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ABSTRACT 20 

Transportation system improvements do not provide simply travel time savings, for a fixed trip 21 

table; they affect trip destinations, modes, and times of day - and, ultimately, home and business 22 

location choices. This paper examines the welfare (or willingness-to-pay) impacts of system 23 

changes by bringing residential location choice into a three-layer nested logit model to more 24 

holistically anticipate the regional welfare impacts of various system shifts. Here, home value is 25 

a function of home price, size, and accessibility; and accessibility is a function of travel times 26 

and costs, vis-à-vis all destination options. The model is applied to a sample of 60 Austin, Texas 27 

zones to estimate home buyers’ welfare impacts across various scenarios, with different transit 28 

fares, automobile operating costs, travel times, and home prices.  29 

Results suggest that new locators’ choice probabilities for rural and suburban zones are more 30 

sensitive to changing regional access, while urban and central business zone choice probabilities 31 

are more impacted by home price shifts. Automobile costs play a more important role in 32 

residential location choices in these simulations than those of transit, as expected in a typical U.S. 33 

setting (where automobile travel dominates). When generalized costs of automobile travel are 34 

simulated to rise 20%, 40%, and 60% (throughout the region), estimated welfare impacts (using 35 

normalized differences in logit logsum measures) for the typical new home buying household 36 

(with $70,000 in annual income and 2.4 household members) are estimated to be quite negative, 37 

at -$56,000, -$99,000, and -$132,000, respectively. In contrast, when auto’s generalized costs 38 

fall everywhere (by 20%, 40%, and then 60%), welfare impacts are very positive (+$74,000, 39 

$172,500, and $320,000, respectively). Such findings are meaningful for policymakers, planners, 40 

and others when anticipating the economic impacts of evolving transportation systems, in the 41 

face of new investments, rising travel demands, distance-based tolls, self-driving vehicles and 42 

other changes. 43 
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INTRODUCTION 4 

An understanding and consideration of residential location choice is fundamental to behavioral 5 

models of land use, and, ultimately, travel demand (Bina et al., 2006) and community welfare.  6 

Residential location choice decisions are influenced by a host of quantifiable and unquantifiable 7 

factors (e.g., Rossi, 2005), including home attributes (like home price, size, and age), travel costs 8 

(or/and travel times) and access (to freeways and transit stations, schools, jobs, parks and 9 

shopping centers), and household demographics (like income and the presence of children) 10 

(Habib and Kockelman, 2008). While challenging in execution, home (and business) location 11 

models are very valuable to the regional, long-run transportation planning process and to land 12 

use-transport policymaking (see, e.g., Ommere et al., 1999; Pinto, 2002; Hollingworth and Miller, 13 

1996; Zhou and Kockelman, 2011).  14 

The location choice model presented here relies on the method of logsum differences under a 15 

three-layer nested logit (NL) structure (for location, destination, and mode choice), with 16 

systematic utility modeled as a combination of home price, home size, and neighborhood 17 

accessibility. By making assumptions about home price, access attributes, travel cost and travel 18 

time sensitivity, and all model parameters, one can compute choice probabilities for each 19 

alternative setting and estimate welfare changes across scenarios (from equivalent variation or 20 

willingness-to-pay values), as experienced by households looking to locate in a region. While 21 

property valuation research has long examined the price impacts of local travel system changes 22 

(see, e.g., Mohring [1961], Allen [1981], Nelson [1982], Bajic [1983], Voith [1991], tenSiethoff 23 

and Kockelman [2002]), the approach pursed here takes the question of transportation 24 

improvements’ welfare impacts to a whole new level, using direct measures of welfare 25 

economics across multiple and often competing costs shifts (using differences in logsums [Ben-26 

Akiva and Lerman 1985], normalized to reflect dollar values, much like a willingness-to-pay 27 

metric). 28 

Accessibility has long been theorized and proven a major determinant of residential location 29 

choice behavior (see, e.g., Alonso [1964], Zondag and Pieters [2006], and Lee and Waddell 30 

[2010]), and some existing literature helps to illustrate its influence on home location choice. 31 

However, a more detailed analysis still needed to explore the relationships among travel cost 32 

(or/and travel time), accessibilities, and home-buyer benefits. Moreover, the influence of each 33 

factor on house buyer benefits and the sensitivity of these benefits with changes in input 34 

variables merit examination. This work offers such a closer look, which should be of interest to 35 

policy-makers and planners when seeking methods for more rigorous and defensible methods of 36 

evaluating project and policy impacts.   37 

BACKGROUND 38 

Home location choice has been modeled in a variety of ways. Many rely on stand-alone choice 39 

models (e.g., NL, multinomial logit [MNL], and mixed logit specifications) for individual 40 

households, in isolation or as part of a larger land use model. For regional-scale modeling, many 41 

past models have kept track of household (and job) count totals at the zonal (aggregate) level. 42 

For example, Ben-Akiva and Bowman (1998) developed an integrated nested logit model for 43 
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Bostonians’ residential location choices, along with members’ activity and travel schedules. 1 

They found that the NL structure did not fit the data quite as well as a work-trip-based 2 

comparison model. Lee and Waddell (2010) devised a two-layer NL model (decision to move or 3 

to stay, followed by location choice) and confirmed the model’s applicability with a case study in 4 

Seattle, Washington. Zhou and Kockelman (2011) explored a series of models for household and 5 

firm location choice around Austin, Texas, and found that that a three-layer NL structure, with 6 

location choice nested within home type choice, provided reasonable estimates. MNL models 7 

have also been popular. For example, Zhou and Kockelman (2008) used such models to simulate 8 

location choices for three different household types, using data on recent home buyers survey in 9 

Austin, Texas. The found that working households evaluate commute time differently when 10 

choosing their home location, with higher home-price-to-income ratios having a strong negative 11 

impact on their choice probabilities.  12 

Other papers have examined residential location choice within a larger, land use framework. 13 

Dang et al. (2011) established a household residential location choice model for a mono-centric 14 

city to quantitatively explore the evolution of urban residential housing consumption based on 15 

data from a survey in Beijing, China. Findings indicate that the balance between commuting 16 

costs and housing costs has become the key variable in the residential location selection process, 17 

similar to findings from Yang (2006) and Kockelman (2008). Zhang and Kockelman (2013) 18 

developed a spatial general equilibrium model to explore the endogenous relations between 19 

urban sprawl, job decentralization, and traffic congestion, and compared the efficiency and 20 

welfare impacts of anti-congestion policies. Results indicate that firms tend to decentralize while 21 

households move toward the city center as congestion grows. 22 

To describe the relationship between land-use and residential location choice, many researchers 23 

have used an accessibility index (AI) as a parameter. Srour et al. (2002) used different 24 

accessibility indices to estimate residential location choice and noted that job accessibility affect 25 

residential land values positively in statistically and economically significant ways, with distance 26 

to the central business district (CBD) and household head’s workplace location playing 27 

important roles in residential location predictions. Zondag and Pieters (2006) built a move-stay 28 

choice model and a residential location choice model by home type (with data from The 29 

Netherlands), and showed that the role of accessibility is significant but small compared with the 30 

effect of demographic factors, neighborhood amenities, and dwelling attributes. Lee et al. (2010) 31 

proposed a time-space prism (TSP) accessibility measure, and applied it to residential location 32 

choice in the Central Puget Sound region. The study confirmed that accessibility is an important 33 

factor in residential location choice, with individual-specific work accessibility being the most 34 

critical consideration. Bina et al. (2006, 2009) ranked the importance of housing and location 35 

attributes (home price, commute time to work, perception of crime rate, attractive neighborhood 36 

appearance, commute time to school, and access to major freeways are the top six) by using 37 

linear regression models which utilized an accessibility index calibrated from logsums from 38 

travel demand models of home-based work trips. 39 

The rule-of-half (RoH) and logsum differences are two typical methods in transport economics 40 

to estimate welfare. In the case of modeling home location choice, RoH method cannot be used 41 

for the home buyer/mover benefits calculation since there is no added demand (with just one 42 

home per household, typically). However, RUM assumptions are suitable for developing a 43 

location choice model, and the logsum differences can be used to determine home buyer/mover 44 

welfare under the assumption that each household chooses its home location to maximize its 45 
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utility function involving all parameters considered. McFadden (1978, 1981) used logsum 1 

differences based on RUM assumptions (with Gumbel-type error terms) to estimate user benefits 2 

and losses when their travel (or others’ travel) context changes. Many applications using logsums 3 

as an evaluation measure have been conducted in Europe, USA and other countries for policy 4 

(decision) making, land use modeling, and road (congestion) toll demand prediction (see, e.g., 5 

Jong et al., 2005; EXPEDITE Consortium, 2002; Odeck et al., 2003, Castiglione et al., 2003; 6 

Kalmanje and Kockelman, 2004).  Logsum differences have also been used to evaluate land-use 7 

strategies in a climate change context.  Geurs et al. (2010) evaluated data from The Netherland 8 

and showed that logsum accessibility benefits from land-use policy strategies can be quite large 9 

compared to investment programs for road and public transport infrastructure, largely due to 10 

changes in trip production and destination utility, which are not measured in the standard rule-of-11 

half benefit measure. 12 

While much research has been conducted on home location choice analysis, previous studies 13 

typically focus on what and how the factors affect the home buyer’s/mover’s decision. 14 

Additionally, the majority of home location choice studies are specific cities, districts or zones 15 

based on SP (Stated Preference) or RP (Revealed Preference) datasets, under the assumption that 16 

people choose the home that enables them to achieve the largest utilities. The change in house 17 

buyer’s utilities and benefits needs to be examined more deeply in a welfare context. Adding to 18 

the previous research on location choice, this paper presents a three-layer NL model with 19 

destination-mode choice nested in location choice, using logsum differences to estimate 20 

household welfare. 21 

METHODOLOGY 22 

As discussed above, home location choices are regularly represent a trade-off between housing 23 

type (including variables of home price, size and age) and site accessibility, with income, 24 

household size, presence of children, job locations, and other socio-economic factors also 25 

playing roles (see, e.g., Zondag and Pieters, 2006; Dang et al., 2011; Zhou and Kockelman, 2007, 26 

2008, 2011; Habib and Kockelman, 2008). Based on random-utility theory, logit-type models 27 

(McFadden 1978) have been widely used to explore this important household choice. The MNL 28 

framework has been the most common approach (e.g., Tu and Goldfinch, 1996; Hunt et al., 1994; 29 

Sermons and Koppelman, 2001; Zhou and Kockelman, 2008), with the assumption that all 30 

unobserved factors (among competing home alternatives) are uncorrelated and homogeneous. 31 

NL models have also been applied here, often to predict both home location and home size 32 

(Habib and Kockelman, 2008; Zondag and Pieters, 2006; Brian and Waddell, 2010) or activity-33 

based accessibility (Ben-Akiva and Bowman, 1998).  34 

This study relies on both MNL and NL equations, with systematic utility values that combine 35 

home price, home size and logsum accessibility metrics to specify (and then simulate) location 36 

choice behaviors. The study then uses normalized logsum differences to quantify the welfare 37 

effects of transportation system changes, along with other model variations. These methods, 38 

model structure, and applications are described below. 39 

Model Structure for Location Choice 40 

In evaluating home location choice, it is useful to first determine the most important aspects and 41 

attributes of that choice, such as home price, number of bedrooms, number of living areas, home 42 

age, lot size, travel time to work and recreation, and so on. This paper uses home price, home 43 
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size, and logsum-based accessibility metric (for the home neighborhood) as the critical choice 1 

attributes (consistent with recent research1), and employs an MNL specification to estimate the 2 

probability of choosing each location. A common practice in classifying household location is to 3 

use census tracts, zip codes, or traffic analysis zones (TAZs) (McFadden, 1981; Habib and 4 

Kockelman, 2008; Bina and Kockelman, 2009) as the location choice set. This model assumes 5 

the region of study is divided into L location zones, with each zone serving as a location 6 

alternative, and as a potential trip destination for the logsums that characterize the origin zone’s 7 

accessibility. Since home-location access is based on a two-level logsum (for destination and 8 

mode choices), the home-choice model specification becomes a 3-layer nested-logit model 9 

structure, as illustrated in Figure 1.  10 

There are three distinct choice dimensions being modeled here, so the structure reflects three 11 

embedded nests. This NL specification allows clusters of similar options to exhibit correlated 12 

error terms (Ben-Akiva and Lerman 1985). From top to bottom are location choice, destination 13 

choice and finally, mode choice. The top level is the MNL home location zone model, where the 14 

probability of each household choosing to reside in a zone is computed as a function of home 15 

price, home size, accessibility and other variables. The middle level is a destination choice model 16 

(for any single trip) where people choose a destination for their typical trip to other zones 17 

(including origin zone) based on the logsums of mode choices (lowest level). Lastly, the lowest 18 

level of the NL structure is a mode choice model (for the trip between zones) by destination that 19 

accounts for the generalized cost (travel cost and travel time) of each mode (only auto and public 20 

transit [bus] are considered here). Reasonable behavioral parameter values were selected to 21 

characterize preferences. Figure 1 also shows the associated scale parameters (the μ values). 22 

Logsum Method for User Benefits Estimation 23 

As discussed in the literature review, use of logsum differences is a relatively recent approach for 24 

anticipating consumer surplus changes, than the more traditional rule-of-half method. It also 25 

comes with much more of a disaggregate perspective on choice dynamics, and requires the 26 

presence of competing choice alternatives (versus a single demand market, for example, as is 27 

common in more traditional rule-of-half applications). Logsum differences have been used for 28 

welfare analyses of land use and environmental policies, and in home location choice studies 29 

(e.g., USDOT, 2004; Geurs et al., 2010; Lee et al., 2010). When using a logit model with RUM 30 

assumptions (along with linear-in-income utility assumptions), consumer surplus changes are 31 

calculated as the difference between the expected consumer surplus levels E(CSn) before and 32 

after the change (i.e., across scenarios), reflecting all alternatives, as follows: 33 

,                                    (1) 34 

where superscript 0 and 1 refer to before and after the change, αn represents the marginal utility 35 

of income for person n (can also be expressed as dUn/dYn, where Yn is the income of person n), 36 

Un is the overall utility for person n, Vn is the representative utility (indirect utility) for person n, 37 

                                                            
1 Bina and Kockelman (2006, 2009) explored the mean rank of importance of housing and location attributes from 
two mover segments: home buyers and apartment renters. They found that home price (or apartment rent), travel 
time (to work), and access to major freeways are the most important attributes for home buyers and apartment 
buyers - among almost 20 attributes. Home size (including number of bedrooms and lot size) is also top-ranked by 
most home buyers.  

E(CSn )  (1 / n )[ln( eVni
1

)
i
 ln( eVni

0

)]
i
 n,i
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and i denotes the choice alternatives available to person n. Thus, Uni is the overall utility for 1 

person n choosing alternative i, and Vni denotes the systematic or representative utility for person 2 

n choosing alternative i. 
 

3 

In this model, determining the probabilities of a home buyer choosing each location alternative is 4 

a key step. These probabilities are estimated by evaluating the characteristics of each alternative 5 

in order to assess an indirect utility associated with the alternative. In a MNL model, this may be 6 

expressed using formula (2) and (3). 7 

 
                                                                                         (2)  8 

௜ܸ ൌ ଵߚ ∙ ௜ܺଵ ൅ ଶߚ ∙ ௜ܺଶ ൅ ଷߚ ∙ ௜ܺଷ ൅ ⋯൅ ௡ߚ ∙ ௜ܺ௡                                   (3) 9 

where Pi is the probability of a user/consumer choosing alternative i from alternative choice set 10 

K; Vi is the representative utility(indirect utility) of alternative i, which is usually a linear 11 

function of attributes Xi (as shown in equation 3); and ߚ௜ is utility coefficient for each attribute.  12 

MODEL SPECIFICATION 13 

Some assumptions and simplifications are made in this NL model structure. For the top level, the 14 

sole variables assumed here to affect the location choice are accessibility, home price and home 15 

size. In the second choice stage, the only variables affecting destination choice probabilities are 16 

the logsums for (auto and transit) mode options. At the bottom level, the only variables assumed 17 

to affect mode choices are travel time and travel cost (along with alternative specific constants, 18 

or ASCs, for each mode). 19 

Based on the previous discussion of the NL model structure and calculation of logsum 20 

differences, key modeling equations (for generalized trip costs, systematic utilities, and inclusive 21 

values of the nested choices and choice probabilities) are as follows: 22 

                                                          (4) 23 

                                                                                  (5) 24 

                                             (6) 25 

AIl   l 
1

2

ln[exp(2  l ,d1
) exp(2  l ,d2

) ... exp(2  l ,dn
)]         (7)

 

26 

Each trip’s generalized cost (GCldm) is a linear function of travel time (TIME) and travel cost 27 

(COST) – which includes any tolls plus (other) operating costs -- between each (potential) home 28 

zone l (1:L) and each destination zone d, via mode m (for transit and auto), with all values of 29 

travel time (VOTT) assumed to be $12/hr here. The systematic utilities (Vldm) of these alternatives 30 

(shown in Eq 5 and 6) are measured in dollars, and include the appropriate mode’s ASC 31 

(assumed to be 0 for the auto mode and -1.1 for transit, as used by Kockelman and Lemp [2011]). 32 

The expected utility of a destination zone, d, as shown in Eq. 6, lacks an attractiveness factor.  33 

Usually, destination zones differ in the number of work, shopping, recreation and other 34 

opportunities they offer (though TAZ boundary decisions often have a target population or 35 

population range in mind, so they are often roughly equivalent in terms of household trip 36 

Pi  eVi / eVi

i1

K



GCldm VOTT TIMEldm COSTldm

Vldm  ASCm -GCldm

 ld 
1

1

ln[exp(1 Vld ,transit ) exp(1 Vld ,Auto )]
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generation). To avoid introducing land use effects, from variations in jobs (by type) or other 1 

attraction features, the models used here presume equal attractiveness, for household trip making, 2 

across all 60 zones, ceteris paribus. Travel times and costs vary, however, by mode and to each 3 

destination zone, given a starting (home) zone.  So destination zones are not equally attractive, 4 

once travel costs are taken into account. 5 

Equation 7’s accessibility metric, AIl, is the logsum, l, which denotes the inclusive value or 6 

expected maximum utility of the two-level (destination and mode) choices available to a home 7 

zone l. This term requires no normalizing coefficient, since the utilities, V, are already measured 8 

in dollars. Finally, at top level of the effectively three-level NL framework, the household’s 9 

expected choice probability of each location is as follows: 10 

   

Prl 
exp(3.Ul )

exp(3.Ul )
l1

L


                                                         (8) 11 

   Ul 1 Pl  2 SFl  3 AIl                                                                   (9)   12 

where Pr(.) represents the probability of a particular choice (home location choice); U denotes 13 

the expected maximum utility of the top level alternative; SF denotes the square footage (home 14 

size); and P denotes the home price. The α1, α2, and α3 are indirect utility slope parameters on 15 

home price, home size and accessibility, which vary with each potential home zone l. In the 16 

following example, the values of α1 and α2 were calculated using Zhou and Kockelman’s (2011) 17 

work2, and α3 was assumed to be the same AI coefficient (0.635) found in Lee and Waddell’s 18 

(2010) paper, based on a logsum (for work trips) to all destination zones. 19 

μ1, μ2, μ3 serve as the scaling parameters parameters (which are the inverse of the inclusive value 20 

coefficients) for the mode, destination and location choices. Consistent with McFadden’s 21 

random-utility theory, the scale parameters are usually assumed to fall from the lowest to the 22 

highest level nest (see, e.g., Kockelman and Lemp, 20113). Here, scale parameters of 1.2 (μ1) in 23 

the lowest, 1.1 (μ2) in the middle nest, and 1.0 (μ3) in the upper level nest were assumed. These 24 

are falling (from the lowest to the highest level nest), and the inverse of each lies between 0 and 25 

1, consistent with RUM assumptions (Ben-Akiva and Lerman, 1985).  26 

                                                            
2 Zhou and Kockelman (2011) proposed a dwelling unit and location choice model for Austin’s households based on 
a survey of Austin movers in 2005, and estimated coefficients on home Price-to-income ratio and SF-per-household-
member variables to be -0.249 and +3.34. According to “City of Austin Community Inventory Report”, from 2000 
to 2007, the average median household annual income is between $60,000 to $70,000, household size is between 2.2 
to 2.4 (and shows a declining trend). Thus, in this paper, an average household income $70,000 and an average 
household size 2.4 are assumed (usually, the new home buyer households are wealthier and bigger-size than average 
households in Austin. In Bina and Kockelman (2009), the surveyed new home buyer’s average income was $93,256, 
and average household size was 2.27. Here, with the home price (P) and SF instead of home Price-to-income ratio 
and SF-per-household-member, the values of α1 and α2 can be estimated as α1 = -0.249/7=-0.0357 and α2 = 3.34/2.4 
= 1.39. 
3 Kockelman and Lemp (2011) relied on a 4-layer (destination, mode, time of day, and route) NL model, with scale 
parameters (1, 2, 3, 4,) from the lowest-level nest to the highest-level nest assumed to be 1.8, 1.6, 1.4 and 1.2, to 
be consistent with random utility maximization theory (Ben-Akiva and Lerman 1985). 
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Estimates of consumer surplus changes (ΔCS) for each scenario (as compared to the starting or 1 

base case setting) were computed as well. Normalized logsums of systematic utilities are used 2 

here, as the basis for estimating those welfare changes, as follows: 3 

                                             (10) 4 

Here, CS can be measured between any two scenarios, but this paper looks primarily at the 5 

change in consumer surplus as measured in reference to the base scenario. Here, n represents 6 

the marginal utility of income for person n, assumed to be the reciprocal of 1's absolute value, 7 

so all n are set to $10,000/0.0357 = $280,110.  8 

NUMERICAL EXAMPLES 9 

In order to fully appreciate the changes of consumer surplus changes (home buyer welfare effects) 10 

as a result of the changes in access, home price and other factors, the NL model was applied to a 11 

variety of scenarios, which vary, for example, the generalized costs of either mode, auto’s 12 

operating cost and travel time, home prices, and VOTT. The travel time and cost data used in this 13 

example come from TAZ-based skim files of Austin, Texas’ Capital Area Metropolitan Planning 14 

Organization (CAMPO) for a 3-county network in year 2000. 60 of the original 1,074 TAZs 15 

were strategically selected as a representative sample of the larger region’s location alternatives.   16 

Table 1 shows the types and distribution of these 60 zones, which reflect 4 types of land use: 17 

rural, suburban, urban, and central business district (CBD) zones (according to CAMPO 18 

definitions). Here, CBD zones are assumed to have the highest home prices and rural zones the 19 

lowest, thanks to land-rent increases typical of more central/accessible locations. For simplicity, 20 

the home prices are assumed to be $200,000, $300,000, $600,000 and $1,000,000 in the rural, 21 

suburban, urban and CBD zones. Similarly, home sizes are assumed to fall with increased 22 

density, with 3,000 ft2, 2,500 ft2, 2,000 ft2 and 1,500 ft2 serving as the interior/built space for 23 

rural, suburban, urban and CBD homes. Accessibility metrics are much harder to guess at, and 24 

were estimated as logsums using actual travel times and travel costs between the 60 zones (travel 25 

costs referred to here as “fares”, for the transit alternative, and reflecting tolls and vehicle 26 

operating costs in the case of the automobile mode4). Table 2 shows the main variables and 27 

parameters used in the example, and Table 3 shows the base scenario for the 60 zones.  28 

Under this base scenario, probabilities of location choices are calculated via Equation 8, with the 29 

rural and suburban zones’ share being larger due to their relatively higher utilities. The shares of 30 

residents in the four types of zones are 0.480, 0.400, 0.117 and 0.0026 (for rural, suburban, urban, 31 

and CBD in that order). The model also shows that the probability of a household choosing a 32 

rural or suburban zone increases greatly with higher AIs. For example, rural zone 4 and suburban 33 

zone 37 have relatively high AIs (0.906 and 1.902) within their zone type, and the probabilities 34 

of these two zones being chosen (0.0499 and 0.0328) are relatively large; but for urban zones, 35 

especially the CBD zones, even zones with very high AIs are unlikely to be chosen (e.g., zone 60 36 

has the highest accessibility 2.934, but the probability of a household choosing this zone is very 37 

                                                            
4 According to AAA (2013), the average cost of driving a medium sedan 15,000 miles a year was $0.61 per mile, in 
2013. Here, a value of $0.60 per mile is used to estimate the COSTldm value shown in Equation 4.  
 

CSn 
1

 n

{ln[ exp(3U
1
l )

l
 -ln[ exp(3U

0
l )

l
 ]}
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small). This indicates that the relative desirability of rural and suburban zones is more sensitive 1 

to AIs. In other words, network changes that improve or worsen the accessibility of rural and 2 

suburban zones have great impacts on households’ decisions to locate in these zones, while the 3 

choice to locate in urban and CBD zones is less sensitive to such accessibility changes. 4 

Several other scenarios are also explored to understand effects on home buyer welfare levels. 5 

Scenario 1 examines the effect of transit’s generalized travel costs by increasing and decreasing 6 

GCij values by 20, 40 and 60 percent. Scenario 2 examines travel time cost effects, while 7 

Scenarios 3 and 4 further explore changes in the auto mode, by varying its operations costs and 8 

travel times, respectively. Finally, Scenario 5 examines the impact of changing home prices on 9 

home buyers’ benefits.  10 

Figure 2 shows the corresponding changes in AIs and the changing probabilities with the 11 

changes in inputs in these scenarios. Table 4 shows the shares of households selecting each of 12 

the 4 zone types under different scenarios. Finally, Table 5 compares the home buyer welfare 13 

across scenarios. It shows how the generalized cost of automobile travel and home prices play 14 

key roles in home buyer welfare gains and losses. 15 

When varying the generalized costs of transit, there are almost no changes or very slight changes 16 

in each location’s AI and probability of being chosen. For example, when all GCij values are 17 

increased 40%, total probabilities of location choices in CBD and urban zones have no change on 18 

average, while those in rural and suburban zones only rose an average of 0.0001 and -0.0001. 19 

Home buyer welfare change, as estimated using the logsum difference between the Base scenario 20 

and Scenario 1, is very small. When all GCij values are increased 20%, 40%, and 60%, the 21 

estimated average-mover welfare changes are computed to be -$30.8, -$42.6, and -$47.7. 22 

However, when all GCij values are decreased 20%, 40%, and 60%, the corresponding welfare 23 

gains are estimated to be $101, $592, and $4,870. The model implies that decreasing transit fares 24 

impact home buyer benefits more significantly than increasing fares. 25 

Changes in generalized costs of auto affect home locations’ AI and probability more 26 

significantly, as can be seen in Figure 2(a). Larger spacing between the AI lines implies that AI 27 

is quite sensitive to auto’s generalized cost. When all GCij values are increased by 40%, average 28 

location choice probabilities in the rural and CBD zones rise by 0.0210 and 0.0002, while those 29 

in suburban and urban zones drop an average of 0.0197 and 0.0015. This may appear 30 

inconsistent with intuition: one typically expects higher generalized auto costs to make more 31 

central housing locations relatively more accessible and thus relatively more desirable. However, 32 

from Equations (4), (5), (8) and (9), one can find that as GCij increases, the AI of each zone 33 

decreases, making AI differences between zones smaller, so this shift toward less accessible 34 

zones can result.  35 

Welfare gains and losses (∆CS) estimated via logsum differences in the base scenario and 36 

scenario 2 are quite large: when all GCij values are increased 20%, 40%, and 60%, the estimated 37 

user welfare losses are -$55,946, -$98,858, and -$13,2160. When all GCij values fall 20%, 40%, 38 

and 60%, the estimated welfare gains are $74,127, $172,506, and $319,787. As in the case of 39 

transit, such results imply that reductions in automobile travel costs impact home buyer welfare 40 

more significantly than the same percentage increase in auto travel costs.  The above welfare 41 

gains and losses are calculated for home buyers with a $70,000 annual income and 2.4 person 42 

household size. For home buyers with $45,000 annual income and 4-person household size, the 43 

estimated user welfare changes are -$36,299, -$64,083, and -$85,581 when all GCij values are 44 
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increased 20%, 40%, and 60%; they are $48,151, $113,699, and $207,662 when all GCij values 1 

fall by 20%, 40%, and 60%. A $15 per hour VOTT was also tested, resulting in higher 2 

accessibility indices (than with the $12-per-hour VOTT used above), but estimated house buyer 3 

benefits were smaller than before.  4 

Scenarios 3 and 4 are the detailed analyses of changes in operation cost and travel time inputs of 5 

the auto mode. Figures 2(b) and 2(c) describe the AIs and probabilities of each location being 6 

chosen under these scenarios. As seen in these figures, line shapes are very similar to those in 7 

Figure 2(a), but the spacing between lines is smaller, implying that AI and the probability of a 8 

location being chosen are less sensitive to changes in vehicle operation costs and travel times 9 

than to changes in overall generalized costs. In Scenario 3, for example, when all operation cost 10 

values are increased 40%, the total probabilities of location choices in rural and CBD zones rise 11 

by 0.0149 and 0.0001, on average, while those in suburban and urban zones drop an average of 12 

0.0134 and 0.0016; when all operation cost values are decreased 40%, the total probabilities in 13 

suburban zones rises by 0.0109, while those in rural, urban, and CBD zones drop an average of 14 

0.0086, 0.0020, and 0.0003. As discussed previously, AIs of rural and suburban zones are more 15 

sensitive to the road networks changes. Scenario 4 offers almost the same trend as shown in 16 

Scenario 3.In comparing results of Scenarios 3 and 4, one can see how lower vehicle operations 17 

costs may provide more benefits to a new home buyers than reduced travel time, when they are 18 

changed by the same proportion or precentage. For example, the estimated welfare effect is 19 

$99,940 when all operating costs fall 40%, versus $51,546 when all travel times fall 40%. Table 20 

5 shows these numbers in detail. 21 

Scenario 5 explores the effect of home price on people’s home location choice and welfare. As 22 

displayed in Figure 3, the shares of location choice in suburban zones are less sensitive to the 23 

home price shifts (as compared to all other zone types). For example, zones 10, 37, 48 and 60 fall 24 

in rural, suburban, urban, and CBD locations, respectively. When all home price values increase 25 

40%, the shares of these four representative zones shift by 0.0037, -0.0010, -0.0085 and -0.0008. 26 

The corresponding estimated welfare losses are -$56,678, -$111,383, and -$164,438 when all 27 

home prices increase 20%, 40%, and 60%, and welfare gains are $59,036, $120,885, and 28 

$186,079 when home price fall 20%, 40%, and 60. When one changes VOTT from $12 to $15 29 

per hour, the benefits one observes following house price reductions (in Table 5) are smaller than 30 

before, while losses from house price increases are somewhat greater than before. It seems home 31 

buyer benefits are impacted slightly more when home prices fall than when they rise by the same 32 

amount (in dollars or percentage terms).   33 

CONCLUSIONS  34 

An understanding of residential location choice provides a foundation to explore the relationship 35 

between land use and transportation, which leads to more accurate travel demand models. 36 

Previous research on household location choice usually focus on the factors affecting the 37 

household buyer’s location choice decision, with accessibility generally accepted as a principal 38 

determinant of residential location selection. In this paper, a three-layer NL structure on house 39 

location choice is proposed and logsum differences are used to estimate the home buyer welfare 40 

changes as a result of various transportation and housing input changes. The systematic utility of 41 

a residence is considered as a function of home price, home size and home location zone’s 42 

accessibility. This paper develops several scenarios to examine how transportation and housing 43 

price factors affect house location choice behavior and home buyer welfare.  44 
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Home buyer welfare estimated via logsum differences are very small due to the change of 1 

generalized cost of transit, AIs; and location choice probabilities of each location almost remain 2 

the same values when varing all the GCij values. The auto mode’s costs are more important for 3 

most people’s home location choice than is transit, people consider the AI based on automobile’s 4 

access a lot when they make a location choice decision; Decreasing the values of travel costs or 5 

travel times have a more significant impact on home buyer welfare than increasing that; The 6 

higher the AIs, the larger the probabilities in most rural and suburban zones, it is also implied 7 

that in urban and CBD areas, home buyers usually pay more attention on home price or home 8 

size; The impact of home price on home buyer welfare is apparent compared to other attributes 9 

when they changing at the same speed/amplitude, and home buyer benefit mores when home 10 

prices fall by the same amount in dollars or percentage terms. 11 

Of course, the analysis pursued here illustrates only a limited number of idealized scenarios 12 

under a nested logit model structure. Many other investigative opportunities and scenario 13 

extensions are feasible, which may highlight other key factors for regional welfare analysis 14 

following changes in the transportation and/or land use systems. For example, one could 15 

examine the effects of changes in zone attractiveness, model parameters, and various other inputs, 16 

simultaneously or independently. User heterogeneity is also important to explore in more depth, 17 

since every household differs (in its demographic attributes, income, housing preference function, 18 

and values of travel time, for example). Moreover, uncertainty exists in all zones (and for all 19 

model parameters, as well as the model specification itself), with spatial autocorrelation in 20 

missing variables; and there are significant information-limitation issues for many movers 21 

(especially those new to a region), when evaluating a region’s many location options. Thus, this 22 

topic area remains ripe for future investigation. 23 
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  Figure 1   Nested logit model structure on home location choice 15 

 16 

 17 

Table 1   Austin’s TAZ sample 18 

 Rural Suburban Urban CBD Totals 

County 

Hays 4 4 2 0 10 

Travis 9 15 12 2 38 

Williamson 4 5 3 0 12 

Totals 17 24 17 2 60 

 19 

  20 

µ=1.2 

µ=1.1 

µ=1.0 

Location 

Zone Zone Zone L…… Zone 

Zone i 

D 1  D 2 D 3 D L 

Auto 

…...

...... 

Auto  Auto Auto 

Transit Transit Transit Transit 
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Table 2   Variables and parameters used  1 

Variable Used Variable Description Parameter Values 

Home price (P) Average home price (10,000$) α1 -0.0357 

Square footage (SF) Average interior square footage (1,000ft2) α2 1.39 

Accessibility 
(AI) 

Logsums of mode-destination analysis based 
on travel time and travel cost 

α3 0.635 

Scale parameter 
(µ) 

Scale parameter for the lowest level µ1 1.2 

Scale parameter for the median level µ2 1.1 

Scale parameter for the highest level µ3 1.0 

Alternative specific 
constants (ASC) 

Alternative specific constants for Auto mode  0.0 

Alternative specific constants for Transit 
mode 

 -1.1 

VOTT Value of the travel time ($/h)  $12 per hr 

Marginal utility of income 
(αn) 

Marginal utility of income for person n αn $280,110 

  2 

  3 
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Table 3   Attributes for home location choice and probabilities in base scenario 1 

Zone 
type 

Zone 
ID 

Home 
price 

($10,000) 

Home 
size 

(1,000ft2) 
AI 

Proba
bility 

Zone 
type 

Zone 
ID 

Home 
price 

($10,000) 

Home 
size 

(1,000ft2) 
AI 

Proba
bility 

1 1 20 3 -0.872 0.0161 2 31 30 2.5 1.230 0.0214 

1 2 20 3 0.018 0.0284 2 32 30 2.5 0.995 0.0184 

1 3 20 3 -0.098 0.0264 2 33 30 2.5 0.925 0.0176 

1 4 20 3 0.906 0.0499 2 34 30 2.5 0.862 0.0169 

1 5 20 3 -0.119 0.0260 2 35 30 2.5 1.431 0.0243 

1 6 20 3 0.574 0.0404 2 36 30 2.5 0.836 0.0167 

1 7 20 3 0.279 0.0335 2 37 30 2.5 1.902 0.0328 

1 8 20 3 -0.195 0.0248 2 38 30 2.5 0.958 0.0180 

1 9 20 3 0.040 0.0288 2 39 30 2.5 -0.092 0.0092 

1 10 20 3 0.166 0.0312 2 40 30 2.5 -0.403 0.0076 

1 11 20 3 0.263 0.0332 2 41 30 2.5 1.709 0.0290 

1 12 20 3 -0.421 0.0215 3 42 60 2 1.363 0.0040 

1 13 20 3 -0.850 0.0164 3 43 60 2 0.985 0.0031 

1 14 20 3 0.777 0.0460 3 44 60 2 0.716 0.0026 

1 15 20 3 -0.566 0.0196 3 45 60 2 1.237 0.0037 

1 16 20 3 -0.628 0.0189 3 46 60 2 0.678 0.0026 

1 17 20 3 -0.637 0.0187 3 47 60 2 1.215 0.0146 

2 18 30 3 -0.891 0.0056 3 48 60 2 1.936 0.0230 

2 19 30 2.5 0.807 0.0164 3 49 60 2 2.007 0.0060 

2 20 30 2.5 0.191 0.0111 3 50 60 2 1.944 0.0058 

2 21 30 2.5 0.570 0.0141 3 51 60 2 1.891 0.0056 

2 22 30 2.5 0.863 0.0169 3 52 60 2 2.402 0.0077 

2 23 30 2.5 0.623 0.0146 3 53 60 2 2.493 0.0082 

2 24 30 2.5 0.883 0.0172 3 54 60 2 1.529 0.0044 

2 25 30 2.5 0.593 0.0143 3 55 60 2 2.437 0.0079 

2 26 30 2.5 0.105 0.0105 3 56 60 2 1.807 0.0053 

2 27 30 2.5 1.583 0.0268 3 57 60 2 1.698 0.0049 

2 28 30 2.5 0.928 0.0177 3 58 60 2 2.444 0.0079 

2 29 30 2.5 0.548 0.0139 4 59 100 1.5 2.904 0.0013 

2 30 30 2.5 -0.047 0.0095 4 60 100 1.5 2.934 0.0013 

Total 
Probabilities 

0.4799  
(Zone type 1) 

0.4004 
(Zone type 2) 

0.1171 
(Zone type 3) 

0.0026 
(Zone type 4) 

 

             2 
Note: Zone type 1 = Rural zones (1-17), 2 = Suburban zones (18-41), 3 = Urban zones (42-58), 4 = CBD zones 3 
(59-60). 4 
 5 

 6 

 7 
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Table 4    Shares of home location for 4 types of zones due to variables changes 1 

House price 60% 40% 20% -20% -40% -60% 

Transit 
GC 

Rural 0.4800 0.4800 0.4800 0.4798 0.4792 0.4754 

Suburban 0.4003 0.4003 0.4003 0.4005 0.4009 0.4039 

Urban 0.1171 0.1171 0.1171 0.1172 0.1173 0.1181 

CBD 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 

Auto 
GC 

Rural 0.5138 0.5009 0.4890 0.4764 0.4824 0.5038 

Suburban 0.3708 0.3807 0.3910 0.4070 0.4081 0.3987 

Urban 0.1125 0.1156 0.1173 0.1142 0.1076 0.0959 

CBD 0.0028 0.0028 0.0027 0.0023 0.0020 0.0016 

Auto 
OC 

Rural 0.5030 0.4948 0.4869 0.4744 0.4713 0.4720 

Suburban 0.3804 0.3870 0.3938 0.4064 0.4113 0.4140 

Urban 0.1138 0.1155 0.1167 0.1167 0.1151 0.1119 

CBD 0.0027 0.0027 0.0026 0.0024 0.0023 0.0021 

Auto 
TT 

Rural 0.4857 0.4829 0.4810 0.4801 0.4815 0.4844 

Suburban 0.3920 0.3952 0.3980 0.4020 0.4029 0.4029 

Urban 0.1196 0.1192 0.1184 0.1154 0.1132 0.1105 

CBD 0.0028 0.0027 0.0026 0.0025 0.0023 0.0022 

Home 
price 

Rural 0.5625 0.5368 0.5094 0.4484 0.4148 0.3791 

Suburban 0.3787 0.3882 0.3956 0.4017 0.3991 0.3918 

Urban 0.0583 0.0740 0.0934 0.1456 0.1792 0.2179 

CBD 0.0005 0.0009 0.0015 0.0042 0.0069 0.0112 

Base scenario Rural:0.4799; Suburban: 0.4004; Urban: 0.1171; CBD: 0.0026 

 2 

  3 
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Table 5   Welfare effects of changing travel costs, times, and home prices (Income = 1 

$70,000, Household size = 2.4 persons, VOTT = $12/hr) 2 

Changes 
Scenarios 

+60% +40% +20% -20% -40% -60% 

Transit GC -$47.7 -$42.6 -$30.8 $101.1 $591.5 $4,870 

Auto GC -$132,160 -$98,858 -$55,946 $74,127 $172,506 $319,787 

Auto OC -$94,290 -$68,089 -$37,063 $44,808 $99,940 $169,692 

Auto TT -$61,040 -$42,585 -$22,303 $24,537 $51,546 $81,299 

Home Price -$164,438 -$111,383 -$56,678 $59,036 $120,885 $18,6079 

Auto GC1 -$80,661 -$60847 -$34,755 $46,993 $112,094 $206,804 

Home Price1 -$174,640 -$124,185 -$72,106 $38,989 $99,511 $176,764 

         Note 1, the results are according to VOTT = $15/hr. 3 

  4 
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(a) 3 

 4 

(b) 5 

 6 

(c) 7 

Figure 2   Changes in AI and zone choice probabilities following changes in auto’s total 8 

(generalized) costs (a), in auto’s operating costs (b), and in auto’s travel times (c) 9 

Note: X-axis denotes the 60 zones (potential home locations).  10 
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 2 

Figure 3   Changes in zone choice probabilities following home-price changes 3 
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