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31 ABSTRACT 

32 A variety of land use models now exist, but a market-based model with sufficient spatial 

33 resolution and defensible behavioral foundations remains elusive.  The model system developed 

34 here emphasizes the interactions of individual market agents (on both the demand and supply 

35 sides), and enjoys behavioral foundations for each of the key actors at the level of parcels. 

36 Auction (or competition among market agents) is used to simulate price adjustment, and market- 

37 clearing prices are endogenously determined by iteratively adjusting the bidding prices for 

38 residential and commercial properties. 
 

39 A series of models for households, firms, and land developers/owners are estimated using 

40 actual data from Austin, Texas, and the estimation results reveal tangible behavioral foundations 

41 for the evolution of urban land uses.  The model forecasts demonstrate the strengths and 

42 limitations of this market simulation approach. While equilibrium prices in forecast years are 

43 generally lower than observed or expected, the spatial distributions of property values, new 
44 development, and individual agents are reasonable.
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1. INTRODUCTION 1 

Land use models seek to anticipate future settlement and transport patterns, helping 2 
ensure effective public and private investment decisions and policymaking, to accommodate 3 
growth while mitigating environmental impacts and other concerns.  A variety of land use 4 
models now exist, built upon different theoretical foundations, policy analysis needs and input 5 
data requirements.  However, a market-based model with sufficient spatial resolution and 6 
defensible behavioral foundations remains elusive.  This type of model explicitly models supply-7 
demand relationships and prices, representing the “ideal” model (Miller et al. 1999).  8 

Although some microsimulation models attempt to incorporate market signals in property 9 
valuations and land development potential (e.g., Waddell’s UrbanSim [Waddell 2002, Waddell 10 
et al. 2003, Waddell and Ulfarsson 2004, and Borning et al. 2007]), prices are not explicitly 11 
derived from the interaction of supply and demand.  Other models, built on supply-demand 12 
relationships (e.g., Martínez’s MUSSA [Martínez and Donoso 2001, Martínez and Donoso 2006, 13 
Martínez and Henriquez 2007] and Hunt’s PECAS [Hunt and Abraham 2003, PECAS 2007, and 14 
Hunt et al. 2008]), are current1 examples of a market-based approach, but they operate at a zonal 15 
basis.  This paper proposes a land use model system that is based on market interactions and 16 
enjoys behavioral foundations for each of the key actors at the level of parcels.  It is hoped that 17 
the behavioral foundations provide a more defensible model paradigm, while enabling more 18 
accurate and robust forecasting and policy analysis. 19 

Location choices of households and firms (or spatial distribution of activities) depend on 20 
location prices to a large extent, and investigation of real estate price evolution merits close 21 
attention for proper land use modeling.  Arrow (1959) argued that auction provides a mechanism 22 
for price formulation.  Auctions are “a market institution with an explicit set of rules determining 23 
resource allocation and prices on the basis of bids from the market participants” (McAfee and 24 
McMillan 1987, p. 701), and various auction types now exist, after decades of evolution.  A 25 
review of features and key results can be found in Milgram and Weber (1982), and Klemperer 26 
(2002) provides a guide to the abundant literature on auction theory.   27 

While auction applications are rapidly growing in commodity trading markets, relatively 28 
few studies utilize this price formulation mechanism for modeling real estate markets that 29 
involve interactive agents and properties with a great level of heterogeneity.  Here, notions of 30 
competition are used to simulate price adjustment, and market-clearing prices are obtained in an 31 
iterative fashion.  When real estate markets reach equilibrium, each agent is aligned with a single, 32 
utility-maximizing location and each allocated location is occupied by the highest bidding 33 
agent(s).  This approach helps ensure a form of local equilibrium (subject to imperfect 34 
information on the part of most agents) along with user optimal land allocation patterns. 35 

Numerous interactive agents and substantial heterogeneity in real estate markets call for a 36 
“bottom-up” approach to modeling, involving simulation of behavior for thousands (and 37 
potentially millions) of individual agents.  Agent-based models (ABMs) originated in computer 38 
science allow for efficient design of large and interconnected computer programs.  They are well 39 

                                                        
1 A somewhat older model, Anas and Arnott’s Chicago Prototype Housing Market Model (CPHMM) also considers 
the demand and supply sides of housing markets, but locations are quite aggregate (e.g., central ring vs. surrounding 
suburban ring) and commercial properties are neglected (see, e.g., Anas and Arnott 1991, Anas and Arnott 1993, and 
Anas and Arnott 1994). 
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suited for studying complex systems where decision-making agents interact within the system 1 
and when their interactions determine the system properties (Axelrod and Tesfatsion 2006).   2 

ABMs have been studied and applied in a wide range of disciplines, such as ecology and 3 
computational economics (see, e.g., Grimm and Railsback 2005, and WACE 2008).  Some 4 
recent studies have applied ABMs to understand and project land use/land cover change (see, 5 
e.g., Manson 2000, Berger 2001, Berger and Ringler 2002, Lim et al. 2002, and Parker and 6 
Filatova 2008).  These models are embedded in a grid-cell environment, which limits their 7 
transferability to an urban application.  In addition, these models focus on only residential 8 
development or land cover issues, and do not explicitly incorporate transportation infrastructure 9 
and public policies, which can be key in the context of urban development.  10 

In contrast, the land use model system developed here simulates the interaction of market 11 
supply (i.e., land developers) and market demand (i.e., location seeking households and firms) at 12 
the level of parcels, which are the finest functionally distinct units that practically exist for land 13 
use modeling.  The following sections discuss the model structure and associated series of 14 
models for market agents, the logic of the model’s market simulation and application results. 15 

2. MODELS FOR MARKET AGENTS 16 

The proposed market-based land use model rests on behavioral foundations for market 17 
agents (on both supply and demand sides).  The household-move, residence-type, dwelling-unit 18 
and location-choice decisions influence the demand side of a housing market.  Similarly, 19 
location-seeking firms participate in the competition for land and affect land developer/owner 20 
decisions.  On the supply side, land developers/owners make decisions on converting existing 21 
undeveloped land and the size and quality of new construction, in order to (in theory) maximize 22 
profits. 23 

2.1 Households and Firms 24 

Households and firms change their attributes often (e.g., dwelling type and location for 25 
households, and size and location for firms), and these closely relate to their behaviors in real 26 
estate markets.  Tracking the dynamics of households and firms can help provide more 27 
behaviorally defensible long-term land use forecasts, and so was pursued here.  Figures 1(a) and 28 
1(b) highlight the structure underlying household and firm behaviors of importance for a market-29 
based model.  It is assumed that households and firms rely on sequential decision-making 30 
processes.   31 
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Figure 1(a): Model Structure for Households 1 
 2 
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Figure 1(b): Model Structure for Firms 7 
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A series of models for households and firms in Austin, Texas were estimated 1 
using local data sets within a random utility (RUM) framework.  While the Census’ 2 
PUMS data served as a primary data source, two surveys of recent home buyers and 3 
apartment dwellers also proved core to the framekwork.  Such data for firms are also 4 
obviously desirable, but were not available.  Thus, the work relied on employment point 5 
data in years 2000 and 2005, as provided by the Texas Workforce Commission (TWC) 6 
and geocoded by the Capital Area Metropolitan Planning Organization (CAMPO).  These 7 
point data were matched by business names, to identify firm growth and relocation 8 
decisions. 9 

Household sub-model regression results are shown in Table 1(a), and they offer a 10 
variety of valuable empirical findings.  For example, the probability of residential 11 
mobility decreases with age of household head, presence of children and (current) 12 
residence in a single-family home.  When a household decides to move, increases in 13 
variables like household size, number of workers, income, and children increase the 14 
likelihood of choosing a single-family home, rather than an apartment.  As expected, 15 
home size, parcel size and home price-to-buyer income ratios are important factors 16 
affecting bidding and home selection.  Similarly, apartment size, rent and rent-to-income 17 
ratios are key in predicting the choice probabilities of apartment units.  Worker commute 18 
times also play a role, in both markets, for households’ evaluation of different locations. 19 

While firms and households share several modeling similarities (e.g., they both 20 
need to decide when and where to move, recognizing access, price and other 21 
considerations), firms are generally expected to exhibit greater heterogeneity across 22 
industry sectors.  Therefore, firms were classified into three categories (basic, retail and 23 
service sectors), and separate models were estimated for each, as shown in Table 1(b).  24 
Existing studies cite lack of space (for firm expansion) as the top reason for firm 25 
relocation (e.g., Alexander 1979, and Van Wissen 2000), and this was confirmed by the 26 
firm mobility model estimated here.  When firms relocate, they appear to select locations 27 
offering lower total unit prices (per built square foot) and greater access to regional 28 
highways.  New and moving firms tend to locate towards the modeled region’s periphery, 29 
presumably to avoid central area congestion and to access new development.  Due to 30 
space limitations, other detailed results are not included; Zhou (2009) provides details on 31 
the characteristics of emigrating and in-migrating households, annual birth and death 32 
rates of firms by size, and variable summary statistics. 33 

34 
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Table 1(a): Results of the Household Sub-models 1 

Variable Name Variable Description Parameters t-statistics 

Residential Mobility Model (1=move and 0=stay) 

Constant Constant term 2.48 13.7 

HeadAge Age of household head -0.0637 -15.0 

Income-per-person Household annual income per person (in $1,000) -0.0145 -4.11 

(Income-per-person)2 Square term for Income-per-person 5.30E-05 3.17 

Children Presence of children under 18 years of age -0.746 -6.17 

Home Indicator variable for single-family home  -1.03 -9.47 

LLC = -1250.6; LRI = 0.219; n = 2,991 

Residence Type Choice Model (1=choose home and 0=choose apartment) 

Constant Constant term -6.77 -9.05 

HHSize Household size 0.393 4.34 

HeadAge Age of household head 0.136 3.75 

(HeadAge)2 Square term for HeadAge -0.00111 -2.59 

Income-per-person Household annual income per person (in $1,000) 0.0150 4.80 

Workers Number of workers (0,1,2+) 0.998 6.25 

Children Presence of children under 18 years of age 0.401 1.47 

LLC = -491.7; LRI = 0.176; n = 958 

Dwelling Unit and Location Choice Model of Home Buyers 

Commute Time 
Sum of network one way commute times for up to 2 
workers under free-flow conditions (minutes)  

-0.0835 -16.5 

Price-to-income ratio 
Ratio of home price to household annual income 
($/$) 

-0.249 -7.47 

SF-per-person 
Interior square footage divided by household size 
(in 1,000 ft2/person) 

3.34 7.98 

(SF-per-person)2 Square term for SF-per-person -1.010 -7.24 

Parcel Size Parcel size (acres) 2.28 3.68 

Size-per-person Parcel size divided by household size (acres/person) -4.09 -3.18 

LLC = -2,040; LRI = 0.106; n = 583 

Dwelling Unit and Location Choice Model of Apartment Dwellers 

Commute Time 
Total network commute time for up to two working 
members under free-flow conditions (in minutes) 

-0.0819 -5.4 

Rent Monthly rent (in $1,000) 2.62 5.88 
(Rent-to-income 
ratio)2  

Ratio of yearly rent to household annual income 
($/$) 

-2.90 -2.90 

SF-per-person 
Interior square footage divided by household size 
(in 1,000 ft2/person) 

7.04 3.81 

(SF-per-person)2 Square term for SF-per-person -6.30 -4.59 

LLC = -545.7; LRI = 0.0892; n = 200 
Notes: LLC stands for log-likelihood at convergence, LRI stands for likelihood ratio index, and n means 2 
number of observations. 3 
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Table 1(b): Results of the Firm Sub-models 1 

Variable Name Variable Description Parameters t-statistics Parameters t-statistics Parameters t-statistics 

  Basic Firms Retail Firms Service Firms 

Expansion or Contraction Models 

Constant Constant term 0.721 3.22 1.83 4.57 0.150 0.920 

Ln(SizeLag) 
Natural log for firm size in year 2000 (or 
number of employees) 

0.763 37.4 0.739 28.1 0.716 76.7 

RegionalAIHH Regional accessibility index to households -2.86E-05 -1.77 n/a n/a -3.70E-05 -3.13 

RegionalAIEMP Regional accessibility index to jobs 7.78E-06 1.58 -4.20E-05 -2.96 4.02E-05 3.36 

(RegionalAIEMP)2 Square term for RegionalAIEMP n/a n/a 3.11E-10 2.63 -2.62E-10 -3.23 

LocalAIHH0.25 
Local accessibility index to households within 
0.25 mile 

n/a n/a 2.69E-04 1.76 n/a n/a 

  R2 = 0.688; n = 638 R2 = 0.671; n = 401 R2 = 0.696; n = 2,574 

Firm Mobility Models 

Constant Constant term -0.371 -1.04 1.08 2.26 1.37 3.80 

SizeLag 
Firm size in year 2000 (or number of 
employees) 

6.26E-03 2.290 2.36E-02 2.55 n/a n/a 

(SizeLag)2 Square term for SizeLag -7.68E-06 -1.99 -1.26E-04 -2.30 n/a n/a 

ln(SizeLag) Natural log for SizeLag n/a n/a n/a n/a 0.0935 2.86 
Future-to-current 
ratio 

Ratio of future size to current size 0.174 2.12 0.188 2.14 0.125 3.30 

RegionalAIHH Regional accessibility index to households n/a n/a n/a n/a -5.33E-05 -2.63 

RegionalAIEMP Regional accessibility index to jobs -1.23E-05 -1.68 -3.60E-05 -4.35 -1.17E-05 -2.55 

  
LLC = -389; LRI = 

0.0154; n = 638 
LLC = -248; LRI = 

0.0649; n = 401 
LLC = -1,658; LRI = 

0.0288; n = 2,574 

2 
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Table 1(b): Results of the Firm Sub-models (continued) 1 

Variable Name Variable Description Parameters t-statistics Parameters t-statistics Parameters t-statistics 

  Basic Firms Retail Firms Service Firms 

Firm Location Choice Models 

Total Unit Price 
Market value per interior square footage (in 
year 2000; land value included) 

n/a n/a n/a n/a -1.12E-04 -7.99 

Total Unit Price • 
Size 

Interaction of Total Unit Price and Size (firm 
size or number of employees) 

-4.78E-06 -4.45 -2.87E-06 -4.68 n/a n/a 

TTtoCBD 
Network travel time to the CBD (in minutes, 
under free flow conditions) 

-0.00959 -2.27 n/a n/a -0.00410 -1.93 

TTtoCBD • Size Interaction of TTtoCBD and Size -1.02E-04 -2.87 -6.92E-04 -7.69   

DISTtoHWY 
Euclidean distance to the nearest highway (in 
miles) 

n/a n/a 0.107 3.04 5.06E-05 13.57 

DISTtoHWY • 
Size 

Interaction of DISTtoHWY and Size 0.00145 3.67 n/a n/a n/a n/a 

LocalAIHH0.25 
Local accessibility index to  households 
within 0.25 mile 

n/a n/a 0.00149 5.78 -8.30E-04 -12.92 

(LocalAIHH0.25)
2 Square term for LocalAIHH0.25 n/a n/a -2.00E-06 -8.09 n/a n/a 

LocalAIHH1.0 
Local accessibility index to  households 
within 1.0 mile 

-2.45E-05 -2.77 n/a n/a n/a n/a 

LocalAIEMP0.25 
Local accessibility index to  jobs within 0.25 
mile 

n/a n/a 4.58E-05 7.99 1.31E-04 11.75 

(LocalAIEMP0.25)
2 Square term for LocalAIEMP0.25 n/a n/a n/a n/a -7.05E-09 -11.56 

LocalAIEMP0.75 
Local accessibility index to  jobs within 0.75 
miles 

2.93E-06 1.68 n/a n/a n/a n/a 

  
LLC = -8,026; LRI = 
0.00410; n = 2,690 

LLC = -9,813; LRI = 
0.01340; n = 3,320 

LLC = -28,195; LRI = 
0.00920; n = 9,499 

Notes: LLC stands for log-likelihood at convergence, LRI stands for likelihood ratio index, n means number of observations, and n/a indicates that the 2 
corresponding variable is not statistically significant.  Local accessibility was defined as the number of households or jobs within a 0.25-, 0.5-, 0.75- and 3 
1.0-mile radii of the firm’s address, assuming uniform distributions of households and jobs within each TAZ.  Regional accessibility was calculated as 4 

follows:  
J

j
ijji TTCountRAI , where Countj is the number of households or jobs in zone j, and TTij is the travel time between zone i and j under 5 

free-flow conditions in minutes.6 
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2.2 Land Owners and Developers 1 

Land owners and developers build homes, apartments and commercial buildings 2 
to meet the needs of households and firms.  Their decisions shape the market’s supply 3 
side, and involve three dimensions: development type (including homes or apartments, 4 
commercial buildings for basic, retail or service firms, or undeveloped status), 5 
development intensity (measured here via floor-area-ratios [FARs]), and building quality 6 
(measured by unit price of improvement [structures on the property], per interior square 7 
foot).  The first is discrete, while the latter two are continuous in nature.  Some 8 
econometric studies have relied on discrete-continuous models (e.g., Dubin and McFdden 9 
1984, Wales and Woodland 1983, Kim et al. 2002, and Bhat 2005), but all involve utility 10 
or profit maximization as constrained by one’s budget.  This assumption is not realistic in 11 
real estate markets because developers have access to unspecified levels of capital via 12 
lending.  Most recently, Ye and Pendyala (2009) proposed a joint discrete-continuous 13 
model system that is based on a probit specification and free of price information and 14 
budget constraints.  This very new and rather complicated specification can be estimated 15 
using maximum simulated likelihood estimation (MSLE).   16 

While Train’s (2003) work provides technical details on MSLE along with 17 
operational MATLAB code to implement such estimation techniques, this study turns to 18 
more common modeling methods, to avoid over-complication in the model system.  The 19 
two continuous variables were discretized into bins: low, medium and high development 20 
intensity, and low, medium and high building quality.  The joint decisions (a combination 21 
of development type, intensity and building quality) were modeled using a multinomial 22 
logit model (MNL) 2.  This developer model was estimated using the Travis County 23 
Appraisal District (TCAD) records, City of Austin parcel maps, U.S. Geological Survey 24 
(USGS) national elevation data (NED), and CAMPO’s network data.  Model results 25 
suggest that developers generally prefer flatter parcels with easy access to regional 26 
highways, and tend to construct buildings at higher intensity and of higher quality as 27 
(TCAD-assessed) land values rise.  Developers respond differently to local job densities 28 
when pursuing different uses, but local (zone level) household density generally has a 29 
positive impact on the likelihood of new development of all types.  Model results are not 30 
provided here, due to space limitations, but can be found in Zhou (2009). These models 31 
(for developers/owners) and those previously described (for households and firms) allow 32 
for microsimulation of the Austin land use system’s evolution, based on market 33 
principles, as described in the following section. 34 

3. MARKET SIMULATION 35 

The core of this market-based land use model is market simulation.  It consists of 36 
thousands of agents (anonymous land owners/developers [for each parcel] and specific 37 

                                                        
2 It can be argued that a nested structure may fit developer behaviors better, since buildings that are of the 
same use but different quality and/or intensity may share similar unobserved factors, as compared to other 
building types.  However, this assumption was not supported by data analysis: A series of nested logit 
model specifications failed. 
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households and firms), each with distinctive characteristics.  Their interactions determine 1 
evolving land use patterns, property prices, and the spatial distribution of households and 2 
firms.  For demonstration, this model system was applied to the City of Austin plus its 3 
extraterritorial jurisdiction, and run at one-year time steps for five years (from 2003 to 4 
2008).  Forecast results were compared to TCAD’s 2008 appraisal records, to provide 5 
some validation and anticipate any model limitations. 6 

3.1 Architecture of the Model System 7 

This real estate market simulation model consists of five sub-markets – one for 8 
each type of location-seeking agent: home buyers, apartment dwellers, basic, retail and 9 
service firms.  The attributes of these agents evolve (e.g., each household head’s age and 10 
firm sizes change over time), and their population changes due to household emigration 11 
and in-migration and firm birth and death.  Location needs of new and moving agents 12 
constitute the demand side of the five sub-markets.   13 

In response to these demands (and accompanying profitability shifts), developers 14 
build homes, apartments and commercial buildings that are characterized by their 15 
development intensity, building quality and location-specific attributes (e.g., regional and 16 
local accessibilities, travel time to the central business district [CBD], and distance to the 17 
nearest highway).  Initial land unit prices are exogenous to the developer’s decision, but 18 
are adjusted annually based on land unit price changes at the level of traffic analysis 19 
zones.   20 

Based on building quality, development intensity, and initial unit price of land, 21 
“tentative” total unit prices (i.e., improvement value plus land value divided by 22 
improvement square footage) kick off the bidding process.  More specifically, location-23 
seeking agents evaluate these “tentative” prices and other attributes of properties in their 24 
choice sets, and then choose the alternative that offers the highest random utility.  For a 25 
household that seeks a single family home, the price signal is the ratio of home price to 26 
household annual income.  For an apartment-seeking household, the price signal is the 27 
monthly rent and the ratio of annual rent to household income.  Here, rent is assumed to 28 
have a quadratic relationship with apartment size and the apartment complex’s total unit 29 
price.  In contrast, firms evaluate the total unit price, as indicated in Table 1(b).3  30 

A property’s price increases when it is in high demand (i.e., it is the best choice 31 
for more than one agent), and decreases when a property is no agents are selecting it at its 32 
current price.  Prices adjust in an iterative fashion to clear the market, roughly balancing 33 
supply and demand.  In other words, the final land unit prices (i.e., land value per square 34 
foot of land at the end of each simulation year) and the final total unit prices (i.e., 35 
improvement value plus land value divided by improvement square footage at the end of 36 
each simulation year) are endogenous to the market simulation model system, as 37 
determined by market clearing process.  When each agent finally is aligned with a single, 38 
utility-maximizing location, each allocated location is occupied by the highest bidding 39 

                                                        
3  While the entire property price for all space occupied by a firm also makes sense as a covariate, a firm’s 
space use is not available in any of the Austin data sets.  So total unit price was used instead. 
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agent.  At this stage, the real estate markets are said to have reached equilibrium. Figure 2 1 
shows the model structure. (For more details, please see Zhou [2009].) 2 

Figure 2: Real Estate Market Simulation Model Structure 3 

 4 
 5 
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a 0.70 percent decrease in the probability of choosing to search for a home, rather than an 1 
apartment).  Here, this means that when regional median home unit prices increase by $1 2 
(as compared to regional median unit rent), about 200 fewer moving households will seek 3 
homes (and turn to apartments) in year 2004.   4 

As noted earlier, developers make decisions on development type, development 5 
intensity, and building quality.  In addition, developers anticipate future demand based on 6 
likely growth rates, and they “coordinate” to supply built space that matches expected 7 
demand.  Developers are assumed to have perfect knowledge about regional growth rates 8 
of households and industries, but they can only react to such predictions within roughly a 9 
±10% margin (i.e., developers may over- or under-supplying by about 10% in any given 10 
year, and this margin was determined via simulation).  Based on developers’ decisions, 11 
appropriate FARs and improvement unit prices (i.e., an improvement’s market value 12 
divided by its square footage) are simulated from past observations.   13 

In addition to these new buildings, vacant properties (due to vacancy at the 14 
beginning of market simulation or relocation of occupants) also enter the market, and 15 
their past prices serve as starting values in the price adjustment process.  Of course, 16 
tentative prices of newly-constructed and recently-vacated buildings have different levels 17 
of uncertainty.  The past price of a property will generally lie closer to its equilibrium 18 
price, thanks to the market-clearing process this property has already gone through.  To 19 
reflect this difference, recently-vacated buildings have a smaller price-adjustment range 20 
than new buildings in the market simulation (e.g., 200 and 80 percent of the initial values 21 
for newly-constructed properties, vs. 150 and 90 percent for recently-vacated buildings).   22 

3.2 Market Clearing Process 23 

Figure 3 details the bidding procedure, as applied for home buyers.  This same 24 
logic is used for other locating agents (i.e., apartment renters and firms in the three 25 
industry sectors).  It is worth noting that each locating agent competes for properties that 26 
belong to the associated property type.  For example, home buyers only consider single 27 
family homes, and basic use buildings are not in the choice set of a retail firm. 28 
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Figure 3: Market Clearing Process for Home Buyers 1 
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from all available locations and the rest are strategically selected.  The strategic sampling 6 
scheme allows agents to “screen” up to 1,000 alternatives and include up to 25 of these in 7 
their choice sets.  Households are assumed to rely on home prices or rents (at their start 8 
values) to strategically select alternatives, while firms consider both available built spaces 9 
and distance of moving.  For households, the log-transformed price-to-income ratio and 10 
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rent-to-income ratio are regressed on attributes of home-seeking or apartment-seeking 1 
households, respectively.  Properties with price (or rent) within 25 percent of these 2 
“optimal” or most-likely ratio values are assumed to represent the most desirable 3 
alternatives and will be included into the choice set when a household “screens” dwelling 4 
units.  For firms, “paired” firm records for the City of Austin suggest that 90 percent of 5 
basic firms relocate within a 4.5-mile radius of their past locations, and this distance is 6 
8.2 mi and 6.1 mi for retail and service firms, respectively.  These thresholds are used in 7 
the “strategic sampling” for firms.  In addition, firms only consider locations that are 8 
compatible with their industry sector and size.  In other words, firms only consider 9 
available properties that were previously occupied by other firms of the same size 10 
category (1-4, 5-9, 10-19, 20-99, 100-499 or 500+ employees) and newly-constructed 11 
properties that have enough built space to accommodate their needs. 12 

During the market-clearing process, property total unit price is adjusted by $0.50 13 
in each iteration step; and maximum and minimum total unit prices apply, to ensure 14 
reasonable competition outcomes.  More specifically, when prices are too low, developers 15 
will accept vacancy and seek buyers/renters in the following years.  When prices are too 16 
high, households or firms will stop bidding; at that point, one bidder is randomly assigned 17 
to the preferred location and others must now compete for other alternatives.  In addition, 18 
the maximum and minimum bid prices help ensure simulation convergence by randomly 19 
assigning competing agents to properties that have reached these thresholds.  These 20 
maximum and minimum bid prices are determined by initial land unit prices, FAR, 21 
improvement unit prices, and maximum permitted changes on land unit prices, as shown 22 
in Equations 1 and 2: 23 

 
PriceUnitImprv

FAR

PriceUnitLanda
PriceUnitTotalMax 




1

  (1) 24 

 
PriceUnitImprv

FAR

PriceUnitLandb
PriceUnitTotalMin 




1

  (2) 25 

where Max Total Unit Price and Min Total Unit Price are the maximum and minimum 26 
permitted total unit price (or bid) values, Land Unit Price is the initial value on this 27 
variable, FAR is floor-area-ratio, Imprv Unit Price is the improvement’s market value (per 28 
improved square foot), and a and b are the maximum permitted increase and decrease in 29 
initial land unit price.   30 

Initial land unit prices are exogenous to the model system, and are updated 31 
annually based on the zonal changes in land unit price in order to reflect the most recent 32 
and reasonable land costs when developers make development decisions.  FAR and 33 
improvement unit prices are determined by the developer model.  For new development, 34 
a and b are assumed to be 1 and 0.2 (or the maximum and minimum land unit prices are 35 
200 and 80 percent of the initial values). In contrast, a and b were set to 0.5 and 0.1 for 36 
existing buildings (or 150 and 90 percent of initial values), because one expects the past 37 
value of an existing property to lie closer to its equilibrium price than new development 38 
to its simulated starting price (where price uncertainty is greater). 39 
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3.3 Model Assumptions 1 

In the market simulation system, it is assumed that undeveloped parcels can 2 
develop into one of five distinct use types (homes, apartments, and basic, retail and 3 
service commercial uses) without experiencing subdivision.  Zhou and Kockelman (2009) 4 
modeled the sizes of newly-subdivided parcels using log-linear regression and simulated 5 
Austin’s subdividing parcel sizes and shapes using ArcGIS and MATLAB software.  As 6 
one might expect, the shaping of newly subdivided parcels is a difficult issue to resolve 7 
using basic mathematical techniques.  As a result, the market simulation system used here 8 
ignores parcel subdivision and more realistic simulation of new parcel sizes and shapes is 9 
left for future research.  10 

The system models agent preferences for location and structure type and tracks 11 
changes in agent status over time.  For example, households can change residence types 12 
(between single-family homes and apartments) through residential mobility and type 13 
choices, and firms can change their sizes (by adding and losing workers).  Households 14 
and firms can enter or exit the study area through household emigration/in-migration and 15 
firm birth/death.  In addition, household heads age over time, and employees of firms that 16 
shut down (or depart the region) are assigned to existing firms (including educational 17 
institutions) proportional to their “unassigned” employees number in the same year4.  18 
However, the total numbers of households and firms in each simulation year are 19 
exogenous to the model system, which helps ensure reasonable regional growth.  If too 20 
much flexibility is provided, jobs or households can overshoot the other, resulting in 21 
unrealistic long-term imbalances.  Of course, a model of macroeconomic conditions and 22 
mass migration for the region’s growth of population and jobs would be useful to have, 23 
but lies beyond the scope of this work. 24 

When applying parameters estimated in the series of models, the market system 25 
assumes that development trends and agent behaviors observed over the input-data’s 26 
calibration years will continue and, to some extent, that no new policies are imposed.  Yet 27 
market simulation system is a powerful tool for experiments and discoveries, and can be 28 
expanded to incorporate policy feedbacks and behavioral changes, by anticipating 29 
parameter values and ensuring adequate model linkages to variables of interest (e.g., 30 
mortgage rates and construction costs).  Of course, any model tests and extensions should 31 
be validated against empirical data, observed patterns and established theories, whenever 32 
possible, in order to ensure more reliable model specifications and reasonable feedback 33 
rules.  In any case, the current system may be adaptable to examples of different lending 34 
practices, higher interest rates, and building size constraints.  It is able to rather directly 35 
accommodate urban growth boundary policies, changing travel time conditions, subsidies 36 
for and/or taxes on different development types in certain zones, and the like. 37 

3.4 Population Synthesis, Simulation Results and Model Validation 38 

A 5-percent random sample (or 15,144 households) was generated using Austin’s 39 

                                                        
4 This workplace re-assignment does not consider industry sectors, allowing for occupation change (across 
industries) for workers.  
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2005 Public Use Microdata Sample (PUMS) data in order to reduce computational 1 
burdens.  Workers in this 5-percent sample were proportionally assigned to year 2005 2 
employment point data (including educational institutions).  And all households were 3 
assigned to the dwelling unit offering the highest random utility (conditional on the 4 
household’s working members’ workplaces [up to two workplaces]).  Each household 5 
considered 50 alternatives in the year 2003, half or more of which were randomly drawn 6 
and the rest strategically selected.  Chosen homes and apartment units were removed 7 
from un-assigned households’ consideration, and thus no competition was involved in the 8 
initial allocation to sites. 9 

Due to greater spatial dispersion and size variation across firms, a sample of firms 10 
cannot reliably represent job distribution at the TAZ level.  Therefore, the entire firm 11 
population was used, including 3,817 basic firms, 3,922 retail firms and 13,050 service 12 
firms in year 2003.  Assuming a 2-percent annual growth rate in households, the study 13 
area must accommodate 334,440 households by year 2008.  The simulations assume 14 
regional growth rates of -2%, 3% and 1% for basic, retail and service employment5 in 15 
each of the five simulation years (2003 to 2008), leading to 94,977 basic, 99,365 retail, 16 
and 246,884 retail jobs in year 2008. 17 

As mentioned earlier, households and firms were evolved over a 5-year period, as 18 
development and location choices were simulated. Only 21.0% of households are 19 
expected to move in any given year, and visual inspection of year 2008 results suggest 20 
that household patterns are quite similar to those in the 2003 base year, but with 21 
noticeable increases in the study area’s northern neighborhoods.  The 2008 simulated job 22 
distribution also was similar to year 2003 conditions, but with noticeable changes in a 23 
few zones.  Basic jobs were simulated to rise most noticeably in eastern zones, where 24 
land unit prices tend to be low, while retail employment increased noticeably near the 25 
CBD and in southern zones, thanks to these neighborhoods’ relatively high local access to 26 
jobs and moderate local access to households.  Service jobs appear more drawn to 27 
peripheral neighborhoods, perhaps to ensure broader market coverage. (For more details, 28 
please see Zhou [2009].) 29 

In addition to settlement patterns, market simulation also generates equilibrium 30 
property prices.  Essentially, each allocated location is occupied by its highest bidder (or 31 
bidders, in the case of apartment complexes).  Simulated property values were compared 32 
to TCAD’s 2008 appraisal data in order to evaluate model performance.  Figures 4(a) 33 
through 4(j) compare zonal averages of forecasted unit prices to appraised values by land 34 
use type.  It should be noted that zones with no values simply have no such property 35 
types exist in those zones.  The very highest (top 0.5 percent) and very lowest (lowest 0.5 36 
percent) of unit prices in the entire study area were removed before averaging, to avoid 37 
outlier effects. Similarly, only TCAD unit values (total dollars per square foot of 38 
improvement) between the 1st and 99th percentiles were used to generate the maps6. 39 

                                                        
5 These growth rates were chosen to be consistent with this region’s 2000-2005 job growth/contraction 
experience, as documented in CAMPO data sets. 
6 Slightly fewer TCAD observations were used (98% of observations, rather than 99%) due to that data 
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To help explain differences between forecasted results and appraised values, 1 
TCAD’s property prices (per square foot of improvement) in years 2003 and 2008 were 2 
compared.  2008 appraisal values were found to be significantly higher than their 3 
corresponding 2003 values for single-family homes, apartment complexes, retail and 4 
service properties (by 41.9%, 47.6%, 67.7%, and 62.8%, respectively).  At the same time, 5 
basic properties experienced only moderate appraisal increase (by 17.3%), with some 6 
basic-use appraisals actually falling in some western zones of the study area.  These shifts 7 
in TCAD data help explain the market simulation’s price under-predictions for homes, 8 
apartments, retail and service properties, and price over-predictions for basic properties.  9 
Nevertheless, if TCAD appraisals are a desired target, relatively low price predictions 10 
suggest that the simulated bidding process is not yet fully discovering property prices.  11 
Recognition and accommodation of additional factors, such as macro-economic 12 
conditions (and interest rates) may be useful.  13 

4. CONCLUSIONS 14 

This work demonstrates that microsimulation of detailed market dynamics is 15 
feasible for large-scale land use modeling, using mostly-standard data sets and standard 16 
desktop computing.  By relying on behavioral foundations for market agents (households, 17 
firms, and land developers/owners) and emphasizing their interactions, this work 18 
developed an agent-based approach for anticipating land use changes.  The model tracks 19 
each firm’s and household’s status, attributes and location preferences, as well as supply 20 
decisions by land owners/developers.  The interactions of such agents shape our local and 21 
regional futures and such models provide numerous opportunities for economic 22 
evaluations of urban system property dynamics.  23 

The series of behavioral models were estimated using Austin data sets, with 24 
households and firms presumed to pursue random-utility maximizing locations and 25 
residences, and land owners maximizing a random profit function (when making joint 26 
decisions on development type, intensity, and quality).  Model estimates illuminate a 27 
variety of interesting behavioral features, and simulated results (of 16,720 households 28 
and 21,713 firms) are generally reasonable and tangible.   29 

Based on auction principles, residential and non-residential property prices were 30 
endogenously determined by iteratively adjusting agents’ bid prices.  More specifically, 31 
given a parcel’s attributes (e.g., built square footage, parcel size, access to regional 32 
highways, travel time to the region’s CBD and working members’ workplaces, and other, 33 
more comprehensive accessibility indices) and locator preferences, unit price increase 34 
when the property enjoys multiple high bidders and falls when unselected.  Prices adjust 35 
to roughly balance supply and demand, while maximum and minimum bid prices help 36 
avoid unreasonable competition, enable vacancies, and ensure model system convergence.  37 
When each agent is aligned with a single, utility-maximizing location, each allocated 38 
location is occupied by the highest bidding agent, signaling that the real estate market has 39 
reached equilibrium.  40 

                                                                                                                                                                     
set’s higher degree of variation. 
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The model system was applied to the City of Austin and its extraterritorial 1 
jurisdiction (a 400 square-mile region) over a 5-year period (2003 to 2008).  Comparisons 2 
of model forecasts and appraisal district values reveal that equilibrium prices are 3 
generally lower.  However, the spatial distributions of property values, new development, 4 
and individual agents appear quite reasonable.   5 

While behaviorally based and detailed in nature, the model can be improved from 6 
multiple directions.  For example, various household dynamics were not tracked: 7 
anticipating household evolution (as members are added or lost and worker counts and 8 
incomes change) will add some realism to the simulations.  In addition, households 9 
should not always be located conditional on their working members’ workplaces; many 10 
households site themselves before finding employment.  The single most important sub-11 
model in this market simulation arguably is the developer model, which controls overall 12 
supply of built space.  It involves simultaneous decisions of discrete land use types and 13 
continuous measures of building quality and development intensity.  Such choices were 14 
specified using a RUM-based logit model with discrete categories for building quality 15 
and development intensity.  Future specifications should strive to reproduce joint 16 
discrete-continuous behaviors. 17 

In summary, explicit simulation of real estate markets can be a powerful tool for 18 
the spatial allocation of households and firms, based on underlying needs and preferences.  19 
But, complex systems are challenging to model perfectly, and data demands compromise 20 
certain facets of the model.  Nevertheless, this work demonstrates that microsimulation of 21 
real estate markets and the spatial allocation of households and firms is a viable pursuit.  22 
Such approaches herald a new wave of land use forecasting opportunities, for more 23 
effective policymaking and planning. 24 

ACKNOWLEDGEMENTS 25 

The authors thank the U.S. Environmental Protection Agency STAR Grant 26 
program for financially supporting this study under Project 831183901, “Regional 27 
Development, Population Trend, and Technology Change Impacts on Future Air 28 
Pollution Emissions.” They also are grateful to Dr. Darla Munroe at Ohio State 29 
University for her valuable suggestions on literature and Ms. Annette Perrone for her 30 
administrative assistance. 31 



19 
 

 1 

Note: Total unit price is in $ per interior square foot. 2 

Figure 4(a): Model-Predicted Single-family Home Total 3 
Unit Prices in Year 2008  4 

 5 

Note: Total unit price is in $ per interior square foot. 6 

Figure 4(b): TCAD’s Single-family Home Total Unit Prices 7 
in Year 2008 8 
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 1 

Note: Total unit price is in $ per interior square foot. 2 

Figure 4(c): Model-Predicted Apartment Complex Total 3 
Unit Prices in Year 2008 4 

 5 

Note: Total unit price is in $ interior square foot. 6 

Figure 4(d): TCAD’s Apartment Complex Total Unit Prices 7 
in Year 2008 8 
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 1 

Note: Total unit price is in $ per interior square foot. 2 

Figure 4(e): Model-Predicted Basic Property Total Unit 3 
Prices in Year 2008 4 

 5 

Note: Total unit price is in $ per interior square foot. 6 

Figure 4(f): TCAD’s Basic Property Total Unit Prices in 7 
Year 2008 8 
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 1 

Note: Total unit price is in $ per interior square foot. 2 

Figure 4(g): Model-Predicted Retail Property Total Unit 3 
Prices in Year 2008 4 

 5 

Note: Total unit price is in $ per interior square foot. 6 

Figure 4(h): TCAD’s Retail Property Total Unit Prices in 7 
Year 2008 8 
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 1 

Note: Total unit price is in $ per interior square foot. 2 

Figure 4(i): Model-Predicted Service Property Total Unit 3 
Prices in Year 2008 4 

 5 

Note: Total unit price is in $ per interior square foot. 6 

Figure 4(j): TCAD’s Service Property Total Unit Prices in 7 
Year 20088 
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