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ABSTRACT 
21 
22 

The emissions and human exposure impacts of electric vehicle (EV) adoption, especially in comparison to 23 

conventional gasoline- or diesel-powered engines, depends on numerous factors including geography, 24 

electricity generation, and fuel mix.  Results of any analysis also vary depending on the nature of data 25 

collected and its level of aggregation by time or location.  This paper combines several approaches to 26 

develop a robust estimate of these impacts specific to the state of Texas by considering marginal 27 

emissions by time of day, as well as location of vehicle and power plant emissions.  The authors estimate 28 

health and other external costs of operating an EV in the state at approximately $62 per year, compared 29 

with an average of $136 for a passenger car powered by gasoline. 30 

INTRODUCTION 31 

As electric vehicles (EVs) continue to become more efficient and reliable, EVs have become an 32 

increasingly realistic option for individuals in the market for a new car.  Battery costs are falling (Nykvist 33 

and Nilsson, 2015) and consumers value energy efficiency, especially in times of high fuel prices.  Many 34 

are motivated by the possibility of reducing their carbon footprint and other emissions.  Before rushing to 35 

adopt an EV, however, it is important to holistically evaluate all of their costs and benefits. 36 

While pure electric vehicles (or BEVs) are sometimes advertised as “zero-emissions,” this is rarely an 37 

accurate characterization, even ignoring the emissions embodied in the vehicle’s production process.  38 

Several researchers (Michalek et al., 2011; Anair and Mahmassani, 2012; Tessum et al., 2014; Nichols et 39 

al., 2015) have highlighted the variable and often significant emissions resulting from electric power 40 

production to charge EV batteries.  A fair assessment of EVs’ environmental impacts requires a detailed 41 

look at these emissions, their spatial distribution, and their exposure and human health implications. 42 

The following is a pre-print, the final publication can be found in the International Journal 
of Sustainable Transportation, 11 (7): 486-492, 2017.
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This paper develops a detailed comparison of EV and conventional vehicle emissions across the state of 43 

Texas.  Actual emissions data, drawn from state and national databases, are used to characterize the 44 

emissions implications of EV charging using the Texas grid, while U.S. Environmental Protection 45 

Agency mobile-source emissions software is used to generate the emissions profile of modern light-duty 46 

vehicles.  Each of these is then monetized using health-cost estimates specific to the emissions location 47 

and species.  The human health implications of a small dose of sulfur dioxide at ground level, for 48 

example, can differ significantly from the large, concentrated plume emanating from a large power plant.  49 

Meanwhile, the geographic location of emissions matters a great deal.  Even relatively dirty electricity 50 

production in a sparsely populated rural area may result in less net human exposure than cleaner 51 

generation near a major city. 52 

BACKGROUND 53 

Nichols et al. (2015) investigated the emissions implications of shifting a single travel-mile in a late-54 

model passenger car or light-duty truck to an EV powered by the Electric Reliability Council of Texas 55 

(ERCOT) grid, which covers approximately 80% of the state’s land area and nearly 90% of its population.  56 

Their methodology focused on average plant emissions, and they found that while the EV resulted in 57 

generally lower emissions overall, some pollutant species were significantly higher than for the gasoline- 58 

or diesel-powered equivalent.  Of particular concern was the extremely high monetized cost of sulfur 59 

dioxide emissions resulting from coal-fired power plants, even though Texas uses relatively low-sulfur 60 

coal from Wyoming (EIA, 2012).  In their analysis, this discrepancy actually tilted the final emissions-61 

cost verdict away from EVs because they entailed dramatically higher monetized externalities on average 62 

(by a factor of nearly 60%).  This outcome assumed all kilowatt-hours of power to be created equally and 63 

every ton of emissions to be valued equally, which are not always reasonable assumptions.  This situation 64 

warrants further consideration. 65 

There are several key points at which the above analysis could be improved.  For example, using average 66 

emissions estimates for electricity generation can oversimplify the situation.  A single dollar-per-ton cost 67 

for each pollutant species, uniformly applicable regardless of human exposure, is also misleading. This 68 

paper revisits the question of where and when power plant emissions take place, and what that means for 69 

population exposure.  First, it is important to disaggregate emissions variability throughout the day.  Siler-70 

Evans et al.’s (2012) marginal emissions factors for the ERCOT grid are used here to give more accurate 71 

estimates of marginal emissions loads by time of day and season of year for EV charging.   72 

This paper also draws on data developed by the U.S. Environmental Protection Agency to quantify 73 

aggregate emissions spatially. Muller and Mendelsohn’s (2006) Air Pollution Emission Experiments and 74 

Policy Analysis Model provides estimates of emissions costs to the environment and human health. 75 

METHODOLOGY 76 

This paper quantifies the environmental and human exposure costs of emissions from charging of electric 77 

vehicles and compares those costs to those of conventional vehicles in Texas.  The primary challenge is to 78 

map electricity demand to power generation, and then to determine associated emissions and their 79 

monetized costs. 80 



Calculations described below rely heavily on the work of Muller and Mendelsohn (2006), who developed 81 

externality cost estimates by emissions species, county and source height (for ground level vs. 82 

intermediate [250-500 m], vs. tall [over 500 m] plume heights).  Their Air Pollution Emissions 83 

Experiments and Policy (APEEP) is a reduced-form model that accounts for “adverse effects on human 84 

health, reduced yields of agricultural crops and timber, reductions in visibility, enhanced depreciation of 85 

man-made materials, and damages due to lost recreation services” (Muller and Mendelsohn, 2006). 86 

The county-level external-cost estimates they have developed based on 2011 data are the most recent 87 

available as of this writing.  They are applied here to emissions rates from each electric generating unit 88 

(EGU) by county of generation, in order to obtain emissions-related externality costs (in dollars) per 89 

megawatt-hour specific to each point source in the Texas power grid.  The grand total of all of these 90 

power-weighted externalities represents the aggregate annual cost of human exposure and monetary 91 

damage due to electricity generation within the ERCOT region. Grid totals are then divided by total 92 

electricity output to provide average pollution profiles (by species) per megawatt-hour and the associated 93 

external costs. 94 

One approach in external-cost estimation is to focus on the marginal emissions of the ERCOT grid per 95 

kilowatt-hour of demand added.  Siler-Evans et al. (2012) estimated marginal emissions factors (MEFs) 96 

for each North American Electric Reliability Corporation (NERC) region in the U.S., which offer an 97 

emissions profile for each additional kilowatt-hour of electricity usage on the margin, or on top of the 98 

grid’s base load, for each of the 24 hours of the day and for three seasons of the year.  These values 99 

represent the marginal emissions from the entire NERC region, in this case ERCOT: nearly all of the state 100 

of Texas.  Thus, time specificity comes at the expense of spatial specificity.  However, this time detail is 101 

important: Siler-Evans et al. (2012) report that average emissions factors (AEFs) overstate SO2 emissions 102 

by a factor of four for the Texas grid in 2007.  Using these marginal rates to estimate exposure costs 103 

requires assumptions about how to assign the spatial distribution of this exposure, since it can be quite 104 

variable.  In this study, Muller and Mendelsohn’s (2006) estimates are applied to assess upper bounds for 105 

monetized externalities of these marginal emissions, based on worst-case Texas counties for the relevant 106 

pollutant species. 107 

For a more nuanced account of spatial variation, it is necessary to forgo such time-of-day detail and rely 108 

instead on more comprehensive (but not time-specific) emissions inventories.  The U.S. EPA’s Emissions 109 

and Generation Research Integrated Database (eGRID) database (EPA, 2014a) provides information on 110 

the annual emissions associated with every EGU in the ERCOT grid.  It thus provides not only an overall 111 

accounting of emissions by Texas EGUs, but also a spatial distribution of these emissions.  This allows 112 

one to match emissions from a given plant to the monetized impact of those emissions.  The drawback to 113 

this source is that it inventories only two of the pollutant species monetized in Muller and Mendelsohn’s 114 

(2006) work (oxides of nitrogen and sulfur dioxide), along with carbon dioxide, which was assigned here 115 

a value of $20 per short ton in constant year 2000 dollars based on a conservative reading of the 116 

Interagency Working Group on the Social Cost of Carbon’s (2010, 2013) work. 117 

To remedy this shortcoming, the same analysis was also run with county-level emissions data from the 118 

U.S. National Emissions Inventory (EPA, 2014b), which includes all six species covered by Muller and 119 

Mendelsohn (2006).  The NEI has its own limitations: it does not quantify power generation , and a user 120 

inquiry for greenhouse gases produced a system error.  The comprehensive nature of this data set’s 121 



coverage of criteria pollutants, though, makes it a useful reference.  Criteria pollutants are the six species 122 

regulated by the EPA’s National Ambient Air Quality Standards (NAAQS): particulate matter, ground-123 

level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. 124 

Validation of Combined Model 125 

Together, eGRID and the NEI give quantities of seven airborne species of interest due to electricity 126 

generation in Texas.  To verify the compatibility of these two different sources, we compared eGRID’s 127 

and the NEI’s, NOx and SO2 estimates of ERCOT totals and found their numbers to differ by 20% for 128 

NOx and less than 2% for SO2. We then used an average value for these two species, and drew the other 129 

species’ estimates from the associated source. 130 

Network Sub-grids 131 

The interconnectedness of the power grid makes it impossible to know just where the electricity to meet a 132 

given load will be generated.  However, it is reasonable to surmise that, all things being equal, a given 133 

demand will tend to be met by power generated nearby rather than farther away.  Accordingly, this paper 134 

repeats the above calculations for hypothetical “sub-grids” in the vicinity of Texas’ largest cities.  A 135 

cluster of power plants was identified in the counties surrounding each of Texas’ biggest metropolitan 136 

areas: Dallas-Fort Worth (population 6.9 million), Houston (6.5 million), San Antonio (2.3 million), and 137 

Austin (1.9 million).  Average emissions and external costs were then calculated assuming that those 138 

cities draw primarily from these clusters of nearby EGUs. 139 

After developing a range of estimates for electric vehicles charging and operating in the state of Texas, it 140 

is valuable to compare these results to those that would be obtained in analysis of conventional, gasoline-141 

powered vehicle emissions.  While there is no central database akin to eGRID or the NEI to 142 

authoritatively document emissions totals for light-duty vehicles, the U.S. EPA’s Motor Vehicle Emission 143 

Simulator (MOVES) software offers estimates adjusted by county and season. MOVES simulation results 144 

were derived for top pollutants in Travis, Dallas, and Harris counties, Texas, in both January and July, as 145 

described in Nichols et al. (2015). These results are roughly comparable to the EV estimates described 146 

above, as they describe emissions of a typical late-model vehicle in the 2010 fleet.  Using the pollutant 147 

species for which electricity data were derived earlier, we compared monetized emissions estimates for 148 

conventional vehicles to those for electric vehicles.  Results are reported below. 149 

EMISSIONS ESTIMATES 150 

Marginal Emissions Factors (MEFs) 151 

Calculating marginal emissions using Siler-Evans et al.’s (2012) MEFs is straightforward because their 152 

values are already reported as marginal numbers.  The key variable is vehicle efficiency, or how many 153 

watt-hours are required to power the vehicle over a given distance.  While this figure depends on weather, 154 

traffic conditions, vehicle speed, and other factors, an average of 250-300 Wh/mi is common for the most 155 

popular electric vehicle models (Nichols et al., 2015).  This translates to the range of marginal emissions 156 

cost estimates reported in Table 1 for the pollutants they considered.  The true upper bound may be 157 

higher, since the typical EV is lighter and more energy-efficient than the fleet average, but the values 158 

reported below represent the worst hour of generation in the highest external-cost Texas county.  Actual 159 

damages are likely to be significantly lower than the “high” value derived here. 160 



TABLE 1   Estimated externalities based on marginal emission factors 161 

  kg/ MWh 2010 $/ MWh 2010 $/ 12,000 miles 

  Low High Low High Low High 

CO2 397.7349 685.0514 7.95 13.70 23.86 49.32 

SO2 ** 1.658473 ** 14.39 ** 51.81 

NOx ** 0.957945 ** 2.64 ** 9.51 
Note: ** indicates that lowest time-of-day marginal emissions factor is negligible. 162 

The worst-case scenario for each species implies a total external cost of $110 per year considering only 163 

the carbon dioxide, sulfur dioxide, and oxides of nitrogen associated with electricity generation in Texas.  164 

However, there is considerable variability between low and high marginal emissions factors, especially in 165 

the case of sulfur dioxide, since this pollutant is quite time-sensitive.  Any four-hour charging window 166 

would result in an average emissions intensity at least 12 to 30% lower than these extremes, even if the 167 

charging window includes the peak emissions hour.  In addition, this worst-case scenario is premised on 168 

Muller and Mendelsohn‘s (2006) work for Fort Bend County, which has by far the highest dollar per ton 169 

value in the state.  Using the next highest value, for populous Harris County (Houston region), results in a 170 

45% lower estimate in dollars per megawatt-hour. 171 

Statewide Emissions Externalities 172 

As an alternative approach, combining county-based external-cost estimates with emissions inventories 173 

from specific EGUs or counties provides a more nuanced way to estimate the actual damages while 174 

accounting for spatial variations in human exposure.  Table 2 contrasts the statewide external-cost 175 

estimates developed by combining eGRID (EPA, 2014a) and NEI (EPA, 2014b) aggregate emissions data 176 

with Muller and Mendelsohn’s (2006) monetization estimates for NOx and SO2.   177 

TABLE 2     External-cost estimates for NOx and SO2 emissions from ERCOT grid ($2010) 178 

  eGRID NEI Average 

NOx 103,205,482 124,385,378 113,795,430 

SO2 886,214,493 897,066,020 891,640,257 

 179 

For a comprehensive look at emissions costs, these average values for NOx and SO2 were combined with 180 

similar results for other species, which are shown in Table 3.  Results were then divided by total ERCOT 181 

generation, as provided in eGRID, and translated into an average cost per mile traveled by an electric 182 

vehicle powered by the ERCOT grid.  This estimate is automatically weighted by fuel type because it 183 

accounts for production levels at individual plants, and population exposure because the external-cost 184 

factors are county-specific.  The cost per mile is then scaled up to an estimate per 12,000 miles because 185 

this represents a typical year of driving for the average vehicle.  Overall external costs are reported in 186 

Table 4. 187 

TABLE 3     Total external costs for 7 species (2010$) 188 

Species Data Source External Cost 

NOx average 113,795,430 

PM10 NEI 6,552,757 



PM2.5 NEI 51,164,433 

VOC NEI 1,683,775 

SO2 average 891,640,257 

NH3 NEI 4,041,106 

CO2 eGRID 5,328,681,043 

total 6,397,558,801 

 189 

TABLE 4     Average external-cost estimates based on eGRID and NEI data 190 

Total ERCOT Generation (MWh) 342,146,877 

Total Externalities for 7 Species (2010 $) 6,397,558,800 

Grid Average (2010 $/ MWh) 18.70 

Vehicle Average (2010 $/ mile) 0.0051 

Yearly Average (2010 $/ 12,000 miles) 61.70 

 191 

Sub-grid Analysis 192 

Thus far we have maintained our assumption that electricity used at a given location may be generated 193 

anywhere in the grid, so one cannot assign a specific power plant based on vehicle charging location.  The 194 

picture can change if we restricted our focus to some subset of the ERCOT’s power plants.  Siler-Evans et 195 

al.’s (2012) MEFs are not available at the EGU level, but the spatial calculation matching eGRID and 196 

NEI emissions to Muller and Mendelsohn’s (2006) external-cost estimates proceeds exactly as before, this 197 

time restricted only to the plants identified as “nearest” to each city.  Table 5 shows those cost estimates 198 

derived for Texas’ biggest metro regions using this process.   199 

TABLE 5     External-cost estimates for Texas sub-grids based on eGRID and NEI data 200 

  

Dallas/ Fort 

Worth Houston San Antonio Austin 

Total Generation (MWh)/yr 46,843,328 98,239,680 23,683,685 27,227,779 

Total Externalities (2010 $)/yr 306,595,935 1,522,900,370 589,854,395 694,427,887 

Average External Costs 

(2010$/MWh) 6.55 15.50 24.91 25.50 

Driving Cost (2010 $/ mi) 0.0018 0.0043 0.0068 0.0070 

Yearly Cost (2010 $/ 12k mi) 21.60 51.16 82.19 84.16 

 201 

Finally, Muller and Mendelsohn’s (2006) cost-per-ton values were applied to several MOVES-based 202 

estimates of emissions rates from gasoline vehicles.  Table 6 reports external-cost values per vehicle-mile 203 

based on an average annual travel distance of 12,000 miles.  While MOVES accounts for many additional 204 

species, Table 6 reflects only those species (2010$) which appear in eGRID and the NEI and have been 205 

monetized by Muller and Mendelsohn, to enable a more direct comparison. 206 

TABLE 6     External-cost estimates of conventional vehicles in Texas  207 

  2010$/ mi 2010$/ 12,000 mi 

Dallas 0.0106 127.70 



Houston 0.0105 126.42 

Austin 0.0128 153.79 

Average 0.0113 135.97 
Note: Austin values do not include ammonia. 208 

 209 

OTHER CONSIDERATIONS 210 

The results presented here suggest a strong benefit to adopting EVs in Texas in order to significantly 211 

reduce the harmful effects of motor vehicle operation.  The grid-wide external costs in Table 4 are less 212 

than half the equivalent costs of operating a conventional vehicle in any of the state’s largest metro areas.  213 

While worst-case calculations based on marginal emissions factors are much higher, the best marginal 214 

scenario often involves no extra air pollution.  Assuming that externalities are properly priced, then, smart 215 

charging technologies that take only the lowest-emissions power during the day could potentially result in 216 

minimal harmful air quality impacts to power the fleet of the future. 217 

While we have been careful to compare similar vehicle types in this analysis, several differences exist.  218 

Our hypothetical electric vehicle is mostly powered by the entire Texas grid and thus draws on both 219 

emissions and external-cost estimates from approximately 200 Texas counties.  The conventional vehicle 220 

values used for comparison, on the other hand, are based only on numbers from three large counties 221 

(Dallas, Harris, and Travis).  Much of the difference in external costs may come from geographic 222 

differences: by exporting emissions from urban tailpipes to distant power plant stacks. 223 

On the other hand, the typical Texas vehicle, as in many states, is urban: 70% of the state’s population is 224 

concentrated in the “Texas Triangle” bounded by Houston, San Antonio, and the Dallas-Fort Worth 225 

metroplex.  Thus, the comparison given above is a realistic representation of a potential shift from 226 

gasoline to electric power: the emissions associated with ground-level combustion in one of Texas’ 227 

biggest cities would be traded for dispersed ERCOT electricity generation in a typical case of electric 228 

vehicle adoption. 229 

There are a number of other differences between electric and conventional vehicles.  For example, the 230 

performance of EV batteries is susceptible to greater variations with ambient temperature than a 231 

combustion engine.  This may account for increased annual energy consumption of 15% when compared 232 

to a conventional vehicle (Yuksel and Michalek, 2015).  In addition, in cold conditions, the waste heat of 233 

an internal combustion engine can serve as climate control for the passenger cabin without requiring 234 

additional energy.  An electric vehicle requires battery charge to provide this heat. 235 

Any fuel source entails additional upstream emissions due to recovery, refining, and transportation to the 236 

point of use (Delucchi, 2008).  These emissions result in added external costs, which can affect the results 237 

above.  The nature of the fuel recovery process is tremendously important to this analysis, both for 238 

electric and for conventional vehicles.  An increased use of natural gas for power generation, for example, 239 

holds the promise of reducing both carbon and sulfur dioxide emissions.  However, some analysis has 240 

suggested that the escaped methane from fracking may more than cancel that benefit (Howarth, 2014).   241 

The best way to resolve this difficulty may be to further develop renewable energy sources such as wind 242 

and solar energy.  EVs are inherently better suited to promote such technologies, as an electric battery 243 



depends on the electricity generation technologies available at the time of use.  This stands in sharp 244 

contrast with internal combustion engines, which are more or less fixed.  It is possible, at substantial cost, 245 

to retrofit a gasoline vehicle to run on propane, for example.  If the electric grid continues to shift toward 246 

cleaner fuels, it will be easy to recharge an EV with solar power instead of coal- or natural gas-generated 247 

electricity.  Unlike a conventional vehicle, an EV purchased today might be associated with lower per-248 

mile emissions in the future. 249 

 250 

CONCLUSION 251 

This paper has deepened our understanding of the health and environmental costs associated with EV 252 

charging, at least on grids like those found in Texas.  Depending on methods and data sources used, one 253 

can derive a wide range of reasonable estimates, but they tend to confirm that emissions costs vary 254 

significantly over space/locations and across power feedstocks. 255 

When we examined hypothetical sub-grids around Texas’ largest cities, we found substantial variation by 256 

city, as well as by data source.  The clear winner in each case was EVs charging in the Dallas/ Fort Worth 257 

region, which had half the monetized damages of the gridwide average when calculated using eGRID 258 

values, and far less using the NEI’s values.  The other cities were harder to characterize: Houston was 259 

near average in the eGRID scenario, with San Antonio and Austin performing quite poorly.  Using NEI 260 

data, however, Austin fared well, while Houston and San Antonio endured above-average costs.  It is 261 

worth noting in this case that Dallas estimates were an order of magnitude lower than for other regions, 262 

which is a suspicious result. 263 

Another dramatic difference was apparent between the electricity estimates developed here and the 264 

conventional vehicles described by MOVES.  This difference, while striking, is in some respects not 265 

surprising.  Even as stringent emissions regulations have cleaned up the vehicle fleet significantly, power 266 

plants, especially those fueled by coal, still emit significant quantities of NOx and SO2.  In addition, it is 267 

important to be mindful of the limitations of these data sources.  The National Emissions Inventory, while 268 

comprehensive, cannot physically track every gram of air pollution emitted in the country.  Individual 269 

vehicles, both more numerous and more geographically dispersed, are even harder to track with certainty.  270 

MOVES makes no claim to represent precise emissions events; it offers reasonable estimates based on lab 271 

tests and simulation. 272 

The nature of electricity transmission makes it impossible to know with certainty what plants are meeting 273 

a given demand, but this may be a positive thing.  Everyone using electricity in Texas has an interest in, 274 

and the power to influence, the emissions of a distant power plant, and those closest to population centers.  275 

It is reasonable to place a policy priority on reducing emissions from Texas’ dirtiest plants, or replacing 276 

those units with cleaner alternatives.  Such improvements at one location in the state improve the 277 

emissions profiles, and the associated externalities, of EV charging everywhere on the grid. 278 

Finally, it is important not to lose sight of the big picture.  Life-cycle analysis, value for money, and 279 

social equity considerations must all play a role in determining the place for EV and other emerging 280 

technologies in our society.  This paper has shown the degree to which operational emissions may be 281 

improved by adopting popular models of electric vehicles.  A social commitment to improvements in the 282 



electricity generation process, in gasoline refinement, in provision of high-quality mass transit, or other 283 

creative energy solutions should improve the future situation. 284 
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