.822 -1.044 9.476 0.770 4.997 2.126 -1.960 6.751 1.054 3.650 
500 1.805 -1.236 10.070 0.821 4.775 2.108 -2.249 7.290 1.098 3.535 

1000 1.823 -1.112 9.871 0.819 4.950 2.152 -2.171 7.127 1.096 3.653 

Long 
Shuffled 
Halton  

2000 1.837 -1.019 9.592 0.790 5.031 2.144 -2.163 7.131 1.094 3.634 
5 1.152 -2.470 14.995 0.747 2.742 1.597 -1.786 6.586 0.891 2.183 

50 1.732 -1.788 11.769 0.884 4.764 2.078 -2.124 7.190 1.080 3.545 
100 1.793 -1.182 9.957 0.827 4.929 2.093 -2.108 7.081 1.070 3.556 
200 1.799 -1.101 9.687 0.781 5.026 2.114 -2.258 7.285 1.110 3.529 
500 1.823 -1.115 9.934 0.821 4.893 2.138 -2.180 7.114 1.094 3.612 

1000 1.828 -1.098 9.815 0.804 4.975 2.123 -2.165 7.103 1.082 3.605 

Randomized 
Shuffled 
Halton 

2000 1.834 -1.157 9.941 0.822 4.965 2.135 -2.140 7.113 1.090 3.615 
 



 
 

 
 
Figure 1. Segments for standard and scrambled Halton sequences (from Train (2002)). 
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Figure 2. Observation correlation generated by Halton sequence with different numbers 
of draws (base=3). 
Note: Y = ( ), kcorr SP SP• •+ , X = k 
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Figure 3. Observation correlation generated by Halton sequences with different bases 
(R=100). 
Note: Y = ( ), kcorr SP SP• •+ , X = k 
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Figure 4. Observation correlation generated using different simulation techniques 
(base=7, R=100). 
Note: Y = ( ), kcorr SP SP• •+ , X = k 
 
 

 

 (a) Independent Land Use Patten  
(Dataset 1) 

 
Legend 

 

 

 
 (b) Correlated Land Use Pattern 

(Dataset 2) 
 

Figure 5. Outcomes of the synthetic data. 
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