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Abstract

This work offers a simulation-based approximation algorithm for dynamic marginal cost pricing
(MCP) that is a direct extension of static MCP. The algorithm approximates the time-dependent
marginal costs, and is incorporated into the inner approximation dynamic user equilibrium
algorithm to evaluate the results of dynamic MCP, which are then compared to static assignment
results with MCP from previous study. The status quo and dynamic MCP-on-freeways scenarios
are simulated (and then compared) on Dallas-Fort Worth 35,732-link network. Due to
computational requirements for such large-scale DTA application, the dynamic MCP scenario is
simulated without feedback, and only route choices are permitted to vary. When prices are
imposed, some minor system benefits are observed, including a delay in the onset of congestion.
Dynamic prices vary substantially over the analysis period, reflecting changes in congestion.
Reasons for any inconsistencies between dynamic and static results are discussed, along with
important enhancements to future implementation.
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INTRODUCTION AND BACKGROUND

It is well known in the literature that two broad methods to combat traffic congestions are supply
improvement and demand management. The supply-sided solutions include capacity expansion,
managed lanes and ramp metering, to name a few. According to the Pigou-Knight-Downs
paradox (see Arnott and Small, 1994), increasing capacity actually allows latent demand to
consume much of the travel time savings. Clearly, demand management is key, emphasizing
behavioral modification in order to shift and shorten car trips and reduce their frequency and
peaking over times of day. (See, e.g., Kockelman 2004) One rather obvious option is the tolling
of congested roads, or congestion pricing (CP).

The concept of road space rationing is not new and dates back to early 20" century
(Pigou, 1920 and Knight, 1924). Early work in CP includes Vickrey (1963), who observed that
an effort was underway to differentiate between peak and off-peak demand in several markets,
and something similar for transportation would be useful. There are numerous works on static
traffic assignment (STA)-based CP, which essentially assumes steady-state traffic conditions -
(e.g. Zhao and Kockelman, 2006; and Dial, 1999) Given the time varying nature of traffic flow
on a transportation network, to truly assess the traffic and economic impacts of CP, one should
seek a dynamic traffic assignment based CP. The advantages of a dynamic CP over the static CP
are as follows: i) more realistic marginal costs that are calculated at various time slices and likely
to be equitable, and ii) the better representation of traffic flows as traffic dynamics and spatial
and temporal vehicular interactions can be captured. Moreover, the recent new commitments by
municipal, state and federal governments to construct and operate roadways with dynamic toll
pricing, which is a toll pricing method that changes based on traffic conditions to maximize the
performance of the tolled facility, have crucially motivated the need for dynamic CP models
(Friesz et al., 2007).

The literature on the dynamic congestion pricing is very limited. Joksimovic et al. (2005)
formulated the second-best toll design problem in the dynamic traffic network as a bi-level
optimization problem, considering elastic demand. They only showed a small hypothetical
network and solved it by complete enumeration, and their DTA scheme is an extension of the
static traffic assignment. Wie and Tobin (1998) proposed two dynamic congestion pricing
models based on the first-best marginal cost pricing. Their DTA scheme employs a link
performance function to estimate link travel time. Friesz et al. (2007) introduced the dynamic
optimal toll problem with user equilibrium constraints, and formulated two formulations based
on differential variational inequalities and equilibrium network design, respectively. The DTA
models in these papers lack realistic traffic conditions, and they cannot capture traffic
interactions across adjacent links. Friesz et al. (2004) and Yang et al. (2007) consider day-to-day
dynamic congestion pricing, which forces the traffic condition to system optimum. They
consider steady-state traffic condition within each day, and employ a typical link performance
function. Mahmassani et al. (2005) proposed an efficient approximation algorithm for finding
bi-criterion time-dependent efficient paths in large-scale traffic networks. Lu et al. (2006) and
Lu and Mahmassani (2007) proposed a bi-criterion dynamic user equilibrium model and solution
algorithm to support the planning, operation and evaluation of various dynamic congestion
pricing schemes, but do not consider calculating the dynamic optimal tolls.

This paper presents a simulation-based heuristic algorithm to calculate dynamic tolls
under the dynamic marginal cost pricing (MCP) scheme, which is a direct extension of static



MCP (see, e.g., Kockelman 2004). Our approach involves the incorporation of the proposed
MCP computation to the Inner Approximation Dynamic User Equilibrium (IADUE) algorithm,
which is implemented in the DTA module of the Visual Interactive System for Transport
Algorithm (VISTA) (Ziliaskopoulos and Waller, 2000). The DTA module employs RouteSim
(Ziliaskopoulos and Lee, 1996), which is a mesoscopic simulator based on an extension of
Daganzo’s (1994) cell transmission model, to propagate traffic while accounting for traffic
realisms such as link capacity, queue spillbacks and shockwaves. The static model requires the
strict guarantee of first-in-first-out (FIFO) condition, which can be relaxed in the dynamic
model. For example, vehicles approaching an intersection may not satisfy the FIFO condition.
Thus, it overcomes the weakness of using link performance functions as typical in the literature.

This paper is organized as follows. The next section describes the simulation-based
approximation algorithm for dynamic MCP. Our computational experience is then presented,
and the limitations in our approach are discussed. Finally, the major conclusions are summarized
and possible directions for future research are given.

SIMULATION-BASED APPROXIMATION ALGORITHM FOR DYNAMIC
MARGINAL COST PRICING

Our approach does not attempt to solve for the truly optimal marginal-cost dynamic pricing
policy because it is a highly complex problem. Instead, an approximate method is used,
employing each link’s marginal cost estimate to compute time-dependent tolls, updating these
every ten minutes. This heuristic method assumes that a vehicle entering a tolled link imposes
marginal costs only on vehicles that use the same link, rather than impacting travel times (and
thus costs) on other links. We first show the approximation algorithm for computing dynamic
MCP tolls. Then, we present the modified IADUE algorithm that incorporates the proposed
dynamic MCP computation.

Approximation of Dynamic MCP Toll

When a vehicle enters a transportation network, it imposes two types of costs: the average cost
experienced by the vehicle and a marginal cost (experienced essentially by those following the
new vehicle, under very slightly reduced speeds) (Liu and McDonald, 1999). In this study, we
consider an approximation for calculating the marginal costs on tolled links. The assumption is
that a vehicle entering a tolled link imposes marginal costs only on all following vehicles using
this same link. Thus, we assume that it does not impact vehicles using other, upstream (or
downstream) links. The time-dependent link toll is the product of the time-dependent link
marginal cost (in seconds) and the value of travel time (VOTT, in $ per second).

Peeta and Mahmassani (1995) proposed the following computation of a link’s

approximate time-dependent marginal cost, ¢ Vt,a , in terms of travel time (for all time periods
¢ and links a):
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where T“(x) represents the travel time experienced by another vehicle entering link « at time ¢, x
is the vector of time-dependent vehicle counts on all links (x, V#,a ), and dT/dx equal the link’s

marginal cost (in seconds).

The spatial interactions and »™ order temporal interactions (global marginals) are ignored
in this computation. These effects may not be significant compared to the direct effect on link a
oT" (x)

ta

at time ¢,

(i.e. local marginals). Under such conditions, the solutions obtained using the

global marginals and the local marginals will be relatively close. However, if the interactions are
significant, the solution obtained using the local marginals may deviate from that obtained using
the global marginals.

T"“(x) and x™ are obtained directly from simulation. Figure 1 illustrates the approach used
oT" (x)
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for the computation of the derivative

. The approach used here assumes that the time-

dependence of the derivative is due to time-varying link performance functions. This means the
performance curve in Figure 1a for link a at time ¢ depends on the traffic flow conditions on the
link at that time. This time-dependence is very significant; a link’s travel time can differ
significantly the same number of vehicles at two different times depending on the fraction of
vehicles that are queued. A link’s link performance curve changes somewhat gradually over
time. If the time interval between successive evaluations of d7/dx derivatives (marginals) is
small, it appears reasonable to assume that three consecutive points in time are on the same link
performance curve, as illustrated in Figure 1a. A quadratic fit using the three points results in the
oT" (x)

xt

time-varying link performance curve at time 7 and the slope of this curve at time ¢ gives

as shown in Figure 1b. For example, at times ¢-1, ¢ and ¢+1, the corresponding link inflows are
100, 250 and 400 vehicles, and the corresponding link travel times 1500, 2500 and 600 seconds.
Following the procedure in Figure 1b, the link marginal cost at time ¢ is 14.973 seconds/vehicle.
Assuming a VOTT of $10.00 / vehicle-hour, the MCP toll at time ¢ is 4.16 cents plus an existing
flat toll (if any).

Peeta and Mahmassani (1995) suggested that the consideration of small time intervals (on
the order of a few seconds) may cause some instability in the curves because the VOTTs and the
number of vehicles in successive intervals may exhibit “jumps” at certain times. Hence, the
length of the time interval between successive data points involves trade-offs between the
accuracy and robustness of the curves. To achieve stability in the curves, the simulation of 6-
second time intervals may be too small for updating OD paths , since no appreciable change
takes place in the system in such a short duration. In the implementation of the solution
algorithm, paths are updated every assignment interval (i.e., every 10 minutes for the DFW
network). The marginal values may be computed for assignment intervals only and not for
simulation intervals, thereby reducing the computational burden of the path-processing step. In
the next section, this dynamic MCP computation is incorporated into the IADUE algorithm.

Modified IADUE Algorithm for Dynamic MCP

The IADUE algorithm (Chang, 2004) is a solution algorithm for the variational inequality (V1)
formulation of the single-mode automobile dynamic user equilibrium problem. The algorithm



estimates the equilibrium path assignment using inner approximation methods. Conventionally,
vehicle assignment has been performed using the method of successive averages, which assumes
that all previous solutions contribute equally to the final equilibrium, so it assigns vehicles
equally among the set of past solutions. In contrast, the IADUE algorithm searches the feasible
set of path assignments for the assignment that minimizes an equilibrium gap function. It
searches within a subspace defined by a set or subset of the extreme points of the feasible space.
The IADUE algorithm is similar to simplicial decomposition (e.g. Von Hohenbalken, 1977;
Hearn et al., 1984), but differs in the descent direction used for each iteration.

The IADUE algorithm iteratively employs the TDSP algorithm (Ziliaskopoulos and
Mahmassani, 1994) to generate vehicle paths with the implicit assumption that drivers have
perfect information and can divert to alternate paths if it reduces travel time. In this study, a
minor modification in TDSP is made in order to account for tolls, under an assumption of
homogeneous users (i.e., a single value of VOTT). The VOTT is used to convert tolls to a time
penalty, characterized as additional time perceived by each driver. For example, with the VOTT
of $10, $0.33 toll charge is equivalent to 2 minutes of additional travel time. This added time or
“delay” obviously does not impact the actual time spent within the network, but it is used within
the TDSP algorithm. The modified algorithm is called the time-dependent least cost path
(TDLCP) algorithm, and it routes each vehicle such that it chooses a path with the least
generalized cost (toll-based time penalty plus actual travel time).

The notations are first described. Let’s denote by ¥V the set of nodes, 4 the set of arcs,
and [0, 7] an assignment period. d, is the number of automobile trips departing from node  to
node s (r,s € V') attime ¢ €[0,7]. P is the set of all spatiotemporal paths from all origins to all

destinations. P(r.s,) = {p’, p’...., p"} is the set of paths departing at time ¢ from nodes r to s.
f"k is the number of automobiles choosing to follow path p*. Zis the vector of path flows;

e, E= (g”k ). ka (2) is the generalized cost on path p*. W(E)is the vector of path generalized
costs; i.e., ¥(E)=(y” (2)).
Since the demand relationships Zf”k =d! forall (rs,¢) form a closed, bounded and

preP(rs.1)

convex space D — R”, any assignment = in D is feasible, given that the traffic flow propagation
law adopted prevents gridlock and allows all vehicles to complete their trips within time 7. It is
assumed that a driver’s selection of an alternative path is a unilateral decision based on the
current traffic conditions. Chang (2004) showed that a Wardrop equilibrium solution, =", exists
where

YEHYN(E-E)20VEeD

Since the equilibrium conditions defined in this VI formulation are difficult to solve
directly, Chang (2004) formulated a gap function based on Smith (1983) such that the optimal
solutions of the gap function coincide with points that satisfy the equilibrium conditions. Let O
be the set of equilibrium solutions that satisfy the VI conditions, then Gap is a gap function for
these conditions if Gap(E)=0 VEe€Q and Gap(E)>0 VEe D. After translating the

equilibrium conditions into a gap function, numerical search approaches can be applied. The
proposed IADUE algorithm iteratively selects a descent direction (A) in the assignment space D
and a step length that minimizes the gap function. The algorithm terminates when Gap(Z) = 0.
We refer to Chang (2004) for the detailed descriptions of Gap and A.



For dynamic MCP, we add a new module, which computes dynamic MCP, to the original
IADUE algorithm. The modified IADUE algorithm is shown below.

Step 0: Initialization
-Setn=0
-Set link travel times to free flow travel times
-Compute the link generalized costs (using the existing flat tolls)
-Run TDLCP to obtain least cost paths for each (7,s,2)
-Set Z, to all-or-nothing assignment of d,,’ to shortest path for (7,s,2)

-Simulate traffic conditions with the assignment =,

-Compute dynamic MCP tolls for tolled roads
-Update link generalized costs (using the MCP tolls plus the existing flat tolls)

Step 1: Run TDLCP and add new paths to the path set P
Step 2: Choose new solution =,

-Determine the descent direction A,

-Select step length A4, that minimizes the gap function
(A, =argmin , (Gap(E, + 1A,)))
-Assigndemandto =,,, =E, + 4 A,
Step 3: Update generalized costs
-Simulate traffic conditions with =,

-Compute MCP tolls for tolled roads
-Update link and path generalized costs
(using the MCP tolls plus the existing flat tolls)
Step 4: Check for convergence
If Gap(=,,,) 20, set n =n+1 and return to Step 1. Otherwise, terminate.

The computational bottleneck is the TDLCP algorithm. After a number of iterations of
the modified IADUE, we assumed that there are a sufficiently large number of paths generated
for each OD pair. Then, the module UPDATE-COST-DTA in VISTA is executed that runs
Steps 2 to 4 of the modified IADUE. That is, the algorithm keeps updating time-dependent path
generalized costs of all paths in the generated path set P (without generating new paths) until
convergence. As such, an iteration of UPDATE-COST-DTA is much faster than an iteration of
the modified IADUE, since the TDLCP algorithm is not performed. Next, we show the
computational experience on a real large-size network.

COMPUTATIONAL EXPERIENCE

This work was originally developed for the application of credit-based congestion pricing
(CBCP) in Texas, which is briefly described as follows. CBCP (Kockelman and Kalmanje,
2004) is a novel strategy which seeks to overcome the negative equity impacts of congestion
pricing CP by allocating monthly budgets to eligible travelers to spend on congestion tolls. The
first step in predicting CP’s impacts involves traveler behavior modeling. Kockelman et al.
(2005) estimated joint destination-mode choice models for the Dallas-Fort Worth (DFW)



metroplex from the region’s 1996 household and on-board transit survey datasets for different
trip purposes. These models were applied for short-term (employment locations held fixed) and
long-term (employment locations flexible) static cases with full feedback (using the method of
successive averages) to the DFW region. In addition to the status quo (which has some tolling),
two MCP scenarios were simulated for the 1999 modeling year: MCP just on the region’s
freeways and MCP applied on all roads (see Gulipalli, 2005). Full model feedback of travel
times and costs was implemented, and the method of successive averages (MSA) was used for
route, destination, and mode choice equilibration for each of five daily time periods.

Since the MCP-on-all-roads scenario has very high associated initial and recurring costs,
and it is not likely to be practically feasible in the near future (Kockelman et al., 2005). Due to
these facts and especially the excessive computational time of a DTA run for large-scale
networks, the MCP-on-all-roads scenario is not considered here. Specifically, we employ the
proposed simulation-based heuristic to evaluate the MCP scenario when only freeways are
priced, and the simulation-based DTA to evaluate the status quo for the DFW region. Due to
highly intensive computational requirements for large-scale DTA applications, the status quo and
MCP scenarios are simulated without feedback (of travel times and costs, for destination and
other choices). Only route choices are permitted to vary.

The DTA analysis focuses on the AM peak (6 to 9 AM), and an assignment interval is ten
minutes, resulting in 18 assignment intervals over three hours of simulation time. A simulation
time step is six seconds, yielding 1800 time steps over three hours. A single VOTT of $10.00
per hour (per vehicle) is assumed, so that the results can be comparable to Kockelman et al.’s
(2005) static analysis. In order to build a set of competitive path choices for each time step and
every OD pair, five IADUE iterations are run (approximate CPU time = 1 month). Then, we run
the UPDATE-COST-DTA until achieving convergence for both scenarios (status quo and MCP-
on-freeways) (approximate CPU time = 1 week). The proposed simulation-based algorithms run
on a Dell PowerEdge 6600 Server with dual 2.3 GHz Xeon processors and 4 GB of RAM,
running under Redhat Fedora Core 3. The modified IADUE algorithm takes approximately 5
weeks to evaluate the results of dynamic MCP-on-freeways without feedback.

The network and demand matrix assembly is described next, followed by the comparison
of the status quo and MCP-on-freeways from static and dynamic traffic assignment. Possible
reasons of considerable difference between STA and DTA results are discussed. Then, we show
the exploration of density on certain arbitrary freeway links from DTA analysis. Although it is
unclear if STA and DTA models are comparable as they are based on different modeling
assumptions, our comparison provides a systematic approach to compare the differences between
these two approaches for CP. This comparison should facilitate future research to compare the
obtained results with observed data.

Network and Demand Matrix Assembly

As provided by the North Central Texas Council of Governments (NCTCOG), the 1999 DFW
roadway network has 26,748 lane miles and 22,187 links. For a static approach to network
assignment (implemented in TransCAD), the DFW network has 13,694 nodes, 4,874 centroids,
22,187 links, and 9,805 centroid connectors. TransCAD’s links and centroid connectors can be
either unidirectional or bidirectional. Since VISTA has its own data format requirements, the
TransCAD network data are converted into VISTA file formats. All links in the VISTA database
must be unidirectional. Thus, the number of links used by VISTA is greater than that in



TransCAD, but the number of nodes remains the same. A major concern in running DTA is the
amount of memory consumed — especially when generating the competitive least-cost paths for
every 6-second time step and every OD pair. Since the number of zones (centroids) impacts
these memory requirements directly, a relatively aggregate zonal system is used. In VISTA, the
DFW roadway network still has 13,694 nodes, but just 919 centroids. It has 35,732 links, and
3,642 centroid connectors (or 4 connectors per centroid). The zonal structure is that previously
used by NCTCOG.

The time-dependent OD demands are derived as follows. Gulipalli’s (2005) short-term
static travel demand model application for the status quo yielded trip origin-destination (OD)
information for the region’s five traffic assignment periods and four modes. The static ODs for
the three modes (drive alone, shared ride and truck trips) in the five times of day then were
combined by first converting each truck trip to two passenger car equivalents (HCM 2000) and
summing up the drive-alone trips, shared-ride trips and converted truck trips for each OD and
time of day. With these 24-hour static OD trips, the demand profiling method by
Karoonsoontawong et al. (2008) is used to generate the smoothed time-dependent OD trips every
six seconds. Only the demands during the three-hour AM peak (6:00 AM — 9:00 AM) are used
for this analysis.

Comparison of Traffic Impacts for the Status Quo and MCP-on-freeways from Static and
Dynamic Traffic Assignment

The DTA results are compared both to one another (status quo vs. MCP-on-freeways scenarios)
and to the static analysis with its full behavior feedbacks. It is noted that the value of MCP toll
for static analysis is based on the standard Bureau of Public Roads (BPR) formulation:

Y
=t |1+ a[—’)
’ Ci

where ¢; = travel time of link 7; ¢, = free-flow travel time of link #; v; = volume of link i; C; =
capacity of link i; and « and g = calibration parameters. The static MCP toll is determined from
differentiating # with respect to v;; thus, the value of link toll for static MCP scenario is
(Gulipalli, 2005):

B
V.
Toll, =k, +VOTT -1, , -a - ,H[F]

where k; = any existing toll on link ;.

Traffic impacts for the status quo and MCP-on-freeways scenarios are compared in terms
of VMT, VHT and average speed during the AM peak period. For the comparison with the static
models, the long-term STA traffic impacts come from all five time periods, so they are not
perfectly comparable to the 3-hour AM peak period results found using DTA. However, the
differences are so striking that this distinction is not of major consequence. All STA results are
taken from Kockelman et al. (2005)".

! The BPR parameters used in Kockelman et al. (2005) (a=0.15; 4=4) were based on effective capacity (maximum
service flow under level of service (LOS) C, rather than true capacity, under LOS E) and thus were biased low. In



System Level Comparison: The predicted changes in system-level (i.e., total) VMT, VHT and
average speed during the AM peak when freeways are priced, versus status quo, are shown in
Table 1. The DTA results appear insignificant, both in isolation and when compared to the
behavioral changes evident under the STA approach. Part of this insensitivity is due to the
smaller share of VMT on freeways in DTA model (see Figure 2) when compared with STA
model. The directions of changes for STA and DTA results are not in agreement for system
VHT and average speed. The STA results seem to be consistent with expectations. The DTA
results seem less so. Of course, the DTA model runs do not permit the behavioral feedbacks that
the STA approach allows, so the travelers are far more constrained and changes are fully
expected to be much less dramatic. Although it is well accepted by researchers (e.g. Peeta and
Ziliaskopoulos, 2001; Mahmassani, 2001) that DTA captures traffic realities better, it should be
noted that a more valid comparison should involve the observed traffic data to conclusively test
the validity of the proposed approaches. Our research in this work is a step towards that
direction.

Comparison from DTA Analysis: Estimates of %VMT, %VHT and average speed categorized
by different roadway facility types for DTA analysis are shown in Figures 2-4. Freeway and
ramp VMTs for the MCP-on-freeways scenario are predicted to rise very slightly (again by less
than 1%), while freeway and ramp VHTSs are predicted to fall by 1.53% and <1%, respectively.
Freeway and ramp average speeds for the MCP-on-freeways are predicted to rise by 1.89% and
<1%. This may imply that more short-trip travelers using freeways in the status quo tend to
choose non-freeway routes to avoid MCP tolls, while more long-trip travelers switch to stick
with freeways, thanks to the travel time savings offsetting MCP tolls.

Principal-arterial, minor-arterial and frontage-road VHTs for the MCP-on-freeways
scenario are predicted to rise very slightly (by less than 1%), while their speeds are predicted to
fall by <1%, <1% and 3.32%, respectively. This means the principal arterial, minor arterial and
frontage roads are predicted to become somewhat more congested when MCP tolls are applied
on freeways because more short-trip travelers that use freeways in the status quo leave the
freeways to use these facility types, when tolls are applied.

Principal-arterial, minor-arterial and frontage-road VMTs for the MCP-on-freeways are
predicted to fall by <1%. This may imply more longer-trip travelers that use arterials in the
status quo are attracted to freeways in the MCP-on-freeways. All these results are expected to be
amplified considerably when behavioral feedbacks for destination and mode choice shifts are
permitted.

Comparison between DTA and STA Results: The %VMT, %VHT and average speed by
roadway types for STA analysis are also shown in Figures 2-4. In the DTA model, minor-
arterial VMT is predicted to be highest, followed by principal-arterial VMT, and freeway VMT
(around 10 to 15% of total VMT). In dramatic contrast, under the STA model freeway VMT is
predicted to be highest (around 45-55% of total VMT), followed by minor-arterial VMT, and
principal-arterial VMT. A similar trend is witnessed for VHT’s distribution across the network.

this paper, we employ the static results based on more appropriate BPR parameters (« = 0.85; #=5.5), which imply
higher static tolls, and somewhat higher VMT reductions and speed increases.



Of course, the STA model is a 24-hour model, so freeways may attract more travel during the
off-peak hours, but the contrast is still striking if one considers just the 3-hour peak period for the
STA analysis. The STA results match our expectations better than the DTA results, since one
expects a greater share of VMT on freeways than on other facility types (due to higher speeds on
freeways). However, the percentage of freeway VMT under the STA model may well be too
high, simply because many local network links are not coded. Thus, true freeway %VMT should
lie somewhere between STA and DTA results.

Predicted freeway speeds average between 45 and 65 mph, under the 24-hour STA
analysis, while under a DTA approach for the morning peak period predicts just 30-35 mph. The
range of estimated average speeds for all facility types under the STA approach is 25-65 mph,
while that for DTA in the 3-hour peak is just 15-35 mph. These indicate a drastic difference
between STA and DTA results, and suggest very different behavioral assumptions regarding
traffic performance.

Possible Reasons of Considerable Differences between STA and DTA Results

As also discussed in the limitations section, the dramatic differences between DTA and STA
results may stem from the following modeling distinctions. First and foremost, the static
analysis allows feedback of travel time and cost information to destination and mode choices.
The dynamic model is without feedback: travelers are only allowed to change route. Thus,
travelers in the dynamic model are substantially more restricted, resulting in negligible estimates
of VMT, VHT and speed changes when MCP is applied. Secondly, the centroid structure
employed in the DTA model is much more limited than in the STA case. It consists of 919 zones
(or centroids) and 3,642 centroid connectors, while the STA model uses 4,874 zones and 9,805
centroid connectors. Thus, the DTA’s centroid structure cannot load and unload the network as
uniformly or rapidly as the STA’s structure. This may result in more congestion around entry
nodes in the DTA network. Third, there is a difficulty in DTA peak period analysis: a small
number of travelers’ departures cannot complete their trips by the end of the 3-hour AM peak-
period analysis. The ideal analysis is a 24-hour period; however, this is effectively impossible at
present, due to computer memory limitations. The three-hour study period (AM peak) may not
be sufficient for “warming up” and *“cooling down” the network; substantial traffic shoulders
may exist, making congestion more severe at the start and end of the peak period. Note that in
the beginning of DTA, the network is empty, so the warming-up period is employed to populate
the network; then, the true analysis period starts. In the same way, the cooling down period is
employed after the analysis period to clear all vehicles from the network. All DTA results are
determined only from the analysis period.

Exploration of Density on Freeway Links and Toll Rates

Next, we explore the number of vehicles or traffic density along four arbitrary links over the
analysis period, using DTA methods. Figures 5a-5¢ show the density of freeway links that
presently operate without tolls. It can be seen that time shifts in traffic demands take place on
these freeways, as a result of MCP tolls. The MCP toll estimates under the DTA-based heuristic
method range from $0.10 to $29.2 per mile on the region’s freeway links during the AM peak (6
to 9 am). Obviously, anything over $10 or $20 per mile is probably unrealistic, at any time of
day, even for very short sections (such as narrow bridge crossings). The DTA model seems to be
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overestimating MCP tolls. In the STA approach, the toll rates went only as high as $0.79 per
mile.

LIMITATIONS

This DTA analysis assumes inelastic demand, in both destination and mode choice, substantially
limiting behavioral changes. Due to computational limitations in VISTA, the numbers of vehicle
trips for the status quo and MCP-on-freeway scenarios between all OD pairs come from the
static analysis (the applications of joint DM choice model in Gulipalli, 2005), and these are
considered fixed. Departure times are also considered fixed. Although VISTA’s path-based
simulation model can assume different VOTTs across OD pairs (as explained in Ziliaskopoulos
et al., 2004), a single VOTT of $10.00 per vehicle-hour is used here, since it is more comparable
to the STA approach and no obvious means of ascertaining VOTT variations by OD pair is
available. The centroid structure is aggregated to enable DTA analysis. The static demand is
smoothed across times of day by the selected model. Lastly, the dynamic MCP toll calculation is
an approximation method, unlike the analytical method in the STA.

CONCLUSIONS

An approximation algorithm for computing dynamic marginal cost pricing (MCP) tolls was
developed, employing the link marginal costs to calculate the time-dependent toll. This
approximation was incorporated into the inner approximation dynamic user equilibrium
(IADUE) algorithm in VISTA to evaluate the dynamic MCP. This represents a wholly new
application environment for VISTA and a major step forward for this kind of DTA model.

The 1999 DFW roadway network was converted from TransCAD format into VISTA
format. Due to computer memory limitations, DFW’s past, more aggregated zonal system was
used, composed of 919 zones/centroids and 3,642 centroid connectors. The network structure
used in the dynamic analysis was the same as the static analysis, but the analysis focused on the
AM peak (6:00 AM - 9:00 AM). The time-dependent OD demands for the status quo and MCP-
on-freeways scenarios were the same, as derived from the status quo of the static analysis. The
DTA parameters are the following: the assignment interval of 10 minutes, the simulation time
step of 6 seconds and the single value of travel time (VOTT) of $10 per hour. For both
scenarios, the DTA module was run for 5 iterations, followed by running the UPDATE-COST-
DTA module until convergence.

The results of static and dynamic traffic assignments were remarkably inconsistent. The
reasons for this are felt to be as follows: (1) The STA approach allowed behavioral feedbacks,
whereas the DTA did not. (2) The time periods and traffic demand profiles were distinct (all
times of day constant-demand STA results were compared to AM-only DTA results for a
smoothed demand profile). (3) The STA employs link performance functions; in contrast, the
DTA model employs the cell transmission model, a traffic flow theoretical model, to propagate
traffic. (4) The DTA’s MCP method is an approximation, whereas that in STA is analytical. (5)
The DTA zone and centroid connection structure was relatively coarse, so the DTA network
could not load (and unload) as smoothly as the STA network.

Minor changes in DTA-predicted freeway use following implementation of MCP-on-
freeways suggest that short-trip travelers may avoid the priced freeways while longer-trip

11



travelers are more willing to pay the congestion tolls. Using the DTA-based approximation
method, MCP tolls on freeways during the AM peak period were predicted to range between
$0.1 and $29.2 per mile. Predicted freeway link densities and associated MCP tolls indicated
observable shifts in traffic flows due to pricing. Some minor system benefits were observed,
including a delay in the onset of congestion. Of course, traffic impact predictions would have
been much more dramatic had behavioral feedbacks been incorporated. Future implementations
should allow such feedback, to incorporate destination, departure-time, and mode-choice
decisions as well as heterogeneous users. This paper is essentially the first step toward the more
realistic, deployable model for dynamic MCP. In essence, this paper identifies the possibilities
and the challenges that should be addressed while implementing DTA for large networks. The
insights from computational implementation obtained from this work should allow other
researchers and practitioners to draw lessons while solving large scale DTA problems.
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Table 1. Traffic Impacts of MCP-on-Freeways, as Compared to the Status Quo

DTA (AM Peak) STA (Long-Term; All TODs)
System VMT Fall by <1% Fall by 9.4%
System VHT Rise by <1% Fall by 16.7%
System Average Speed Fall by <1% Rise by 8.7%
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Figure 1. Computation of Derivative for Link Marginal Cost and
Time-Dependent MCP Toll

a) Graph of Link Travel Time and Cumulative Link Inflows

Link Travel Time of Link a at Time z(1' ™)

A

t+1

»
»

b) Procedure to C Cumulative Link Inflows (vehicles) of Link a at Time z, (x™)

Input: (X, Y)), (X5 Y,) and (X3, Y3) associated with times t-1, t and t+1
Output: the gradient at point (X, Y>)
Step 0: Form the system of quadratic equations:

AX;? + BX, + C =Y,
AX>? + BX>+ C =Y,
AX;? + BX; + C=Y;

where 4, B and C are variables.

Step 1: The solution of the system in Step 0 is:

EECRS P b COPIR 12 St (2.

1™ 2 T L !
X X, X, X, XlXZ(XZ_Xl)
Y X; - Y, X! R —-R

, = 1“3 371 C= 1 2, BZRl—CLl, Azilz—ﬁ—
XlXS(XS_Xl) L -L, XP X

dY
Step 2: Determine the gradient at point (X5, Y>): d—X(XZ,YZ) =24X,+B.

Step 3: MCP toll at time ¢ (associated with point (X5,Y5)) is 24X, + B + existing flat toll.
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Figure 2. VMT by Roadway Facility Type for Status Quo and MCP-on-freeways from DTA
(AM Peak) and STA (Long Run, All TODs)
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Figure 3. VHT by Roadway Facility Type for Status Quo and MCP-on-freeways from DTA
(AM Peak) and STA (Long Run, All TODs)
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Figure 4. Average Speed by Roadway Facility Type for Status Quo and MCP-on-Freeways from
DTA (AM Peak) and STA (Long Run, All TODs)
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Figure 5. Time-Varying Traffic Density on Freeway Links

a) SH114 NB, Between Macarthur and W SH114 (Length = 1267.2 ft, MCP toll Rate Max = $0.27/mile)
(Total Vehicles = 626114 for Status Quo, 624675 for MCP-on-freeways, Capacity = 6450 vph)
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b) US287 SB, Near Wise CO LIN (Length = 3273.6
ft, MCP Toll Rate Max = $0.39/mile) (Total
Vehicles = 41861 for Status Quo, 35109 for MCP-
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c) IH30 WB, Near GALLOWAY (Length = 2112 ft,
MCP Toll Rate Max = $0.04/mile) (Total Vehicles
= 815561 for Status Quo, 798301 for MCP-on-
freeways; Capacity = 4300 vph)
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