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ABSTRACT 
Forecasting urban futures is of great importance to many in order to ensure adequate provision of 
public and private services and implement policies that guide demand while mitigating negative 
impacts. This study produces year-2030 predictions of land use and travel conditions across the 
Austin-Round Rock Metropolitan Statistical Area of Texas, by integrating a gravity-based land 
use model (modeled on Putman’s ITLUP specification) with a standard travel demand model.  
The land use model cycles through job, household and land consumption estimates across traffic 
analysis zones, before feeding forward into a contemporaneous model of travel patterns. 

To better understand the implications of different policies, three scenarios were 
generated: a business-as-usual scenario, congestion pricing-plus-carbon tax scenario, and an 
urban growth boundary (UGB) scenario. Results reveal how these transportation and land use 
policies may shape our land and travel futures, while illuminating challenges and pitfalls of the 
gravity-based approach to land use (including the accompanying land consumption model). Of 
particular interest is the fact that imposition of road pricing (roughly 5¢/mile) had almost no 
discernable effect on land use predictions, yet resulted in the same predicted reduction in 
regional VMT as the UGB policy (roughly 15%). 

INTRODUCTION 
For decades, the complexity of transport and land development processes has challenged urban 
planners, policymakers, land developers, transportation engineers, air quality modelers and 
others. Numerous factors drive land use change and interact in subtle ways (e.g., Veldkamp and 
Lambin 2001, Lambin et al. 2003). While the impact of land use patterns on travel demand and, 
thereby, network conditions is reasonably well understood (via the process of trip generation and 
attraction), long-term changes in land use patterns and the effects of transport policy and system 
investment on land development and use remains elusive. Nevertheless, most experts agree that 
transportation does play a role in land development, even in the mature and extensive networks 
of major urban regions within developed countries. 

A variety of land use allocation and travel demand models have been developed using 
different modeling objectives and methodologies, and several have been applied, including 
Hunt’s PECAS (Hunt and Abraham 2003), Kockelman’s RUBMRIO (Kockelman et al. 2005), 
Martinez’s MUSSA (Martinez 1996), Gregor’s LUSDR (Gregor 2007), and Waddell’s 
UrbanSim (Borning et al. 2007). National Cooperative Highway Research Program (NCHRP) 
Report 423A (PBQD 1999) described eight leading land use models and focused on assessing the 
impacts of transportation projects. Miller et al. (1998) identified key issues in developing “ideal” 
land use models based upon a detailed review of six such tools. The general consensus is that no 
model is ideal; the appropriateness and usefulness of any given tool varies under different 
situations. While a range of modeling approaches exist, most medium-size and smaller 
metropolitan planning organizations (MPOs) do not have the resources to conduct sophisticated 
analyses (Duthie et al. 2007). Therefore, it is useful to investigate the analytical capabilities of 
relatively simple methods that are more likely to be employed in practice.  

Lowry’s 1964 gravity model is one of the oldest modeling strategies (Putman 1983), and 
its variant, Putman’s Integrated Transportation-Land Use Package (ITLUP) is probably the most 
widely applied model of U.S. land use to date (Putman 1995). Recently, the Federal Highway 
Administration (FHWA) supported the development of the Transportation Economic and Land 
Use Model (TELUM), which is a GIS-embedded version of ITLUP offering three components: a 
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Disaggregated Residential Allocation Model (DRAM® 1), an EMPloyment Allocation model 
(EMPAL®) and LANd CONsumption model (LANCON). However, this free software has 
restrictions. For example, the average population per zone must lie above 3,000 (and is 
recommended to be below 10,000), and the documentation neglects details on the LANCON 
model as well as the parameter estimation (model calibration) process. To overcome these 
restrictions, MATLAB (MathWorks 2005) codes were developed, following the household and 
employment allocation equations in TELUM’s User Manual (2005) and land use consumption 
equations from Putman’s work (1991). While specification of these three components was 
designed to mimic Putman’s ITLUP, actual model applications no doubt differ slightly from the 
proprietary software. Therefore, these coded components are referred to as RESLOC, EMPLOC, 
and LUDENSITY within the open-source gravity-based land use model (G-LUM) 2. 

This study calibrated and applied RESLOC, EMPLOC and LUDENSITY equations to 
Texas’s five-county Austin-Round Rock Metropolitan Statistical Area (MSA), and demonstrated 
the implementation of three distinct transportation and land use scenarios. A reasonably standard 
sequential travel demand model (TDM) was linked externally to the land use model system in 
order to update travel conditions and provide a well-defined series of related steps to all future 
household and employment forecasts (at five-year intervals). All together, the system of 
equations forms a reasonable straightforward integrated transportation-land use model (ITLUM).  

The following sections discuss model specification, data sets used, transportation and 
land use policy scenarios examined, and the results of model calibration and applications. 

MODEL SPECIFICTION 
This section describes the mathematical specification of the three G-LUM components as well as 
the TDM structure. 

RESLOC presumes that household location patterns are determined by current job 
locations, land availability, travel impedances between all zones, and the prior period’s 
distribution of households. Household allocation/assignment across zones is guided by the 
residential attractiveness of each zone, measured as a function of (a) each zone’s presently 
vacant yet developable land, (b) the proportion of developable land that already has been 
developed, (c) residentially developed land, and (d) current number of residents by type. The 
importance of these variables is determined via model calibration, using least squares, maximum 
likelihood estimation (MLE), maximum entropy (ME) or other methods. The specification is 
largely non-linear in nature, and calibration requires two time points of data on household and 
employment location patterns, with associated land use maps. 

Similarly, EMPLOC forecasts the spatial distribution of jobs by category. Employment 
allocation is based on zonal attractiveness, as measured by prior-year employment and zone size. 
Prior-year population and travel impedances (to all zones) also impact employment distribution.  

Finally, LUDENSITY uses three log-linear equations to estimate land consumption by 
type (residential, basic and commercial) in each zone. Variables determining land consumption 
include the forecasted spatial distributions of households and jobs, and prior-year land use 
conditions. Key equations for all three models are as follows: 
                                                 
1 DRAM and EMPAL are trademarks of S.H. Putman Associates, Inc.  
2 Open-source code for an earlier version of this G-LUM model (i.e., without the zone-level constraints that ensure 
reasonable predictions) is available at http://www.ce.utexas.edu/prof/kockelman/G-LUM_Website/homepage.htm.  
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Household Allocation (RESLOC) 
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and n
tiN ,  is the number of households of type n residing in zone i at time t; 1,, −tjic  is impedance 

(travel time and/or cost) between zones i and j at time t-1; nka ,  is the number of type n 

households per type k employee in the study region; k
tjE ,  is employment (number of jobs) of 

type k in zone j at time t; ku  is the unemployment rate for job type k; v
tiL 1, −  is vacant 

developable land in zone i at time t-1; 1, −tix  is the proportion of developable land already 

developed in zone i at time t-1; r
tiL 1, −  is residential land in zone i at time t-1; and 

nnnnnn srq ,,,,, βαη and n
nb ' are parameters estimated in model calibration. In addition, 

n
tjQ , converts employment to households, and n

tiW 1, −  represents the attractiveness of zone i for 
household type n at time t-1. 

Employment Allocation (EMPLOC) 
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and 1,, −tiTN  is total households in zone i at time t-1; jL  is the total area of zone j; 
kkkk a,,, ρωλ and kb are estimated in model calibration; and k

tjM 1, −  represents the 
attractiveness of zone j for employment type k at time t-1. 
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Land Consumption Rates (LUDENSITY) 
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where L is the area of land in each use (r = residential, D = developable, d = developed, b = 
basic, c = commercial); E stands for employment by type, as defined above (b = basic,  c = 
commercial, including both retail and service jobs); N represents households by type (totally 6 
types); and the k’s, g’s and p’s are estimated parameters. 

Travel Demand Model (TDM) 
The TDM integrated with the land use model was originally developed by Smart Mobility, Inc. 
(2003).  It represents a rather typical, four-step, aggregate TDM with a couple of added features 
detailed below.  Its main inputs are the roadway network with link capacities and free-flow times 
and zonal attributes for each traffic analysis zone (TAZ).  Zonal attributes include the number of 
households by type and the number of jobs by type, both of which are provided by the land use 
model.   

As is standard practice, personal trips were segmented by type.  A total of ten trip types3 
(including home- and non-home-based, direct and complex, work and non-work) were modeled 
explicitly, and each TDM module was segmented accordingly. Fixed person-trip rates (per 
household, per weekday) were used for each of 18 household types (categorized by number of 
workers, presence of children, and three levels of vehicle availability). Attraction rates for 
personal trips were determined via linear regression on the numbers of households and 
employment by type in each zone. Commercial trip model specifications were similar but 
simpler. Other TDM details can be found in Smart Mobility (2003) or Zhou and Kockelman 
(2008)  

The TDM consists of six modules performed in sequence: auto availability, trip 
generation, walk/bike mode choice, gravity-style trip distribution, mode choice (among 
motorized modes), and network assignment. To ensure consistency in input and output travel 
times, a model feedback mechanism was employed. Some modifications were necessary, and 
these are described below. 
                                                 
3 The ten trip types are home-based work direct (HBWD), home-based work complex (HBWC), home-based work 
strategic (HBWS), home-based non-work retail (HNWR), home-based non-work other (HNWO), non-home-based 
work (NHBW), non-home-based other (NHBO), K-12 education (ED1), post-secondary/college education (ED2), 
and airport (AIR) trips. 
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Since Smart Mobility’s trip distribution module only considers zone to zone travel times 
(but not travel costs), and because travel cost sensitivity is central to tolling scenario tests, a new 
trip distribution module was calibrated. The new module employed choice models, instead of 
gravity models, for each trip type, and two explanatory variables: generalized trip cost and zonal 
attractions computed in trip generation. Here, generalized cost is a simple linear function of 
travel time and travel cost, where the value of travel time (VOTT) was assumed to be $9/person-
hour for work trips and $4.50/person-hour for other trips, consistent with VOTT assumptions 
used in Smart Mobility’s (2003) mode choice module. Operating costs were assumed to be 
$0.0922/mile, also consistent with Smart Mobility’s model. Since model estimation with large 
numbers of choice alternatives can be difficult (Austin has over 1,000 TAZs), only 50 zone 
alternatives (chosen at random) plus the chosen alternative were considered in the models’ 
estimation.  While not ideal, such methods produce consistent parameter estimates (McFadden 
1978).  

In addition to modifications in trip distribution, the process of network assignment also 
was changed, in order to incorporate both time and cost.  Similar to Smart Mobility’s model, four 
time-of-day (TOD) periods were considered.  However, network assignment was based on the 
equilibration of generalized path costs instead of just path travel times. Generalized cost is a 
linear combination of travel time and travel cost, but since all trip types are aggregated for 
assignment, a single VOTT was used: $6.75/person-hour (the average $9/person-hour and 
$4.50/person-hour). 

DATA DESCRIPTION 
This relatively straightforward G-LUM has moderate data requirements: employment and 
household counts (by type) at the level of TAZs, and land use data (development type areas in 
each TAZ) at two points of time. Such demographic data is typically available from MPOs, and 
land use data is becoming more widely available with the advance of GIS tools. 

The model system predicts the spatial distributions of six household types (categorized by 
number of workers [0, 1 and 2+] and presence of children) and three employment categories 
(basic, retail and service jobs). Table 1 provides the household and employment classifications. 
Three other employment types (namely Airport, K-12 Education, and Higher Education) were 
assumed to follow Envision Central Texas (ECT)’s trend scenario4. This trend scenario was 
generated by Fregonese Calthorpe Associates as one of many, during a visioning exercise 
(Envision Central Texas 2003). 

TABLE 1   Employment and Household Classifications 

Category Definition 
Type I Household 0-worker household, with at least one child under 18 years of age 
Type II Household 1-worker household, with at least one child under 18 years of age 

Type III Household 2 or more-worker household, with at least one child under 18 years of 
age 

Type IV Household 0-worker household, with no children 
Type V Household 1-worker household, with no children 

                                                 
4 These three types of employment account for just 4.7% of total jobs in ECT’s trend scenario, and they vary 
significantly over space yet are relatively stable over time (at least for all zones that have non-zero employment 
counts). 
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Type VI Household 2 or more-worker household, with no children 

Basic Employment 

Division A (agriculture, forestry, and fishing) 
Division B (mining) 
Division C (construction) 
Division D (manufacturing) 
Division E (transportation, communications, electric, gas, and sanitary 
services) 
Division F (wholesale trade) 

Retail Employment Division G (retail trade) 

Service Employment 
Division H (finance, insurance and real estate) 
Division I (services) 
Division J (public administration) 

 

The Capital Area Metropolitan Planning Organization (CAMPO) provided year 2000 
household counts and 2007 projections at the TAZ level. Total zonal household counts for year 
2005 were interpolated using the 2000 and 2007 data, and households by type were calculated 
using the household type proportions evident in ECT’s trend scenario.  

High-quality land use data for the entire MSA is quite limited. Only one set of land use 
data (in year 2005) could be obtained via the Capital Area Council of Governments (CAPCOG). 
The data was refined using the City of Austin’s relatively accurate 2003 land use data base, 
along with year 2004 orthophotos (to fill in over 3,000 parcels that lacked a land use code). 
Overlapping parcels were eliminated, and missing parcels were added manually. Obtaining a 
second historical land use data set to calibrate the models presently is highly impractical.  
Therefore, land use conditions for the year 2000 were backcast in each TAZ, using 2000 and 
2005 household and employment counts (along with the 2005 land use data) and assuming fixed 
developed land densities (by land use type).  

The data used in Smart Mobility’s TDM calibration and calibration of the modified trip 
distribution model came from several sources. The main source was CAMPO’s Austin Travel 
Survey (ATS) of 1996-97. CAMPO provided zone to zone travel time and travel distance 
estimates for both peak and off-peak periods and automobile and bus modes for year 1997.  
CAMPO also provided 1997 and 2000 zone population and employment attributes.  In model 
application, two roadway networks were used: one for the base year (1997) and a year 2025 
projected network. The 2025 network was taken from Envision Central Texas’s trend scenario. 
For simplicity in model application, the base year network was used to 2010, and each 
subsequent model year was based on the 2025 network.  

This paper is focused on model illustration and general results. For detailed policy-
making and predictions, better land use and network estimates are recommended. 

MODEL APPLICATION 

In this integrated modeling framework, the four model components run in sequence:  first 
EMPLOC, then RESLOC, LUDENSITY, and the TDM. The EMPLOC model output 
(employment by category by zone) serves as an input to RESLOC. Predicted household and 
employment levels (by category/type) are LUDENSITY’s primary inputs. The TDM was applied 
last, after allocating households and jobs (and estimating land consumption levels), in order to 
update travel times between zones and the relative attractiveness of each zone. Figure 1 shows 
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the interactions between these components. Essentially, household and employment distributions 
and land development processes are believed to lag travel conditions, since changing one’s home 
and work locations is much more difficult than changing the route one takes to work, or the 
stores at which one shops. Thus, the TDM is consistent with the land use forecasts, but the same-
year land use forecasts are lagged responses to the prior period’s TDM forecasts.   

 
FIGURE 1   Flowchart for G-LUM Modules, in concert with Travel Demand Model 

Note: Dashed lines represent one-period (t-1) lagged feedback of information. Each period is 5 years. 
 

The models were applied every five years. Regional households in 2030 are assumed to 
total 931,000 (compared to 476,000 in year 2000) and regional jobs (including basic, retail and 
service) total 1,348,000 (compared to 614,000 in 2000). Each household type and employment 
category is assumed to follow an exponential growth pattern, and intermediate totals moderate 
G-LUM’s projections. 

Land Use Model Details 
MATLAB codes followed TELUM in its treatment of “seeds” and residuals (as described in 
TELUM’s User Manual). In order to ensure reasonable population and job forecasts, certain 
rules were implemented during model application, and these rules were active in 40% to 80% of 

Travel Demand 
Model

Travel cost

LUDENSITY 

RESLOC 

EMPLOC 

Base Year Data Lag Year Data 

Calibration

Land use condition

Zonal households
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TAZs in a test (one–step) forecast5. Those rules are critical to reasonable zone-level projections 
in many cases6, and distinguish our code from those of other G-LUMs. 

First, households and jobs in each TAZ were not allowed to fall by more than 5% in any 
(five-year) time interval. Second, growth in these counts was limited by land availability. For 
each household type, the maximum increase in the ratio of counts between two periods in any 
given zone was assumed to be the ratio of developable land (i.e., undeveloped and unprotected) 
to residentially developed land. For each job category, the maximum increase was set as the ratio 
of developable land to the sum of basic and commercially developed land. Third, in fully 
developed TAZs, households and jobs were not allowed to increase by more than 5% per time 
interval7. TAZs that violated the first rule were flagged, and then the corresponding number of 
households or jobs8 was taken from the un-marked TAZs, in proportion to their original, 
forecasted counts. Similarly, TAZs that violated the second or the third rules were flagged, and 
then the “extra” households or jobs were re-allocated to the un-marked TAZs, in proportion to 
their original counts. This re-allocation process was run iteratively until all TAZs satisfied the 
three rules. 

Like household and employment forecasts, residential, basic, and commercial land were 
not allowed to fall by more than 5% in any 5-year interval in any zone; and in fully developed 
TAZs, residential, basic, and commercial lands were not allowed to increase by more than 5% 
per time interval. In addition, the minimum land per job or household depended on two more 
factors: land consumptions in the previous period and a pre-specified minimum per household or 
job. These were assumed to be 500, 250, and 1000 square feet (per household, per basic job, and 
per commercial job). Moreover, when total forecasted development was expected to require 
more than the land available in a zone, the forecasted residential, basic, and commercial land 
totals were proportionally reduced, thus upping densities in each land use category.  

Transportation and Land Use Policies 
In order to put the integrated system to the test, the land use and transportation effects of three 
distinctive policies were investigated. These include a business-as-usual (BAU or base) scenario, 
a road pricing scenario (congestion pricing plus a mileage-based carbon tax), and an urban 
growth boundary (UGB) scenario (prohibiting new development in presently peripheral, largely 
undeveloped zones).  One underlying assumptions in the policy scenario analyses is that future 
regional household and employment counts do not vary across scenarios, even though growth 
could well jump/leapfrog out of the study area, especially under a strict UGB policy. 

The BAU scenario assumes that development trends observed over the five-year 
calibration will continue, and no new policies are imposed. The road pricing scenario required 
special consideration in the TDM system, to ensure marginal cost pricing (of delay) during the 
trip assignment step. A congestion charge was set to equal these external costs on all freeway 

                                                 
5Roughly 40% of all 1,245 zones violated one or more rules in EMPLOC, about 50% violated rules in RESLOC, 
and 80% violated rules in the basic land use density equation. 
6 As an example, when using Putman’s ITLUP software, North Central Texas Council of Governments (NCTCOG) 
modelers review and manually modify forecasts every round, to help ensure more reasonable projections 
(Dankesreiter 2008). 
7 This decision-rule relaxes the second decision-rule for fully developed zones in order to allow for infill in those 
zones. 
8 This number was simply equal to the deficit needed to ensure the 5% loss rule was not exceeded.  
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segments in the network. If the travel time on each link is assumed to follow the well-known 
Bureau of Public Roads (BPR) performance function, average travel time (t) is as follows: 


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Here, ft  is the link’s free-flow travel time, v is demand volume for the link (in vehicles/hour), 
c is the link’s capacity (also in vehicles/hour), andµ and ϕ  are parameters, assumed here to be 
0.83 and 5.5, respectively (Martin and McGuckin 1998). The marginal (total travel time) cost of 
adding another vehicle to the road (MC) is given by the following expression (see, e.g. Small and 
Verhoef 2007): 
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Here, VOTT  is the value of travel time (assumed to be $6.75/person-hour9). When another 
vehicle enters the roadway, it raises v by 1 unit, causing t and total system travel time (TSTT) to 
rise. The added cost endured by others, and thus not perceived by the new traveler, is the 
difference between the old and new TSTTs.  The first-best congestion prices (CPs) can then be 
estimated as follows: 

ϕ

µϕ 





××=

c
vtVOTTCP fs          (11)  

The congestion toll varies across links and times of day because of changes in volume-to-
capacity ratios (and thus the marginal delay imposed by additional link users).  The average 
values for Austin’s application are 1.5 to 3.2¢/mile during peak hours. 

The carbon tax is assumed to be 4.55 cents/mile on all links in the network, calculated as 
follows: 

tonlb
ton

galmi
gallbCT

2000
70$

20
26

×=         (12) 

Equation (12) assumes that every gallon of gasoline sold at the pump is responsible for the 
emission of 26 pounds of carbon dioxide (EPA 2007), the cost of removing carbon from the 
atmosphere (or simply avoiding its production) is $70/ton10, and average fuel economy is 20 
miles per gallon of gasoline.  

Since tolling equipment (such as overhead gantries, variable message signs, and 
communications technology for link use and customer accounts) is pricey (see, e.g., Gulipalli 
and Kockelman [2008]), only links that are classified as freeways (by CAMPO) were assessed a 
congestion toll in the road pricing scenario. 

                                                 
9 VOTTs are $9/hour for work and airport trips and $4.5/hour for non-work trips in the destination and mode choice 
models. The average of the two was used in setting congestion charges. In theory, the true marginal delay is a 
function of who is on the link at the time a marginal user is added. 
10 Using different discount rates, risk values and distributions of carbon savings, Tol (1999) estimated a wide range 
of possible carbon emissions − from just $1 or $2/ton to over $300/ton.  $70 per ton corresponds to Tol's (1999) 
median cost estimate with a discount rate of 3%.  Based on recent trends, estimates lie closer to $50 per ton (see e.g., 
Fischer et al. 2007, U.S. Environmental Protection Agency 2008, CRAI 2008). 
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The urban growth boundary (UGB) scenario restricted all types of new development to 
a pre-defined set of largely contiguous zones, centered on existing population centers. Zones 
outside of this “boundary” were not permitted any new residential, basic or commercial 
development. Developable zones were defined as TAZs having 2 or more job-equivalents11 per 
acre, and any TAZs touching their boundaries (essentially to ensure adequate lands for 25 more 
years of Austin’s development). The bounded area accounts for 14.8% of all developable land in 
the region (or 12.7% of total acreage) Figure 2 shows the set of zones lying within and outside 
the UGB used in this study. 

 
FIGURE 2   Urban Growth Boundary Map of Austin-Round Rock MSA 

                                                 
11 One household is counted as 0.7143 jobs, because the regional employment rate is 1.4 jobs per household. 
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MODEL RESULTS 
This section discusses the results of model calibration, as well as the results of model application 
for the three policy scenarios. Variables like vehicle-miles traveled (VMT), traffic flows, 
volume-to-capacity ratios, speeds, and downtown accessibility indices (to households and 
employment) are summarized.  

Model Calibration and Results 
Due to the nonlinearities embedded in the G-LUM model specification, non-linear least squares 
(NLLS) technique was used (as described in Greene [2000]). Putman (1983) found that least-
squares techniques tend to seek the optimum over a relatively flat surface, while maximum 
likelihood estimation (MLE) may enjoy a steeper surface (in his experiments with only one 
unknown parameter and 25 or fewer zones). However, the optimization surface for such gravity-
based land use models is highly irregular and non-convex; starting values have significant 
impacts on the optimization results, requiring multiple searches with different starting values12. 
This can compromise any advantage of MLE methods. NLLS techniques are easier to understand 
and implement, and so were used here, for model parameter estimation. Table 2 provides the 
model’s 110 parameter estimates and their corresponding t-statistics.  

The model calibration results reveal that past counts of households and jobs (∆t = 5 
years) are strong predictors of current counts of all household types, as well as basic and retail 
employment, because the estimated η  and λ  values are close to zero (as shown in Table 2); so 
the estimated parameter of (and reliance on) historical counts are close to one. In general, rising 
travel times reduce a zone’s relative attractiveness for new residential development, as shown by 
the negative signs of estimated α  and β  values in Table 2. However, for job distributions, the 
role of travel time, and thus a zone’s regional accessibility appears mixed. Moreover, many 
coefficients in the attractiveness function (Equation 3) for household allocations are statistically 
insignificant, especially the ones in the following multiplicative function:  

∏ ∑

































+

−

−

' 1,

'
1,

'

1
n

b

n

n
ti

n
ti

n
n

N
N

          (13) 

This suggests the possibility of over-specification of the household attractiveness function. 
However, in order to maintain a model specification most similar to TELUM’s and ITLUP’s, the 
62 statistically insignificant (out of 110) parameters were retained.  

The amount of developable land in each zone is a valuable predictor of residential, basic, 
and commercial development in the LUDENSITY model, with a high level of statistical 
significance. The ratios of developed, basic, and commercial uses to developable land are more 
statistically significant, as compared to the ratios of households by type to total household counts 
in predicting residential uses. The ratio of residential use to developable land is statistically 
insignificant in prediction of basic and commercial development. These indicate that 
corresponding land use conditions in prior time period can better explain current land 
development, as compared to other land use types. 

                                                 
12 20 starting points were used here. 
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TABLE 2   G-LUM Parameter Estimates 

RESLOC 
 η α β q r s 

Type I Households 0.0317 (2.94*) -2.07 (-4.32*) -0.0232 (-0.55) 1.20 (1.97*) 4.82 (0.83) 0.566 (5.18*) 
Type II Households 0.0665 (12.34*) -1.19 (-3.07*) -0.0396 (-1.81*) 0.530 (4.45*) 0.371 (0.42) 0.0342 (1.10) 
Type III Households 0.0747 (11.33*) -0.772 (-1.55) -0.0509 (-1.93*) 0.622 (4.87*) 1.54 (1.78*) 0.0103 (0.25) 
Type IV Households 0.0264 (5.83*) 2.73 (1.08) -0.2281 (-1.89*) 0.954 (2.10*) 0.631 (0.14) 0.312 (2.55*) 
Type V Households 0.0467 (11.16*) 51.14 (1.20) -7.92 (-1.19) 0.724 (2.67*) 2.43 (1.10) 0.0227 (0.57) 
Type VI Households 0.0615 (10.27*) -1.14 (-2.13*) -0.0640 (-2.02*) 0.611 (3.39*) -0.882 (-0.64) 0.157 (1.71*) 

 b1
n b2

n b3
n b4

n b5
n b6

n 
Type I Households 80.02 (1.89*) -1.69 (-0.05) -11.92 (-0.48) 0.234 (0.01) -8.18 (-0.27) 0.0233 (0.00) 
Type II Households 6.29 (1.18) 6.41 (1.16) 9.45 (1.67*) 0.345 (0.07) 4.32 (0.75) 0.962 (0.19) 
Type III Households 4.13 (0.60) -3.13 (-0.44) 8.98 (1.02) -2.10 (-0.26) 0.0218 (0.00) -2.15 (-0.29) 
Type IV Households 40.09 (1.21) -1.31 (-0.03) -11.08 (-0.34) 6.32 (0.15) -9.87 (-0.26) -0.317 (-0.01) 
Type V Households 2.12 (0.21) -1.08 (-0.15) -2.33 (-0.28) -9.49 (-1.37) 2.35 (0.24) -3.68 (-0.44) 
Type VI Households 20.20 (1.51) -11.16 (-1.84*) -4.76 (-0.73) -9.30 (-1.52) -7.24 (-1.08) -3.59 (-0.48) 

EMPLOC 
 λ ω ρ a b 

Basic Employment 0.00713 (4.13*) -5.34 (0.00) 0.876 (0.01) 10.56 (0.05) -16.76 (-0.05) 
Retail Employment 0.0836 (7.72*) 0.517 (0.15) -0.253 (-0.79) 0.126 (0.81) 0.611 (3.15*) 
Service Employment 0.361 (3.68*) 2.33 (1.89*) -0.126 (-3.81*) 0.600 (7.39*) -0.0322 (-0.33) 

 

LUDENSITY 
k0 k1 k2 k3 k4 

1.34 (0.31) 0.930 (14.57*) 0.279 (2.41*) -0.0111 (-1.45) -0.0481 (-2.63*)  

k5 k6 k7 k8 k9 k10 
Residential Uses 

0.423 (1.46) 0.00287 (0.01) 1.43 (2.85*) 0.00388 (0.01) 0.218 (0.49) 3.27 (3.87*) 
g0 g1 g2 g3 g4 g5 Basic Uses 0.000249 (3.32*) 3.04 (20.67*) -1.06 (-3.35*) -2.38 (-5.35*) 2.82 (20.50*) -0.00771 (-0.86) 
p0 p1 p2 p3 p4 p5 Commercial Uses 0.000580 (3.51*) 1.95 (18.29*) -1.07 (-4.52*) -1.05 (-7.17*) 1.75 (11.06*) -0.0244 (-1.01) 

Notes: Numbers in parentheses are t-statistics. Asterisks (*) are for statistically significant variables. 
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Household and Employment Distributions 
Figure 3a presents the forecasted distribution of households and jobs at the TAZ level in year 
2030, assuming business as usual behavior and policies. As shown in these maps, households 
and employment tend to remain concentrated in the urbanized zones and along regional 
freeways.  

The household and employment density forecasts when implementing road pricing 
(congestion pricing on freeways plus a carbon tax on all roads) are shown in Figure 3b. The 
distribution patterns are similar to the results of the BAU scenario, using the same legend 
thresholds. This suggests that the road pricing policy will not alter the location choices of 
households and firms in a significant way. Such lack of responsiveness is suspected to come 
from two important sources: First, added travel costs (4.55¢/mile for added fuel costs and 
another 1.5 to 3.2¢/mile for average congestion tolls during peak hours) are just 10 percent of 
underlying car ownership and use costs (FHWA 2001), except in highly congested corridors at 
peak times of day when demand-based tolls sometimes reach $1/mile.  Thus, locators may 
consider such cost changes to be rather negligible. Second, and more critical for future scenario 
testing: the gravity model formulation is relatively insensitive to constant shifts in travel costs 
(Equations 1 and 4’s cijt). This seems fundamentally unrealistic, since a lack of good regional 
access (e.g., all trips suddenly incur a fixed toll of $10) should result in more clustering at central 
and other nodal locations. Of course, if speeds are all reduced on the network or new tolls apply 
per mile traveled, there will be more of a scaled (rather than constant) shift in travel costs and 
thus more centrally located zones will enjoy improvements in their relative attractiveness, but 
such relative movements may be insufficient to generate new preference patterns accompanying 
such network conditions. A new paradigm/LUM specification is needed, to allow for more 
appropriate response opportunities. 

A third reason for such insensitivity is that over 90 percent of next-period (∆t = 5 years) 
predictions are simply the lagged count value in each zone (except for basic employment), 
resulting in much “friction” in the system. While not unreasonable for many scenarios, more 
dramatic scenarios (e.g., those with strong incentives for household-move decisions) may not 
keep pace with actual location changes, at least not in the short term. 

Figure 3c shows household and employment density forecasts for the UGB scenario. As 
compared to the base (2005) conditions, the BAU and road pricing scenarios predict that some 
TAZs in Austin’s core will lose households over the next 25 years, while some TAZs at the 
city’s periphery, especially in the northern part, gain households. Most TAZs were predicted to 
gain jobs between 2005 and 2030, with a few exceptions for TAZs in downtown and the northern 
part of the City of Austin.  When implementing the UGB policy, household and employment 
(basic, retail, and service) growth were predicted to concentrate within the predefined 
boundaries, as defined by the policy, though a few TAZs within the UGB were forecasted to lose 
households and/or jobs.  
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FIGURE 3a   Household and Employment Density Predictions in Year 2030 for Scenario A (Business-As-Usual) 
Note: Unit is count (of households and jobs) per square mile.
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FIGURE 3b   Household and Employment Density Predictions in Year 2030 for Scenario B (Road Pricing and Carbon Tax) 
Note: Unit is count (of households and jobs) per square mile. 
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FIGURE 3c   Household and Employment Density Predictions in Year 2030 for Scenario C (Urban Growth Boundary) 
Note: Unit is count (of households and jobs) per square mile.
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In order to quantify the differences between the three scenarios with a single measure, a 
simplistic accessibility index (AI) for the region’s CBD was developed as follows: 

∑=
i i

i

cetanDis
Count

AI           (14) 

where Counti is the count of total households or total jobs in zone i and icetanDis  is the inter-
centroidal Euclidean distance (in miles) from TAZ i to Austin’s core TAZ (housing Texas’s 
capitol). This simple AI was calculated for both jobs and households for each scenario. The 
spatial distribution of households and employment under the UGB policy exhibit the highest AI 
values (3.7 and 69.3 million, respectively), indicating that the UGB policy generated the most 
centralized development pattern. As expected, the AI values for the BAU and road pricing 
scenarios are similar (1.8 versus 1.5 million for households and 62.9 versus 63.2 million for 
employment under both scenarios). It seems that road pricing may not affect location-specific 
accessibilities enough to prompt regional centralization of land uses, but, as discussed below, it 
is forecasted to have a strong impact on travel. 

Results of the Travel Demand Models 
Of course, the TDM results are of great interest as well. VMT estimates, volume-to-capacity 
ratios, and mode splits for all scenarios closely relate to congestion levels as well as mobile-
source emissions. Results are listed in Table 3. VMT values for 2030 (by time-of-day) across the 
three scenarios suggest that the road pricing and UGB policies are rather effective in reducing 
VMT. These two policy scenarios were estimated to reduce regional VMT, relative to the BAU 
case by 16.0% and 17.2%, respectively, or 14.5 or 15.7 VMT per household per day. As 
compared to the base year 2005 (when the forecasting starts), the BAU scenario anticipates a 
98.7% increase in regional VMT (compatible with 95.6% and 119.5% increases in households 
and jobs over the same 25-year period), versus just 67.0% and 64.5% for the road pricing and 
UGB policies, respectively.  

TABLE 3   Vehicle Miles Traveled (VMT) and Intra-Regional Trips Predicted for Year 2030 
across Scenarios  

 Base Scenario Road Pricing Urban Growth 
Boundary 

Vehicle Miles Traveled (x106/weekday) 
AM  

(6:30 – 9am) 17.01 14.64 14.21 

OP  
(9 am – 3 pm & 7 – 9 pm) 6.46 5.47 5.34 

PM 
(3 – 7 pm) 27.18 22.82 22.49 

MID 
(9 pm – 6:30 am) 34.15 28.33 28.19 

Total 84.79 71.25 70.22 
Person-Trips by Type (x106/weekday) 

Personal 11.25 11.25 10.70 
Commercial 0.64 0.64 0.62 

Total 11.89 11.89 11.32 
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Person-Trips by Mode (x106/weekday) 
Walk/Bike 0.37 0.37 0.47 

Transit 0.90 1.03 0.97 
Auto 9.97 9.85 9.27 
Total 11.25 11.25 10.70 

VMT-weighted Average Speeds (miles/hour) 
AM 

(6:30 – 9am) 47.3 52.0 49.3 

PM 
(3 – 7 pm) 52.2 55.1 52.8 

Peak-hour Average 50.3 53.9 51.4 
VMT-weighted Average Volume-to-Capacity Ratios 

AM 
(6:30 – 9am) 0.692 0.576 0.656 

PM 
(3 – 7 pm) 0.592 0.475 0.577 

Peak-hour Average 0.631 0.515 0.608 
 

Predictions of total intra-regional trips suggest that the BAU and road pricing policies 
generate similar numbers of personal and commercial trips (due to similar land use pattern 
predictions), while the UGB policy reduces total trip-making by 4.8%, or 0.57 million trips per 
weekday (due to the fact that trip generation rates vary by location within the region, and the 
UGB scenario results in a much denser and centralized distribution of households and jobs). 
Comparisons of the VMT and trip numbers across scenarios suggest that VMT reductions under 
the road pricing policy come mostly from shorter trips, while VMT reduction under the UGB 
policy comes both from shorter trips and fewer trips.   

Mode share results (walk/bike, transit, and auto) indicate that the road pricing and UGB 
policies promote transit usage while reducing the number of automobile trips, but not by much.  
This suggests that even strict policies may not break Austinites’ reliance on the automobile. The 
UGB scenario enjoys the highest number of walk and bike trips, bettering the other two policies 
by 27 percent.  This is not surprising since the choice of walk and bike modes in the TDM 
depends on the number of zones with good mix of households and jobs, and such zones are more 
prevalent in the UGB scenario. 

 Table 3 also provides the VMT-weighted average speeds and VMT-weighted average 
volume-to-capacity ratios for each of the three policy scenarios. The road pricing policy is 
predicted to be the most effective at increasing average speeds across the region’s network (by 
7.03% or 3.54 mile/hour) and reducing the volume-to-capacity ratios (by 18.4% or 0.116). 

LIMITATIONS OF GRAVITY LAND USE MODELS 
As one of the most widely applied land use techniques in the world, gravity-based allocation 
methods enjoy a simple model structure, moderate data demands, and relatively straightforward 
estimation. Such benefits can be critical for agencies and modelers that do not have the resources 
on hand for more sophisticated modeling approaches. Clear limitations in opportunities for 
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policy analysis (see, e.g., Lemp et al. 2008) and poor performance with relatively disaggregate 
zonal systems and/or lightly developed zones (PBQD 1999) are noted issues. This study adds to 
the list of potential problems and offered some suggestions for model improvement.  

In the example applications pursued here, reasonable forecasts emerged only after 
imposing a variety of hard-coded rules. These rules “dampen” the extreme outputs that emerge in 
40% to 80% of all TAZs over the model’s initial five-year time step. While forecasts then 
appeared relatively reasonable (largely based on visual inspection), a few downtown zones (in 
both Austin and San Marcos) were predicted to have unbelievably high population and job 
densities by the year 2030, especially under the UGB scenario. This suggests that the G-LUM 
calibrated here and probably many others, even with a series of constraints prohibiting excessive 
new development in fully developed zones and depopulation of other zones, may not survive 
close scrutiny. As done in places like Dallas-Ft. Worth, manual adjustments of results in each 
period may be needed (Dankesreiter 2008).  

Another option is to make the household and job allocation models (referred to as 
RESLOC and EMPLOC here) more sensitive to LUDENSITY model forecasts. Under the 
current specification, LUDENSITY does not provide direct feedback to EMPLOC, and enters 
RESLOC only via three land use variables. LUDENSITY’s land availability forecasts should 
impact the maximum number of new households and jobs that can be allocated to a zone.  

 In general, the LUDENSITY formulation (based on Putman’s [1991] LANCON 
specification) does not make great sense, and tends to generate unreasonable average land 
consumption values for households and jobs (as compared to base and prior year land conditions 
in each zone). This sub-model may be dramatically improved by adding a lagged density term, 
allowing it to “pivot off” of recent land use densities in each zone, rather than relying on model 
averages (which presently causes it to ignore current zone densities).  

Yet another issue is that many RESLOC coefficients are statistically insignificant, 
especially those involving lagged shares of households. The RESLOC equation probably suffers 
over-specification, and could be simplified by defining a single indicator of household balance 
(across types). 

Of course, existing gravity-based LUMs are aggregate in nature and therefore limited by 
level of detail. For example, land use information at the level of neighborhood zones is generally 
too coarse for detailed analysis of land cover change and associated biogenic emissions 
estimation. Such models also are totally unresponsive to certain policies, such as land taxation 
and subsidies, adequate public facilities ordinances (APFOs), and many styles of zoning. 
Modelers need to be fully aware of these limitations before seeking to develop and then apply 
such models. If not, they may be sorely disappointed late in the modeling process. 

CONCLUSIONS 
This study generated households and employment forecasts by calibrating and applying a 
gravity-based land use model, based on Steven Putman’s (1983, 1991) ITLUP specification. 
During the course of this work, three important limitations emerged: a great need for rules that 
moderate model estimates (to ensure reasonable forecasts), clear deficiencies in specification of 
the land consumption/density model, and over-specification of the residential allocation model. 
Modeling modifications suggested here provide directions for improvement, and may allow 
gravity-based LUMs to serve as a reasonable tool for small- to mid-size MPOs.  
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Results of the rule-constrained model suggest that business-as-usual and road-pricing 
scenarios will result in similar household and employment distributions (due to a basic flaw in 
the gravity specification, where travel costs enter the exponential function linearly), but rather 
different travel behaviors, as characterized by daily VMT, average speed, and network volume-
to-capacity ratios. As required (by definition), the UGB policy is predicted to allocate all new 
development (households and basic, retail, and service jobs) within developable zones. 
Comparisons between year-2005 land use patterns and year-2030 estimates suggest that many 
core TAZs will lose households over the next 25 years, while some TAZs at Austin’s periphery 
may attract households. A few central TAZs are forecasted to lose jobs, but this trend is less 
obvious, as compared to household allocations. Employment opportunities remain heavily 
concentrated in the region’s core under each policy scenario. 

The road pricing and UGB policies appear to be powerful tools for VMT reductions. As 
compared to the base-case, these two policy scenarios were estimated to reduce regional VMT 
by 16.0% and 17.2%, respectively. The base-case and road pricing scenarios generate similar 
levels of personal and commercial trips, while the UGB policy generates fewer of both. This 
suggests that the VMT reduction of the road pricing policy mostly comes from shorter trips, 
while VMT reductions under the UGB policy come from shorter trips as well as fewer trips.  

Volume-weighted averages of speeds and VMT-weighted volume-to-capacity ratios 
provide single-value performance measures for the entire study area. Policy comparisons suggest 
that the road pricing policy will increase average speeds by 3.54 mi/hour (or 7.03%) and reduce 
the region’s overall volume-to-capacity ratios by 18.4% (or 0.116), being an effective policy in 
increasing speed and alleviating congestion − but not offer much, if anything, in the way of 
altered land use patterns. It appears that common G-LUM specifications are rather insensitive to 
overall directed changes in travel costs, rendering the TDM feedback to LUM less useful. A 
closer eye towards model specification can help avoid some of this. 

In general, such gravity-based methods for LUM are relatively straightforward, requiring 
reasonable inputs of data and time for calibration and application. Nevertheless, their accuracy is 
questionable, and model specification and empirical results must be reviewed carefully, using 
local knowledge and expert opinion. Such model behavior can then be restrained, via code 
(internally) or manual adjustment (at each time step). Our restricted G-LUM specification 
appears to highlight interesting directions for land use patterns in Austin while facilitating long-
term traffic forecasts. Rapidly growing regions like Austin may head in any number of 
directions, depending on local land use and transportation policies. Such models remain of some 
use in anticipating the general direction and potential magnitude of various transportation policy 
and investment decisions, along with some styles of land use policy. They allow for 
transportation system feedback to land use decisions (though such linkages may be weak, as 
observed in the Austin road pricing scenario), offer a reproducible construct, and facilitate rapid 
estimation of results for multiple scenarios of interest.  We hope public provision of such LUM 
code13 will lead to greater use and improvement in modeling approaches of all types. 
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