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ABSTRACT 29 
 30 
Electric vehicles (EVs) are predicted to increase in market share as auto manufacturers introduce 31 
more fuel efficient vehicles to meet stricter CAFE standards and driver concerns of increasing 32 
fuel costs. Reflecting spatial autocorrelation while controlling for a variety of demographic and 33 
locational (e.g., built environment) attributes, this zone-level spatial count model in this paper 34 
offers valuable information for power providers and charging station location decisions. By 35 
anticipating over 745,000 personal-vehicle registrations across a sample of 1000 census block 36 
groups in the Philadelphia region, a trivariate Poisson-lognormal conditional autoregressive 37 
(CAR) model anticipates Prius hybrid EV, other EV, and conventional vehicle ownership 38 
levels. Initial results signal higher EV ownership rates in more central zones with higher 39 
household incomes, along with significant residual spatial autocorrelation, suggesting that 40 
spatially-correlated latent variables and/or peer (neighbor) effects on purchase decisions are 41 
present. Such data sets will become more comprehensive and informative as EV market shares 42 
rise. This work’s multivarate Poisson-lognormal CAR modeling approach offers a rigorous, 43 
behaviorally-defensible framework for spatial patterns in choice behavior. 44 
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consumer behavior, conditional auto-regressive, built environment  2 
 3 

MOTIVATION 4 

As auto manufacturers introduce a variety of new vehicles to meet stricter fuel economy 5 
standards, in the U.S. and abroad, and driver concerns regarding long-term energy prices remain 6 
high, hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and battery electric 7 
vehicle (BEV) sales are on the rise (Schweinberg 2013). After tracking the electric vehicle (EV) 8 
market for 13 years, IDTechEX predicts that 35% of all vehicles in the world will be electric by 9 
2025, with a likely mix of 25% hybrids and 10% BEVs (Harrop and Das 2012). With such 10 
meaningful market share changes on the horizon, an ability to predict which households or 11 
neighborhoods are most likely to own such vehicles can provide important insights and 12 
opportunities for power-grid planning (e.g., updating transformers in certain locations), 13 
transportation investments (e.g., identifying where public charging stations should be installed 14 
for maximum utilization), and air quality policy-making (e.g., forecasting ozone level changes 15 
when more vehicle-miles are electrified).  16 

Spatial patterns in growing EV ownership may also illuminate what causes or alleviates 17 
owner/consumer “range anxiety” (i.e., a user’s concern for being stranded with a fully discharged 18 
battery and no reasonable recharge option [Tate et al. 2008]). As illustrated by Khan and 19 
Kockelman (2012), a 75-mile all-electric range (AER) BEV (like the 2013 Nissan LEAF) may 20 
be a very reasonable vehicle for 27% of single-vehicle households and nearly 70% of multiple-21 
vehicle households in Seattle to own, assuming existing travel patterns, a willingness to charge 22 
the vehicle once a day, and a willingness to charge more than once or find another travel option 23 
(e.g., a relative’s car or rental vehicle) just 3 days a year, on average (in order to exceed the 24 
BEV’s AER).   25 

Recent evidence from the U.S. Department of Energy’s and ECOtality’s EV Project (Smart et al. 26 
2013) suggests that 73% of miles driven by Americans in a Chevy Volt stay within its 35-mile 27 
(EPA-rated) AER (thereby avoiding much gasoline use in this PHEV). However, according to 28 
Consumer Reports’ Car Brand Perception Survey (Bartlett 2012), range anxiety remains 29 
consumers’ top concern consumer regarding a possible EV purchase. Studies suggest that such 30 
anxiety may fall as drivers become more familiar with EV technology and EV use (see, for 31 
example, Wellings et al. [2011] and Taylor [2009]). As with open-road tolling, adaptive cruise 32 
control, and other relatively new transport policies and technologies, it seems very possible that 33 
potential owners will worry less about EV range limitations as they are exposed to EVs on local 34 
roads, in neighbors’ driveways, and nearby parking garages (Mau et al. 2008). Related to this, 35 
Axsen et al. (2009) surveyed over 1000 vehicle owners in Canada and California and found that 36 
willingness-to-pay (WTP) for HEVs rose with higher (existing)) HEV market penetration rates. 37 
This study econometrically models ownership rates of EVs and conventional vehicles across 38 
Philadelphia neighborhoods, while allowing for such neighbor (spatial autocorrelation) effects; it 39 
applies a new multivariate count model, with both spatially-lagged and (aspatial) cross-response 40 
correlation opportunities.  41 

BACKGROUND 42 
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Most EV forecasts are simply an aggregate market share, across a nation or region, with 1 
estimates widely varying. For example, the U.S. National Research Council (2010) predicted 13 2 
million EVs on U.S. roads by 2030 (4% of total fleet) in the most probable scenario and 40 3 
million EVs (13.3% of total fleet) in the maximum practical case, while the U.S. Energy 4 
Information Administration (EIA 2013) recently forecasted just 3% of all U.S. light duty vehicle 5 
(LDV) sales will be EVs by 2040. Simulating consumer behavior under a business-as-usual 6 
(BAU) model, Clement-Nyns et al. (2010) projected EVs to reach 30% of the Belgian passenger-7 
vehicle fleet by 2030. McKinsey’s (2011) survey suggested that in three of the world’s 8 
“megacities” (New York City, Shanghai, and Paris), EVs may hit 16% of vehicle sales by 2015. 9 
Within the U.S. northeast corridor, Pike Research (2011) projects that Washington, D.C. and 10 
Delaware will have the highest annualized penetration rates of EVs by 2017, at 4.6 and 4.5 11 
percent, respectively. Paul et al.’s (2011) microsimulation of U.S. household holdings forecasted 12 
7.6% of the fleet to be HEVs and PHEVs by 2035 under BAU, and 13.1% under a feebate plus 13 
doubled-gas price scenario, ceteris paribus. Examining both demand (for vehicles, batteries, and 14 
gasoline) and supply constraints (on production), Neubauer et al. (2012) projected California’s 15 
PHEV + BEV population to hit 500,000 sometime between 2018 and 2020. 16 

Many researchers have employed discrete choice models at a disaggregate (individual or 17 
household) level to explore various vehicle ownership decisions. For example, Brownstone et al. 18 
(1996) analyzed data from a stated preference survey on alternative-fuel vehicles and found that 19 
two-vehicle households with children express a greater WTP for cleaner (emissions-reducing) 20 
vehicles, as compared to childless households. Erdem et al. (2010) employed an ordered probit 21 
(OP) model to examine Turkish consumers’ WTP for HEVs and found that higher-income 22 
females, with more education and concerns about global warming, are more likely to purchase 23 
HEVs. The relationship between income and vehicle preference tends to be complicated by 24 
household size: Paul et al. (2011) found that households with higher household income per 25 
member tend to prefer smaller vehicles, but larger households generally prefer larger vehicles 26 
(for seating-capacity reasons).  27 

Land use characteristics also influence ownership decisions. For example, higher residential 28 
densities are associated with lower vehicle ownership and usage levels (e.g., Zhao and 29 
Kockelman [2002] and Fang [2008]). Holding other household attributes (control variables) 30 
constant, Brownstone and Golob (2009) predicted density reductions of 1,000 housing units per 31 
square mile (or 1.56 units per acre) to associated with another 1,000 miles per year of vehicle-32 
miles traveled and 65 more gallons of fuel consumed per household (with 20 gallons of this 33 
difference accounted by choice of more fuel-efficient vehicles in higher-density settings). The 34 
choice of higher fuel-economy vehicles may be largely attributable to lower light-duty truck1 35 
(LDT) ownership in such settings: Brownstone and Fang’s (2009) Bayesian multivariate OP  36 
model associates a 50 percent residential density increase with a modest but statistically 37 
significant reduction on LDT ownership levels, and a 610-mile annual per-truck VMT decrease. 38 
In the same study, demand for passenger car ownership was estimated to be inelastic with respect 39 
to residential density (Brownstone and Fang 2009), but fuel economy can change significantly 40 
within the car fleet, leading to EV purchases, rather than say large, luxury cars, and thereby offer 41 
substantial energy savings. Using a multiple discrete-continuous extreme value (MCDEV) 42 

                                                 
1 In the U.S. the light-duty truck definition includes cargo vans, minivans, sport-utility vehicles, and pickup trucks 
weighing less than 8,500 lbs loaded (i.e., the gross vehicle weight rating).  
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specification, Bhat et al. (2009) also found that smaller vehicle sizes are more prevalent in 1 
neighborhoods high in both residential and commercial densities. Beyond simple density 2 
measures, Potoglou et al. (2008) found vehicle ownership to depend somewhat on land use 3 
diversity and transit proximity. Khan et al. (2012) also investigated the linkage between vehicle 4 
ownership and a host of built environment factors, including network structure, bus stop density, 5 
land use mix and jobs density, using a standard negative binomial model.  6 

This research addresses a gap in our current understanding of EV ownership decisions by 7 
examining the effects of demographic and land use characteristics at the neighborhood (i.e., 8 
Census block group) level, rather than at a regional level or individual/household level.  In this 9 
way, the work is able to quantify spatial autocorrelation or “neighbor effects” that can emerge in 10 
the adoption of new technologies, and to predict adoption rates over space, without requiring 11 
details on individuals.  12 

DATA DESCRIPTION 13 

The analysis relies on April 2012 vehicle registration data collected for the southeastern region 14 
of Pennsylvania, around Philadelphia, by the Delaware Valley Regional Planning Commission 15 
(DVRPC). The data set covers 2,980 census block groups containing 2,225,595 personal-vehicle 16 
registrations. 18,674 of these registered vehicles are considered EVs, and most of those (i.e., 17 
13,421 or 72%) are HEVs, like the (original/non-plug-in) Toyota Prius and Honda Civic HEV.  18 
 19 
The response variables used in this paper’s trivariate model are the number of Prius EVs, non-20 
Prius EVs, and conventional (internal combustion engine) vehicles (ICEVs) in each Census 21 
block group. Predictor variables (i.e., covariates) include block-group demographics, such as 22 
population, resident worker2, and job densities, plus household income shares (by income range), 23 
and built-environment attributes (including distance to the central business district or CBD 24 
[downtown Philadelphia] and centerline-mile densities of primary and secondary roads), as 25 
discussed below.  26 
 27 
The demographic details were originally provided at the traffic analysis zone (TAZ) level, by the 28 
regional MPO, DVRPC. TransCAD’s overlay function was used to impute such attributes at the 29 
block-group level, in order to spatially match them to the vehicle ownership data. Table 1 30 
provides summary statistics of all variables at the Census block-group level.  31 

 32 
Table 1. Summary Statistics of Model Variables at the Zone Level  33 

Mean Median Std. Dev. Min Max
Number (#) of Households 

(#HHs) 
513.2 455.7 277.5 0 2.494E+03

Resident Worker Density  
(# per acre) 

8.899 5.561 10.90 0 208.1 

Emp. Density  
(jobs per acre) 

9.651 2.727 51.03 1.500E-05 1124.8 

Pop. Density  21.34 12.722 25.03 0 360.2

                                                 
2 The term “resident workers” refers to those who list themselves as employed (either full or part time) and reside in 
the zone. Such individuals typically work outside the zone in question. 
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(persons per acre) 
Income>$35K Density 

(# of households with incomes 
over $35,000 per year, per acre) 

4.08 2.599 5.578 0 147.7 

Centerline Density (centerline 
miles of roadway per square 

mile of zone area) 
5.087E+04 1.521E+04 1.124E+05 0 1.920E+06

Euclidean Distance to CBD 
(mi.)  

12.38 9.111 9.706 0 49.67 

HH0wrk Density* (# per acre) 2.874 1.269 4.276 0 92.52

HH1wrk Density (# per acre) 3.216 1.748 4.772 0 122.4

HH2wrk Density (# per acre) 1.868 1.214 2.257 0 38.96

HH3wrk Density (# per acre) 0.428 0.262 0.514 0 5.449

Response Variables (Counts) 
ICEVs 736.9 598.0 558.0 1 14,697 

Non-Prius EVs 1.749 1 2.333 0 19 
Prius EVs 4.474 2 5.773 0 37 

 1 
After merging the demographic and employment count information from the DVRPC with the 2 
vehicle count layer (originally provided by the Delaware Valley Regional Planning Commission), 3 
there were 2,909 Census block groups with both the response variables (vehicle counts by type) 4 
and explanatory variables available. 5 
 6 
According to planners at the DVRPC, $35,000 is an important household income threshold that 7 
is specially tracked, in part due to distinct travel patterns; thus, the density of these households 8 
was tested as a covariate. Densities for most variables were used here because the vehicle-9 
ownership rate per zone is scaled by the number of households per zone. In other words, the 10 
negative binomial process modeled here (described in detail below) benefits from an exposure or 11 
size term, which here is the number of households (or population) per zone. (In theory, if the 12 
number of households or persons doubles, one expects the number of owned vehicles to double, 13 
ceteris paribus, in each of the three categories modeled. As is common in the practice of count-14 
model estimation, this work allows for a non-unitary parameter on the natural logarithm of 15 
households per zone, in order to provide more flexibility than forcing the model to exactly scale.) 16 
 17 
Network connectivity may also have a bearing on vehicle ownership. For example, abundance of 18 
roadway resources invites more vehicular travel, indirectly increasing household vehicle 19 
ownership. And poorly-connected networks can stymie direct travel while increasing congestion, 20 
possibly incentivizing the purchase of more fuel-efficient vehicles (including EVs). In this model, 21 
network features are proxied by the centerline-mile density of primary and secondary roads3. 22 

                                                 
3 Primary and secondary roadway networks were obtained from the 2011 Census Tiger/Line archive for the state of 
Pennsylvania, at http://catalog.data.gov/dataset/tiger-line-shapefile-2012-series-information-file-for-the-primary-
and-secondary-roads-state-bas Primary roads essentially refer to freeways and expressways and other divided, 
limited-access highways that are state-maintained or part of the interstate highway system. Secondary roads are 
major arterial streets, with multiple lanes of traffic in each direction, at-grade intersections, and possibly undivided 
medians. 
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Centerline density (for primary and secondary roads) was computed as the ratio between miles of 1 
roadway and area of block groups (in square miles).  2 
The population and jobs data were used in map format to define the regional CBD. Both 3 
densities spike in the central Philadelphia area, corresponding to the rectangular area shown in 4 
Figure 1. For block groups within this rectangular (CBD) area, the distance-to-CBD values were 5 
set to zero; for block groups outside of this zone, Euclidean distances from each block group’s 6 
centroid were computed, to the centroid of the CBD rectangle.  7 
 8 

METHODOLOGY 9 

 10 
Zone-level vehicle-ownership counts, by type of vehicle, can be modeled as a spatial count 11 
context with a multivariate response vector (of size 3 × 1 here), such as the model proposed and 12 
estimated by Wang and Kockelman (2013).  Wang and Kockelman’s (2013) new specification 13 
allows for multiple, simultaneous integer count responses, as well as spatial autocorrelation (due 14 
to missing variables that trend in space), zonal heterogeneity, and spatially-lagged4 and aspatial 15 
cross-correlations (across counts). A three-level response model is specified here, with the first 16 
stage (for vehicle count values) expressed as a Poisson process: 17 
 18 
 19 (1)          (௜௞ߣ)Poisson	௜௞~ݕ  
 20 
where ݕ௜௞ is the observed vehicle count by type (k = 1 denotes Prius EVs, 2 denotes non-Prius 21 
EVs, and 3 denotes ICEVs) for the ith block-group polygon of the five-county Delaware Valley 22 
region.  The (non-negative) average crash rates for each zone and vehicle type, ߣ௜௞, are defined 23 
in the second stage, as follows: 24 
 25 
௜௞ߣ   = ௜ఈܧ ∙ exp	(ݔ௜ᇱߚ௞ + ߶௞ +  ௜)        (2) 26ݑ
 27 
where ܧ௜ఈ is the exposure or scaling term, of household population (per zone), as discussed 28 
earlier.  The vector of all spatial random terms ࣘ = (ࣘ′ଵ, ࣘ′ଶ, ࣘ′ଷ)′  is multivariate normally 29 
distributed, where ࣘ୩ is an n by 1 vector of spatial random effects or errors for ownership rates 30 
of the type k vehicle, such that: 31 
 32 

൭ࣘଵࣘଶࣘଷ൱~	ܰ൮൭ࣆଵࣆଶࣆଷ൱ , ቎Σଵଵ Σଵଶ Σଵଷ
Σ′ଵଶ Σଶଶ Σଶଷ
Σ′ଵଷ Σ′ଶଷ Σଷଷ቏൲        (3) 33 

 34 
where the n by 1 vector ࣆ୩ indicates the average ownership rate for response/vehicle type k (k = 35 
1, 2, 3), and Σ௞௟ are n by n matrices describing the covariance structure between response types k 36 
and l.  37 
 38 

                                                 
4 “Spatially-lagged cross-correlation” captures the correlation across different vehicle types that occurs across space 
(mathematically expressed by the component ߟଵܹ  in matrix A), while aspatial correlation describes the standard 
correlation (like that in an aspatial multivariate count model) across different response types, as formulated by the 
remaining component, ߟ଴ܫ in matrix A. 
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The three-level scheme developed here decomposes the massive covariance structure into a 1 
series of conditional distributions that allow for spatial autocorrelation (measured by parameters 2 ߩଵ, ߩଶ, and ߩଷ), aspatial cross-correlations (gauged by parameters ߟ଴,ଶଷ, ߟ଴,ଵଷ, and ߟ଴,ଵଶ), and 3 
spatially-lagged cross-correlations (expressed by parameters ߟଵ,ଶଷ, ߟଵ,ଵଷ, and ߟଵ,ଵଶ). Details about 4 
model specification are provided in the Appendix.  5 
 6 
This three-level multivariate conditional autoregressive (MCAR) model structure was thus used 7 
to simultaneously predict counts of registered Toyota Prius EVs, non-Prius EVs (all EVs 8 
excluding the Prius), and ICEVs for the Philadelphia region.  The parameters were estimated 9 
using Bayesian Markov-chain Monte Carlo sampling techniques, coded in R and WinBUGS, as 10 
described in Wang and Kockelman (2013). Due to computing limitations with larger sample 11 
sizes (from non-standard posterior likelihoods [i.e., likelihood functions that do not follow a 12 
known distributional form] associated with discrete count process and complex covariance 13 
structures), Table 2’s parameter estimates come from an n = 1,000 block-group sub-sample for 14 
central Philadelphia , rather than the original 2,909 block groups that exist across the wider 15 
region (and have complete data, as discussed earlier). Figure 1 shows the spatial distribution of 16 
these vehicle counts (per household).  17 
  18 
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 1 
 2 
Figure  3 

  4 

 5 
Figure 1. Locations of Vehicle Counts (by Type) per Household across Philadelphia Zones 6 

(Clockwise: Prius EVs, non-Prius EVs, and ICEVs) 7 
 8 
 9 
 10 
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RESULTS 1 
 2 
As shown in Table 2, several control variables are associated with higher levels of vehicle 3 
ownership, per household (in the block group) -- regardless of vehicle type. For example, 4 
resident worker density is associated with more vehicles of each type, as expected, since most 5 
American workers drive alone to work (McKenzie et al. 2010)). Elasticities5 suggest that for a 6 
one-percentage point increase in resident-worker density (a measure of local population density), 7 
average increases of 3.4, 3.7, and 5.1 percentage points are expected in Prius EV, non-Prius EV, 8 
and ICEV ownership rates (vehicles per households) across zones, respectively.  Zonal 9 
household counts (serving as the size measure in its logarithmic form) and employment density 10 
are also positively correlated with greater vehicle counts in a zone, with fairly strong statistical 11 
and practical significance. Population density is not practically significant here, for EV 12 
ownership levels, once household counts and resident-worker densities are accounted for, 13 
perhaps due to this variable being inflated by household members who do not drive (such as 14 
young children and the disabled or very elderly). However, this term exhibits a strong marginal 15 
effect on ICEV ownership rates, with an elasticity estimate of +2.7 percent, suggesting the higher 16 
likelihood of larger-vehicle ownership rates for households with such non-drivers (e.g., 17 
Brownstone and Fang [2009] estimated higher rates of pickup-truck ownership in California). 18 
Indeed, as of model year (MY) 2012, the only EVs offering seating capacity above five were the 19 
Toyota Highlander HEV and the Chevrolet Tahoe/GMC Yukon/Cadillac Escalade HEVs (with 20 
the latter three vehicles all built on the same platform). In the current car market, larger families 21 
who require more passenger and cargo capacities simply have fewer choices, when seeking an 22 
EV versus an ICEV. 23 
 24 
Not surprisingly, higher shares of households with annual incomes above $35,000 are associated 25 
with higher vehicle ownership rates of all three types. In contrast, a higher density of lower-26 
income households (those with less than $35,000 annual income) is negatively associated with 27 
EV ownership rates, though positively associated with ICEV ownership rates. The price 28 
premiums on new EVs as compared to their ICEV counterparts range from $2,655 to $6,160, for 29 
MY 2012 vehicles (Cunningham 2012) and no doubt pose a barrier for lower income families 30 
when considering EVs (despite the value of EVs’ longer term fuel-cost savings, as computed in 31 
Khan and Kockelman [2012] and Tuttle and Kockelman [2012]). Low EV ownership rates 32 
among lower income households may also be attributed to the limited selection of used EVs in 33 
the market, as compared to used ICEVs. Interestingly, more ownership of non-Prius EVs is 34 
expected (with a highly elastic average zone-based elasticity of +2.6%) when the density of 35 
households having over $35,000 annual income increases by one percent, versus ownership of 36 
Prius EVs (with an elasticity of just +0.8%). This finding may reflect the Prius’ relative modest 37 
price among all EVs as well as its longer history on the market compared to other EVs (thus 38 
making more Priuses available on the used vehicle market).  39 
 40 
Controlling for all other variables, greater distance to the regional CBD is associated with much 41 
lower ownership of both EV types (k = 1, 2) and higher ICEV ownership: A one-percent increase 42 
in distance to CBD is accompanied by an average 2.3% increase in ICEV ownership rates as well 43 

                                                 
5 Here, elasticities represent the median value of the (MCMC-based) distribution of the averaged percentage 
increase in vehicle ownership rates (averaged across the 1000  zones in the sample) following a one-percent increase 
in each covariate (across all sampled zones), holding all other covariate values (in the sample) constant.  
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as a 26.2% and 20% decrease, respectively, in Prius EV, non-Prius EV ownership rates at the 1 
block group level. These results are highly elastic, suggesting that the CBD distance variable is 2 
proxying for a variety of relevant attributes that change with distance but were not available as 3 
covariates here, such as parking prices and parking space availability (which track land values, 4 
mostly), transit access, and so forth.  The fuel economy (Michalek et al. 2011) and vehicle size 5 
benefits of EVs, coupled with range anxiety for households living further from the regional 6 
center, may also be at play, in this ownership vs. distance relationship. The parameter 7 
coefficients of the ln(#HHs) variable (i.e., the natural logarithm of household counts per zone) 8 
across the three models were estimated to be 0.75, 0.8, and 0.67 for Prius EV, non-Prius EV, and 9 
ICEV counts, respectively, which suggests fewer vehicles per household in zones with more 10 
households (which may be due to more population-dense zones having more households, even 11 
though population density was also controlled for here [in a linear way]). 12 
 13 
Centerline-mile density appears to have no influence on ownership rates, ceteris paribus. Zero-14 
worker households are negatively associated with vehicle ownership rates across all types, 15 
presumably due to lower travel needs and lower incomes. Negative association is also found 16 
between the density of households with 3+ workers and EV ownership rates (with elasticities of - 17 
0.6% and - 2.6%, respectively) and a positive correlation with ICEV ownership rates (+3.0% 18 
elasticity). Higher jobs densities come with substantially higher average vehicle counts across all 19 
types: the effects are very elastic, with values of 2.5%, 3.0% and 6.9%, for Prius-EVs, non-Prius 20 
EVs, and ICEVs, respectively.  21 
 22 
Seemingly random variations in all three vehicle ownership rates exhibit spatially clustering, as 23 
measured by the autocorrelation coefficients ρ1, ρ2 and ρ3. By model construction, these spatial 24 
effects capture missing variables that trend in space, such as parking prices, congestion, and land 25 
use intensity, which affect vehicle ownership decisions. The remarkably high (aspatial) 26 
correlation between non-Prius EV and Prius EV error terms (described via the parameter η012, 27 
with mean estimate +0.813) reveals that higher Prius EV counts are likely to co-exist with higher 28 
non-Prius EV counts, as expected. However, their spatial correlation (gauged by the parameter 29 
η112) is practically insignificant (i.e., neighboring zones’ Prius-EV counts have no bearing on a 30 
zone’s non-Prius EV counts). In other words, the cross-correlations among different vehicle 31 
types are local (within a zone), after controlling for spatial autocorrelation across zones (from 32 
missing variables).  33 
 34 
ICEV ownership rates exhibit a modest aspatial correlation with Prius and non-Prius EV 35 
ownership rates, as reflected by the parameters η013 = +0.334 (pseudo t-stat. = 1.689) and η023 = 36 
+0.269 (pseudo t-stat. = 1.407), respectively. In other words, higher ICEV ownership rates tend 37 
to rise with EV ownership rates, which may come from underlying factors shared across all 38 
ownership rate decisions, and not captured by the model’s covariates (e.g., other demographic 39 
factors and parking availability). 40 
 41 
Interestingly, ICEVs show a rather weak spatially-lagged cross-correlation with the two EV 42 
categories (η113 = +0.073 and η123 = +0.058). Using measures of spatial correlation, the results in 43 
this paper support previous findings (using non-spatial models and arguments) that vehicle 44 
technology adoption is often influenced via a “neighbor effect,” where new technologies become 45 
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more desirable as market penetration increases nearby (see, e.g. Mau et al. [2008] and Axen et al. 1 
[2009]).  2 
 3 

Table 2. Parameter Estimates for the Zone-Level Vehicle Registration Model  4 

  
Mean 

Std. 
Dev. 

Pseudo 
t-stat 

2.5% Median 97.5% Elasticity 

Constant 

1 
(PriusEV) 

-2.138 0.425 -5.037 -2.895 -2.105 -1.333 
-

2 (Non-
PriusEV) 

-2.033 0.209 -9.709 -2.423 -2.030 -1.625 
-

3 (ICEV) 2.628 0.235 11.188 2.277 2.571 3.153 0.030

Resi. Worker 
Density 

(# per acre) 

1 0.447 0.062 7.263 0.331 0.437 0.587 0.034
2 0.303 0.058 5.236 0.202 0.323 0.382 0.037

3 0.136 0.056 2.438 0.010 0.136 0.222 0.051

ln(#HHs) 
1 0.753  0.069 10.963 0.616 0.751 0.888 0.031 
2 0.801 0.038 21.214 0.729 0.796 0.874 0.019

3 0.668 0.038 17.797 0.579 0.674 0.728 0.027

Emp. 
Density. 

(# per acre) 

1 0.020 0.007 3.080 0.007 0.020 0.033 0.025
2 0.017 0.006 2.876 0.006 0.017 0.029 0.030

3 0.003 0.003 1.049 -0.003 0.003 0.008 0.069

Pop. Density 
(# per acre) 

1 -0.027 0.043 -0.624 -0.143 -0.017 0.035 -0.004

2 -0.058 0.018 -3.168 -0.095 -0.054 -0.028 0.004

3 0.010 0.015 0.666 -0.017 0.009 0.040 0.027

HH > $35K 
Density 

(# per acre) 

1 1.615 0.146 11.054 1.383 1.592 1.864 0.008

2 1.446 0.148 9.770 1.191 1.476 1.694 0.026

3 0.194 0.084 2.303 0.052 0.204 0.327 0.027

HH < $35K 
Density 

(# per acre) 

1 -1.294 0.257 -5.035 -3.114 -1.294 -0.121 -0.008

2 -0.725 0.143 -5.065 -2.235 7.122 -5.188 -0.026

3 1.239 0.063 19.61 2.214 1.239 0.128 0.027

Centerline 
Density 
(1/mi.) 

1 -0.726 0.522 -1.390 -1.775 -0.726 0.275 0.008

2 -0.712 0.484 -1.472 -1.668 -0.708 0.231 -0.026

3 -0.093 0.291 -0.319 -0.666 -0.088 0.447 -0.321

Dist. CBD 
(mi) 

1 -0.029 0.008 -3.734 -0.044 -0.029 -0.014 -0.262
2 -0.029 0.007 -3.856 -0.041 -0.030 -0.012 -0.200

3 0.003 0.005 0.556 -0.007 0.003 0.012 0.023

HH0wrk 
Density 

(# per acre) 

1 -0.713 0.110 -6.507 -0.902 -0.724 -0.485 0.005

2 -0.575 0.091 -6.294 -0.748 -0.572 -0.397 -0.026

3 -0.241 0.051 -4.752 -0.341 -0.241 -0.143 0.026

HH1wrk 
Density 

(# per acre) 

1 -1.473 0.087 -16.883 -1.659 -1.460 -1.308 0.008

2 -1.194 0.095 -12.504 -1.361 -1.203 -0.997 -0.026

3 -0.306 0.096 -3.178 -0.487 -0.295 -0.155 -0.023

HH2wrk 1 -2.458 0.142 -17.347 -2.738 -2.445 -2.180 -0.005
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Density 
(# per acre) 

2 -1.809 0.156 -11.633 -2.121 -1.800 -1.526 -0.027
3 -0.492 0.161 -3.051 -0.851 -0.464 -0.242 -0.025

HH>3wrk 
Density 

(# per acre) 

1 -3.241 0.369 -8.776 -3.905 -3.228 -2.504 -0.006

2 -2.571 0.421 -6.103 -3.456 -2.505 -1.772 -0.026
3 -0.323 0.353 -0.916 -0.966 -0.283 0.302 0.030

η012 0.813 0.056 14.524 0.694 0.815 0.911 -

η013 0.334 0.198 1.689 0.124 0.252 0.745 -

η023 0.269 0.191 1.407 0.076 0.194 0.702 -

η112 0.074 0.025 2.932 0.034 0.071 0.132 -

η113 0.073 0.025 2.919 0.032 0.070 0.129 -

η123 0.058 0.072 0.810 0.012 0.026 0.268 -

ρ1 0.655 0.108 6.078 0.429 0.662 0.844 -

ρ2 0.491 0.102 4.831 0.293 0.492 0.687 -

ρ3 0.913 0.147 6.217 0.471 0.974 0.992 -

τv1 4.982 0.753 6.616 3.640 4.931 6.566 -

τv2 5.628 0.784 7.178 4.234 5.591 7.284 -

τv3 2.179 3.701 0.589 0.115 0.303 11.230 -

τ1 3.311 0.608 5.445 2.232 3.272 4.568 -

τ2 1.056 0.228 4.632 0.704 1.022 1.604 -

τ3 1.070 1.758 0.609 0.059 0.170 5.609 -
Note: Bolded elasticities are practically significant, suggesting more than 1% change in the expected vehicle 1 
ownership level, following a 1% increase in the associated covariate.  2 
 3 
CONCLUSIONS 4 
 5 
Using a trivariate Poisson-lognormal CAR model, this study forecast registered-vehicle counts 6 
across southeastern Pennsylvania to examine the effect of zone-level characteristics on vehicle 7 
ownership rates (per resident household) of Prius EVs, non-Prius EVs, and ICEVs while 8 
reflecting spatial autocorrelation. Results reveal that all three vehicle ownership rates rise with 9 
household counts (per zone) and resident-worker densities. In particular, EV ownership is 10 
predicted to rise with as households get closer to the CBD, perhaps due to the relatively small 11 
size of most EVs, the diminished range anxiety issues (thanks to shorter trips), and desire for 12 
greater fuel economy (in congested central-city driving conditions). The spatial clustering effects 13 
identified in this study also point to the existence of missing variables that trend in space and 14 
possibly a “neighbor effect” (from nearby households owning such vehicles). As a technology 15 
becomes more prevalent, familiarity and perceived value of such technologies and products tends 16 
to rise. The spatial autocorrelation exhibited by the results here suggest that EV purchase rates 17 
will rise, via such familiarity, thanks to rising market penetration.  18 
 19 
The results of this study underscore the high continuing demand for ICEVs, thanks in part to the 20 
far larger choice set of vehicles in that class, versus the mostly smaller vehicles offered in the EV 21 
classes to date. (ICEs presently offer greater passenger and cargo capacity.) In general, lower 22 
income households are less likely to purchase EVs; but, when they do, they are more likely to 23 
purchase Toyota Priuses (the EV model with the longest market history) than non-Prius EVs, 24 
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suggesting that vehicle affordability and familiarity, along with used-vehicle availability, may 1 
also be influencing EV purchase decisions. 2 
 3 
A household’s decision to purchase an EV is also influenced by many relatively complex 4 
residential and transportation characteristics, not included in this study’s set of covariates. These 5 
include such things as availability of designated parking for a home charger to be installed, 6 
nearby public charging infrastructure, and commute distances (versus AER, in the case of BEVs). 7 
Nevertheless, the model presented here addresses important gaps in current research in terms of 8 
the scale of observational units (neighborhoods or zones, instead of individual households or 9 
entire regions), while reflecting spatial autocorrelation patterns, without which the estimated 10 
parameters may be biased. This model structure offers a solid framework for spatially-based 11 
choice behavior, as EV market shares rise over time, and data sets on EV ownership and 12 
infrastructure become more detailed. 13 
 14 
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 20 
APPENDIX 21 
 22 
The three-level scheme relies on a series of conditional distributions, starting from the marginal 23 
distribution of ࣘଷ which follows a multivariate normal distribution: ݌(ࣘଷ)~	ࡺ(ࣆଷ,Σଷଷ), with 24 ࣆଷ = ૙ and ઱ଷଷ = ሾ߬ଷ(۲ −  ሿିଵ. The diagonal matrix, D, stores the number of neighbors 25(܅ଷߩ
for each geographic unit along its diagonal line; ߬ଷ is a scaling factor to fine-tune the covariance 26 
matrix, ઱ଷଷ; ߩଷ measures the strength of spatial autocorrelation of the response type 3 (i.e., 27 
ICEVs); and the square weight matrix, W, is defined by contiguity (i.e., Wij = 1 if i and j share a 28 
border and Wij = 0  if otherwise). For ease of exposition, one can assume the following sequence 29 
of conditional normal distributions: ݌(ࣘ) = ,ࣘଶ	ଵ|ࣘ)݌ ࣘଷ) ∙ (ࣘଷ	ଶ|ࣘ	)݌ ∙  Moreover, 30  .(ଷࣘ)݌
the marginal distribution of (ࣘଶ,ࣘଷ) can be obtained by removing irrelevant elements (with 31 
respect to ࣘଶ and ࣘଷ) from the full distribution, leading to the following distribution: 32 ൬ࣘଶࣘଷ൰~	ܰ ቆቀࣆଶࣆଷቁ , ൤Σଶଶ Σଶଷ

Σ′ଶଷ Σଷଷ൨ቇ.  33 

 34 
Conditionally, ࣘଶ|ࣘଷ~	ܰ(ۯଶଷࣘଷ, ሾ(۲ −  ଶଷ describes the aspatial correlation between response types 2 and 3, as well as the spatially-36ۯ τଶሿିଵ) (see Wang and Kockelman [2013]) where 35(܅ଶߩ
lagged correlation between the two response types, formally: ۯଶଷ = ࡵ଴,ଶଷߟ +  37 .܅ଵ,ଶଷߟ
 38 
Taking this conditioning one step further, ࣘଵ|ࣘଶ, ࣘଷ~	ܰ(ۯଵଷࣘଷ + ,ଵଶࣘଶۯ ሾ(۲ −  τଵሿିଵ), 39(܅ଵߩ
where ۯଵଷ and ۯଵଶ capture the aspatial and spatially-lagged correlation across response types 1 40 
and 3, and response types 1 and 2, formally:  ۯଵଷ = ࡵ଴,ଵଷߟ + ଵଶۯ and ܅ଵ,ଵଷߟ = ࡵ଴,ଵଶߟ +  41  .܅ଵ,ଵଶߟ
 42 
  43 
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