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ABSTRACT 19 

This paper models the m arket potential of a fleet of shared, autonomous, electric veh icles 20 

(SAEVs) by em ploying a m ultinomial logit m ode choice model in an agent-based fram ework 21 

and different fare settings. The m ode share of SAEVs in the simulated mid-sized city (modeled 22 

roughly after Austin, Texas) is predicted to lie between 14 a nd 39%, when com peting against 23 

privately-owned, manually-driven vehicles and city bus service. This assumes SAEVs are priced 24 

between $0.75 and $1.00 per m ile, which delivers signi ficant net revenues to the fleet owner-25 

operator, under all modeled scenarios, a ssuming 80-mile-range electric vehicles and 26 

remote/cordless Level II char ging infrastructure and up to $25,000 of per-vehicle autom ation 27 

costs. Various dynamic pricing schemes for SAEV fares show that specific fleet metrics can be 28 

improved with targeted strategies. For exa mple, pricing strategies that attem pt to balance  29 

available SAEV supply with anticipated trip de mand can decrease average wait tim es by 19 to 30 

23%. However, trad eoffs also exist within this  price-setting: fare stru ctures that favor higher 31 

revenue-to-cost ratios (by targeting high-value-of-travel-time [VOTT] travelers) red uce SAEV 32 

mode shares, while those that favor larger m ode shares (by appealing to a wider V OTT range) 33 

produce lower payback. 34 

35 
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INTRODUCTION 38 

Technology is quickly changing the landscape of urban transpor tation. With mobile computing 39 

enabling the fast rise of the sh ared-use economy, carsharing is e merging as an alternative m ode 40 

that is more flexible than transit but less expensive than traditional (private-vehicle) ownership. 41 

Electric vehicle (EV) sales are on the rise, with  plug-in EVs’ market share growing from 0.14%  42 
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in 2011 to 0.67% in 2014 (Plug in Am erica 2015).Growing plug-in EV adoption should be 43 

helpful to most reg ions in achieving air quality standards for ozone and particulate matter, and 44 

ultimately greenhouse gases. Motivated by roadway safety and the growing burden of congested  45 

urban driving, automated driving technologies are emerging and private purchases of self-driving 46 

vehicles may be possible by 2020 (Bierstadt et al. 2014). 47 

 48 

There are natural synergies between shared AV (SAV) fleets and EV technology. SAVs resolve 49 

the practical limitations of today’s non-autonomous EVs, including traveler range anxiety, access 50 

to charging infrastructure/special outlets, and charge-time management. A fleet of shared 51 

autonomous electric vehicles (SAEVs) relieves such concerns, by managing range and charging 52 

activities based on real- time trip dem and and established charging-station locations, as 53 

demonstrated in Chen et al. (2015).  However, when SAEVs m ake their debut in  cities, thes e 54 

vehicles will not exist in a vacuum . SAEVs will be competing against existing modes (private 55 

owned vehicles, transit, and non-motorized m odes) for trip share. In this paper, a mode choice 56 

model is added to Chen et al.’s (2015) agent- based framework in order to anticipate SAEV 57 

market shares in direct competition with other modes. A fleet of 80-mile-range SAEVs is paired 58 

with Level II charging infrastructure to deliver relatively fleet operations, and a variety of pricing 59 

strategies are employed while examining the shifting mode shares. 60 

 61 

PRIOR RESEARCH 62 

 63 
Recent research has exam ined the operation s of self-driving vehicles in a shared setting,  64 

primarily focusing on metrics like empty-vehicle miles traveled (VMT), average wait times, and 65 

private vehicle replacem ent rates (Kornhauser et al. [2013], Fagnant and Kockelman [2014], 66 

Spieser et al. [2014], ITF [2015], Chen et al. [2015], etc.). Very few have yet simulated A V 67 

effects in competition with other modes of travel.  68 

Levin and Boyles (20 15) recently simulated mode choice of privately-owned AVs (versus  69 

transit, private car travel, and walk/bike) with a fixed trip table for a small (downtown) section of 70 

Austin, Texas. Their model allows such AVs to strategically re-position themselves to avoid high 71 

parking fees (while incurring added fuel costs,  but no traveler tim e costs), and uses dynam ic 72 

traffic assignment over a 2-hour peak (m orning) period. Their special test  cases showed transit 73 

demand falling as m ore user classes (segm ented by value of travel tim e [VOTT]) had access to 74 

AVs, with 61% of low-VOTT travelers  decreasing their transit use. They allowed link capacities 75 

to rise as a f unction of the proportion of AVs on  each link, so congestio n did not worsen as th e 76 

number of vehicle tr ips rose sharply (due to empty-vehicle parking repositioning). Childress et 77 

al. (2015) used Seattle, Washingt on’s activity-based tr avel model (including short-term  travel 78 

choices and long term  work-location and auto-ownership choi ces) to anticipate AV technology 79 

impacts (from higher roadway capacities, lowered VOTTs, reduced parking costs, and increased 80 

car-sharing) on regional travel patterns. Their model estimated that higher incom e households 81 

are more likely to choose the AV mode, as exp ected (since the technology is costly and VOTT 82 

reductions for higher-VOTT travelers are likely to be more significant). W ith SAVs priced at  83 

$1.65 per mile (reflecting costs of current ride-sharing taxi services, like Lyft and Uber), drive -84 

alone trips were predicte d to fall by one-third and transit shares rose by 140%, as households 85 

released traditional vehicles and acquired AVs or turned to SAVs along with other travel options, 86 

since they were no longer “tied”  to the fixed cost (and round- trip restrictions) of vehicle 87 

ownership and storage.   88 



The above two simulations are largely limited to private AV ownership (except for one scenario 89 

[out of four ] in Childress et al. [2015]). Furtherm ore, their mode choice sim ulations assumed 90 

fixed prices/costs for AV (and SAV) use. Due to the variable nature of SAV availability and user 91 

wait times, as well as different costs associated with empty VMT for refueling  SAVs and 92 

passenger pick-up, SA V pricing m ay best be “sm art-priced” to improve fleet perform ance 93 

metrics. The agent-based fram ework employed in this paper allows for mode choice in th e 94 

context of each trip (based on a trip’s tim e-of-day [to allow for “surge pricing” during peak 95 

demand periods] and distance, and its trav eler’s VOTT) and f ollows SAEV f leet 96 

utilizationthrough a series of sim ulated travel days to appreciate the effects of various dynam ic 97 

pricing strategies on mode shares and SAV trip-making behaviors.  98 

 99 

METHODOLOGY 100 

The model in this paper builds off of Chen et al.’s (2015) di screte-time agent-based m odel, 101 

which examines the operations of SAEVs and c onventionally-fueled SAVs serving roughly 10% 102 

of all trips in a 100-m ile by 100-m ile region. Th e simulation is gridded to quarter-m ile by 103 

quarter-mile trip generation and service cells, as shown in Figure 1. Similar to Chen et al. (2015), 104 

the trip generation process used here produces each  trip based on an average daily  rate for each 105 

cell (which depends on the loca l population density, and thus th e Euclidean distance to the 106 

regional center-point in this id ealized region), then assigns the destin ation cell based on trip 107 

distance (drawn from  the U.S. 2009 National Household T ravel Survey’s [ NHTS’s] distribution). 108 
Average daily trip rates (as shown in  Table 1) represent 100% of trips in the simulated region, with rates 109 
roughly following the population dens ities and trip gene ration rates of Austin, Texas’ travel dem and 110 
model. Here, a multinomial logit (MNL) mode choice model is added to the agent-based model to 111 

allow all trips in the region to choose am ong private vehicle, transit, and SAEV modes. Trips less 112 

than 1 m ile in distance (under the NHTS 2009 di stribution) are not studied here, since such 113 

travelers may often prefer to walk. Since m ost walking trips in the U.S. are under 1 m ile in 114 

length, and bike trips are few in the U.S. (S antos et al. 2011), non-m otorized modes are not 115 

simulated here.  116 



 117 

Figure 1. Regional Zones System 118 

Table 1. Total (Motorized) Trip Generation Rates and Travel Speeds by Zone 119 

  

Population Density 
(persons/mi2) 

Avg Trip Gen. Rate 
(trips/cell/day) 

SAEV Travel Speed 
(mi/hr) 

Peak Off-Peak 

Downtown 7500-50,000 1287 15 15 
Urban 2000-7499 386 24 24 
Suburban 500-1999 105 30 33 
Exurban <499 7 33 36 

 120 

The amount of money travelers are willing to p ay to save travel tim e and distance varies with 121 

each traveler, trip type, day of week, and even  driver’s state of mind. To relate each trip to  an 122 

individual traveler and his/her m ode choice in this model, a VOTT is generated for each trip,  123 

based on trip purposes and wage rates (per ho ur). According to the 2009 NHTS, 18.7% of 124 

person-trips per household are for work and work -related business trips (Santos et al.  2011). The 125 

other 81.3% of trips (for shopping, fa mily/personal errands, school, worship,  social, and  126 

recreational activities) are combined here, as non-work. After randomly assigning a trip purpose, 127 

an income is assigned for the individual trav eler based on US Census  (2009) data on personal 128 

income of individuals residing inside m etropolitan areas. SAVs presum ably operate m ore 129 

efficiently in densely develope d locations than sparsely popul ated areas (Burns et al. 2013,  130 

Fagnant and Kockelm an 2015), and individual incomes in m etro areas tend to be  higher than 131 

those in rural areas (with personal incomes averaging 33 percent higher, according to US Census 132 

[2009]). Hourly wages used in the model applied here derive from 2009 Census data on personal 133 

income of those living inside m etropolitan areas (which average $48,738 per person, per year),  134 



and were converted to an hourly wage by assuming 2000 work-hours per year (US Census 2009). 135 

Using USDOT (2011) guidelines, VOTT is assumed to be 50% of hourly wage for personal trips 136 

and 100% of hourly wage for business/work trips, yielding Figure 2’s VOTT distributions.  137 

 138 

 139 

 140 

Figure 2a. Work Trips 141 

 142 

 143 

Figure 2b. Non-Work Trips 144 
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Figure 2. VOTT Distributions for Work (2a) and Non-Work (2b) Trips 145 

In an MNL m odel, the probability of an indi vidual choosing an altern ative is a ssumed to 146 

monotonically increase with that  alternative’s system atic utility (Koppelman and Bhat 2006), 147 

assuming all other modes’ attributes remain constant, and can be expressed as the following: 148 

 149 

Prሺ݅ሻ ൌ ୣ୶୮	ሺ௏೔ሻ

ୣ୶୮ሺ௏ುೇሻାୣ୶୮ሺ௏೅ೝೌ೙ೞ೔೟ሻାୣ୶୮	ሺ௏ೄಲಶೇሻ
       (1) 150 

 151 

where ݅ denotes the alternative for which the probability is being computed; ௉ܸ௏, ்ܸ ௥௔௡௦௜௧, and 152 

ௌܸ஺ா௏ denote the system atic utilities of  private ve hicle, transit, and SAEV, r espectively, for a 153 

specific origin-destination-traveler-time of day trip.  154 

Private Vehicle 155 

In this mode choice model, private vehicle utility is m odeled as a function of VOTT, operating 156 

costs, and parking fees in the destination zone as seen in the equation below: 157 

 158 

௉ܸ௏ ൌ െܸܱܶܶ ቀ
஽௜௦௧௔௡௖௘೟ೝ೔೛	

ௌ௣௘௘ௗುೇ
ቁ െ $0.152	ሺ݁ܿ݊ܽݐݏ݅ܦ௧௥௜௣ሻ െ  ஽   (2) 159݃݊݅݇ݎܽܲ

 160 

where ܸܱܶܶ is the indiv idual monetary valuation of value of travel tim e drawn from 161 

distributions in Figure 2, ݁ܿ݊ܽݐݏ݅ܦ௧௥௜௣ is the distance of the requested trip, ܵ݀݁݁݌ is equivalent 162 

to SAEV average speeds shown in Table 1), $0 .152 is the equivalent vehicle operating cost per 163 

cell based on AAA’s (2014) estimate of $0.608 per mile, and ܲܽ݃݊݅݇ݎ஽ is the parking fee in the 164 

destination zone. In this model, parking cost is assumed to be $0 for all business trips, since 95% 165 

of commuters who drive to work park for fr ee at the workplace (Shoup and Breinholt 1997) and 166 

other business transportation are of ten priced in a distorted m arket with expense accounts. For 167 

personal trips, parking for private vehicles is assumed to be $0 fo r trips that end in suburban or 168 

exurban cells, $2 for trips that end in urban cells, and $4 for trips that end in downtown cells. 169 

Transit 170 

 171 

For simplification, the transit m ode modeled here em ulates local city bus service, the m ost 172 

common form of transit in US citie s. Similar to private vehicles, the utility of  the transit mode 173 

also depends on transit travel speed s and individual traveler’s VOTT. In addition, access tim e 174 

and fare are considered in the transit utility equation below: 175 

 176 

௧ܸ௥௔௡௦௜௧ ൌ െሺ2ሻ ቀ௏ை்்
଺଴

ቁ ሺܣ ைܶ ൅ ܣ ஽ܶሻ െ ܸܱܶܶ ቀ
஽௜௦௧௔௡௖௘೟ೝ೔೛
ௌ௣௘௘ௗ೟ೝೌ೙ೞ೔೟

ቁ െ  ௧௥௔௡௦௜௧  (3) 177	݁ݎܽܨ

 178 

Here, ܵ݀݁݁݌௧௥௔௡௦௜௧ is modeled at 25% slower than Table 1’s SAEV speeds during off-peak hours 179 

and 20% slower during peak hours due to stop s (roughly based on Austin’s travel dem and 180 

model’s travel tim e skims), $2 is the assum ed one way ݁ݎܽܨ௧௥௔௡௦௜௧ based on the $2.04 per 181 

unlinked trip fare average from  the 2013 Nati onal Transit Database U rbanized Data (APTA 182 

2013), and ܣ ைܶ and ܣ ஽ܶ are the access  and wait times in minutes based on the trip’s origin and 183 

destination cell following Table 2. 184 



Table 2. Transit Access & Wait Time by Zone 185 

Zone Transit Access & 
Wait Time (min.) 

Downtown 3 
Urban 9 

Suburban 21 
Exurban 60 

 186 

Transit access and wait tim e for exurban cells are penalized (valued at 60 minutes) in the utility 187 

function  due to the fact that most transit trips to and from exurban areas require transfers (either 188 

from private car to transit, or one bus route to another bus route) in the m ajority of local bus  189 

service route designs. Furtherm ore, access tim e for transit is m odeled at double the VOTT 190 

compared to in-vehicle travel time (IVTT). This penalty reflects the general discomfort of time 191 

spent walking, bicycling, and waiti ng outside of vehicles as com pared to being inside a vehicle, 192 

as recommended in Wardman (2014). Though seated IVTT on transit modes is typically valuated 193 

as less onerous than IVTT in a private car (p resuming that the traveler can perform  more 194 

productive or leisure activities wh ile seated on a bus as com pared to driving a car), standing 195 

IVTT on transit m odes is considered m ore onerous than driving a private vehicle (W ardman 196 

2014). Thus, in this m odel, transit IVTT is simplif ied to be valued the sam e as private vehicle 197 

IVTT. 198 

SAEV 199 

 200 

The structure of the SAEV utility valuation (Equation 4) is similar to that of transit, except where 201 

transit utility is m odeled with a simplif ied flat price, the SAEV m ode incorporates several 202 

pricing schemes to examine the impact of pricing on SAEV mode share and fleet operations. The 203 

SAEV utility is expressed as: 204 

 205 

ௌܸ஺ா௏ ൌ െሺ2ሻ ቀ௏ை்்
଺଴

ቁ ሺ2.5 ൅ 5݊௪௟௜௦௧ሻ െ ሺ0.35ሻܸܱܶܶ ቀ
஽௜௦௧௔௡௖௘೟ೝ೔೛	

ௌ௣௘௘ௗೄಲಶೇ
ቁ െ  ௌ஺ா௏   (4) 206݁ݎܽܨ

  207 

Where ݊௪௟௜௦௧ is the number of time steps a trip h as been on the SAEV waitlis t and ݁ݎܽܨ is the 208 

traveler out-of-pocket cost. The first term  of this utility function m odels the onerousness of 209 

waiting for an SAEV, valuated at double the IVTT as is done in the transit utility equation. When 210 

a trip is generated, the traveler assumes the wait time is 2.5 minutes (half of a time step). If the 211 

trip is waitlisted, the traveler re-evaluates mode choice in each of the su bsequent time steps the 212 

trip remains on the waitlist,  and adds 5 minutes to the wait tim e for each tim e step the traveler 213 

has been on the waitlist. In other words, the longer a trip remains on the waitlis t, the more the 214 

SAEV utility decreases, and the less likely the traveler will choose SAEV mode.  215 

 216 

The second term of this utility function models the cost of SAEV IVTT. Unlike transit, a traveler 217 

will not have to stand in a SAEV. Thus, a trav eler can use the IVTT in  a SAEV to work, read , 218 

listen to music, or pursue other productive or leisure activities. In the base case, this reduction in 219 

travel time cost is modeled at 35% of the IVTT in a non-autonomous private vehicle (where the 220 

traveler would be driving), equi valent to the valuation of seated riding time on transit (Concas 221 

and Kolpakov 2009). This value is varied in the sensitivity anal ysis section to exam ine the 222 



impact of IVTT valuation on SAEV m ode share. SAEV speeds (shown in Table 1) are assumed 223 

to be the same as private vehicle speeds. 224 

 225 

The last term of the SAEV utility f unction is the fare. In this model, four pricing strategies are 226 

explored: simple distance-based, origin-based, destination-based, and combination pricing. Each 227 

pricing scheme is discussed in detail below. 228 

Distance-Based Pricing 229 

In simple distance-based pricing, the fare is dete rmined proportional to the trip distance as seen 230 

in Eq. 5. This pricing scheme is similar to the usage-based (by mileage or time) pricing schemes 231 

of current non-autonomous carsharing services.  232 

 233 

ௌ஺ா௏݁ݎܽܨ ൌ 	$0.2125 ൈ  ௧௥௜௣       (5) 234݁ܿ݊ܽݐݏ݅ܦ

  235 

Using overhead costs for similarly scaled transit services and assum ing operating m argins of 236 

10%, Chen et al. (2015) estimate a fleet of SAEVs can be offered at $0.66 to $0.83 per occupied 237 

mile of travel, depending on type of fleet ve hicles and charging infrastructure. To be 238 

conservative, $0.85 per m ile ($0.2125 per cell) is us ed as the base fare for simple distance 239 

pricing. This per-m ile fare is also varied  in th e sensitivity analysis to examine the effects of 240 

higher and lower fares on SAEV market share. 241 

Origin-Based Pricing 242 

 243 

Vehicle relocation is one of the  biggest ch allenges facing operators of non-autonom ous 244 

carsharing services (see, e.g. Barth and Todd 1999, Correia and Antunes 2012). The origin-based 245 

pricing in Equation 6 builds off of Correia and An tunes’ (2012) suggestion that variable pricing 246 

policies  which encourage trips to balance the demand and availability of vehicles at carsharing 247 

stations could contribute to m ore profitable operations . Here, origin-based pricing attem pts to 248 

minimize empty vehicles miles traveled for relocation by incentivizing trips originating in a cell 249 

that has a s urplus of v ehicles and penalizing trips o riginating in a cell that has a deficit of 250 

vehicles. 251 

 252 

ௌ஺ா௏݁ݎܽܨ ൌ ሺ$0.2125 ൈ  253 (6)     ݎ݈݁݅݌݅ݐ݈ݑܯܦ௧௥௜௣ሻܵ݁ܿ݊ܽݐݏ݅ܦ

 where  ܵݎ݈݁݅݌݅ݐ݈ݑܯܦ ൌ 0.5,	 when  ൬ௌ஺ா௏ௌ௨௣௣௟௬ಳ,೟
ௌ஺ா௏ௌ௨௣௣௟௬್,೟

൰ ൬
்௥௜௣஽௘௠௔௡ௗ್,೟శభ
்௥௜௣஽௘௠௔௡ௗಳ,೟శభ

൰ ൏ 0.1 254 

ݎ݈݁݅݌݅ݐ݈ݑܯܦܵ             ൌ 1,	 when 10 >  ൬ௌ஺ா௏ௌ௨௣௣௟௬ಳ,೟
ௌ஺ா௏ௌ௨௣௣௟௬್,೟

൰ ൬
்௥௜௣஽௘௠௔௡ௗ್,೟శభ
்௥௜௣஽௘௠௔௡ௗಳ,೟శభ

൰ ൐ 0.1 255 

ݎ݈݁݅݌݅ݐ݈ݑܯܦܵ               ൌ 2,	 when  ൬ௌ஺ா௏ௌ௨௣௣௟௬ಳ,೟
ௌ஺ா௏ௌ௨௣௣௟௬್,೟

൰ ൬
்௥௜௣஽௘௠௔௡ௗ್,೟శభ
்௥௜௣஽௘௠௔௡ௗಳ,೟శభ

൰ ൐ 10 256 

 257 

In Eq. 6, ܵݕ݈݌݌ݑܸܵܧܣ஻,௧ is the total num ber of available S AEVs across all blocks B in the 258 

current time step, ܵݕ݈݌݌ݑܸܵܧܣ௕,௧ is the number of vehicles ava ilable in the 2-mile by 2-mile 259 

block b around the origin cell in the  current time step, ܶ݀݊ܽ݉݁ܦ݌݅ݎ௕,௧ାଵ is the number of trips 260 

(based on average generation rates shown in Table 1) anticipated to originate from the 2-mile by 261 

2-mile block b surrounding the origin cell in th e subsequent time step, and ܶ݀݊ܽ݉݁ܦ݌݅ݎ஻,௧ାଵ is 262 



the total trip demand anticipated for the subsequent time step. Essentially, origin-based pricing 263 

compares the proportions of trip dem and and av ailable vehicle supply in a 2-m ile by 2-m ile 264 

block out of the entire region. Thus, trips that or iginate in a block with an excess of vehicles 265 

(defined by when the product of vehicle supp ly and trip demand ratios is less than  1) will be 266 

cheaper than trips that originate in a block w ith a deficit of vehicles (defined by when the 267 

product of vehicle supply and trip dem and ratios is greater than 1). This ratio of ratios is then 268 

normalized by the ܵݎ݈݁݅݌݅ݐ݈ݑܯܦ term, which halves the SAEV fare when supply is at least 10 269 

times greater than demand and doubles the SAEV fa re when demand is at least 10 tim es greater 270 

than supply. By incorporating the ܵݎ݈݁݅݌݅ݐ݈ݑܯܦ term in place of using absolute ratios , extreme 271 

pricing scenarios are avoided. It is worth noting that this pric ing strategy is rule-based and 272 

simply illustrates the effect of demand-based pricing on SAEV mode share; this pricing strategy 273 

is not optimized for SAEV fleet performance or profit. 274 

 275 

Destination-Based Pricing 276 

 277 

As demonstrated in Chen et al. (2015), up to 5%  of a SAEV fleet’s VMT can be attributed to 278 

unoccupied miles traveled for charging purp oses. The destin ation-based pricing scheme in 279 

Equation 7 attempts to minimize these empty vehicle miles by incentivizing trips that end in a 280 

cell close to a charging station site and penalize tr ips that end in a cell far away from a charging 281 

station site.  282 

 283 

ௌ஺ா௏݁ݎܽܨ ൌ $0.2125ሺ݁ܿ݊ܽݐݏ݅ܦ௧௥௜௣ ൅  ௖௛௔௥௚௘ሻ     (7) 284݁ܿ݊ܽݐݏ݅ܦ

 285 

In Equation 7, ݁ܿ݊ܽݐݏ݅ܦ௖௛௔௥௚௘ represents the dis tance from the destin ation cell to the  closest 286 

charging station site. Thus, the destination-based fare prices both occupied miles traveled during 287 

the trip and the unoccupied miles traveled to a charging station after a trip is complete. 288 

 289 

Combination Pricing 290 

 291 

The last f are structure tested he re (Equation 8) is simply a combination of  origin- an d 292 

destination-based pricing presented in Equations 6 and 7. 293 

 294 

ௌ஺ா௏݁ݎܽܨ  ൌ $0.2125ሺ݁ܿ݊ܽݐݏ݅ܦ௧௥௜௣ ൅  295 (8)  ݎ݈݁݅݌݅ݐ݈ݑܯܦ௖௛௔௥௚௘ሻܵ݁ܿ݊ܽݐݏ݅ܦ

RESULTS 296 

In order to understand the im pact of introducing a new SAEV m ode on existing private vehicle  297 

and transit modes, it crucial to examine mode choice in the context of only having the latter two 298 

modes. In other words, before introducing SAEV s, what mode would the travelers have chosen 299 

for their trips? And what mode will they choose once SAEVs are available?  300 

Two-Mode Model 301 

 302 

Mode choice results from the two-mode m odel are shown in Table 3. Using the private vehicle 303 

and transit utility functions de scribed previously, the m odel yielded 85.2% private vehicle trips 304 

and 14.8% transit trips. For com parison, according to the 2009 Am erican Community Survey, 305 



76.4% of US workers who live an d work inside the same metropolitan area commute by drive 306 

alone mode and 7.8% commute by public transi t (McKenzie and Rapino 2011). While trips with 307 

low VOTT are served by both private vehicle and transit modes (both with minimum VOTTs of 308 

$0), trips valuated at over $21.20 per hour are only se rved by private vehicles. The long right tail 309 

of the VOTT distribution for private vehicle trips (with maximum VOTT at $90.80 per hour) is 310 

evident when looking at averages: m ean VOTT for a private vehicle trip is 4.5 tim es the mean 311 

VOTT for a transit trip. In a similar manner, short trips are served by both private vehicles and 312 

transit, but transit is consistently the preferred mode for longer trips (over 119 miles).  313 

 314 

In the simplified transit pricing modeled here, longer trips will incur hig her operating costs for 315 

private vehicles while fare remains flat at $2 for transit, hence the preference for transit m ode as 316 

trip lengths grow longer. Model results also show  that where there are significant parking costs, 317 

transit is preferred over private vehicle m ode. Hypothetically, trips served by transit would have  318 

averaged $1.15 in parking fees per trip had the trips been served by private vehicle. Trips that 319 

actually chose private vehicle mode averaged just $0.32 in parking fees per trip. Likewise, when 320 

transit access times are significan t, private veh icle mode is preferred. Tr ips that c hose transit 321 

mode had an averag e total o rigin and destination access tim e of 44 m inutes, while trips that 322 

chose private vehicle mode would have hypothe tically averaged 74 m inutes for origin and 323 

destination access had transit mode been chosen. 324 

Table 3. Attributes of Private-Vehicle and Transit Trips in Two-Mode Model 325 

  
Private-Vehicle 

Trips 
Transit 
Trips 

Mode Share 85.19% 14.81% 

VOTT  
($/hr) 

Mean $16.16 $3.56 
Median $11.40 $2.75 
Std Dev $15.04 $3.29 
Max $90.80 $21.20 
Min $0.00 $0.00 

Trip Distance (mi) 

Mean 8.83 17.21 
Median 5.00 10.13 
Std Dev 10.83 19.47 
Max 118.50 146.50 
Min 1.00 1.00 

Avg Private Vehicle Parking Cost $0.32 $1.15 
Avg Transit Access & Wait Time (min.) 73.70 44.47 

Note: Transit trips do not carry parking costs, and PV trips do not involve transit access and wait times. Table values 326 
reflect the attributes of the competing (and the chosen) modes. 327 

Three-Mode Model 328 

Simple Distance-Based Pricing 329 

 330 



Once SAEVs are introduced into the dynamic mode choice m odel, there is a significant shif t 331 

away from private vehicle use. In the results s hown in Table 4, SAEVs fares are structured with 332 

simple distance-based pricing at $0.85 per trip mile. The model predicts this pricing scheme will 333 

attract 27.1% of all trips generated to the SAEV mode while reducing private vehicle and transit 334 

mode shares to 60.8% and 12.1%, respectively. Com paring these mode shares to the two-m ode 335 

results in Table 3, it is clear that S AEVs are drawing the majority (89.9%) of its m arket share 336 

from trips form erly made in private vehicles . The rem aining10.1% of SAEV trips com e from 337 

former transit trips.  338 

 339 

Mean VOTT for SAEV trips are higher than that  for the other two m odes, averaging $19.62 per 340 

hour compared to $17.97 for private vehicle trips and $3.62 for transit trips. The average trip 341 

distance of SAEV trips (10.7 m iles) is in betw een that of private vehicle trips (7.8 m iles) and 342 

transit trips (19.4 miles). This model result suggests that SAEVs are attracting higher-income (as 343 

reflected by higher VOTT) travelers who take advantage of the le isure or productive time during 344 

longer trips in a SAEV th at would have otherwise been spen t driving a private vehicle, echoing 345 

results from Childress et al. (2015). For shorter tr ips, this in-vehicle leisure tim e advantage is 346 

overshadowed by the cost of the SAEV wait tim e. Note that due to the 80-mile range limitation 347 

of SAEVs modeled here, the m aximum distance of a SAEV trip is  77 miles, much shorter than 348 

the maximum trip distances of private vehicle and transit modes.  349 

 350 

Model results also suggest that SAEVs are replacing some former short transit trips: the average 351 

transit trip length increases from  17.2 miles (Table 3) to 19.4 m iles (Table 4) once SAEVs  are 352 

introduced. This is  likely due to th e fact that for shorter trips traveling  between zones served 353 

sparingly by transit (such as suburban and exur ban zones), the long transit access and wait times 354 

inflict disproportionately high trav el costs (as com pared to the cost of IVTT and fare), thus  355 

significantly reducing the utility of the mode. In such cases, a SAEV offers relatively short wait 356 

times and, for trips less than 3 miles, a competitive fare to the $2 flat transit price. A  look at the 357 

average transit wait tim es for each mode’s trips confirm s this explanation. SAEV trips would 358 

have averaged 68 m inutes of access and wait tim e per trip had they hypothetically selected  359 

transit, whereas transit trips averag e 45 m inutes of total access and wait tim es. Results als o 360 

confirm that trips which incur no or low parking fees prefer private vehicle mode while trips that 361 

incur higher parking fees tend to select transit or SAEV mode, enforcing Catalano et al.’s (2008) 362 

finding that carsharing activity can increase with a rise parking fees. 363 

Table 4. Attributes of Private-Vehicle, Transit, and SAEV Trips in Three-Mode Model 364 

  
Private Vehicle 

Trips 
Transit 
Trips SAEV 

Mode Share 60.82% 12.08% 27.10%

VOTT  
($/hr) 

Average $17.97 $3.62 $19.62
Median $12.50 $2.80 $13.30
Std Dev $16.54 $3.15 $19.13
Max $92.50 $24.20 $92.50
Min $0.00 $0.00 $0.00

Trip Distance (mi) Average 7.78 19.42 10.74
Median 5.00 12.00 5.25



Std Dev 8.05 21.37 12.51
Max 100.00 150.25 77.00
Min 1.00 1.00 1.00

Avg Private Vehicle Parking Cost $0.27 $0.88 $0.56
Avg Transit Access & Wait Time (min.) 65.82 45.17 68.04

Note: Transit trips do not carry parking costs, and PV trips do not involve transit access and wait times. Table values 365 
reflect the attributes of the competing (and the chosen) models. 366 

 367 

To test how model results vary with parameter changes to the SAEV utility function, sensitivity 368 

testing was conducted by looking at higher and lower SAEV fares and valuation of SAEV IVTT 369 

(using simple distance-based pricing). In the base three-mode model, SAEV IVTT was valued at 370 

35% of the cost of private vehicle IVTT, based on evaluation of seated IVTT on transit m odes. 371 

However, travelers are likely to prefer the p rivacy and comfort of SAEV s over the often shared 372 

and not-always guaranteed seated space on buses and trains. To reflect this preferen ce, a lower 373 

VOTT value (25% of private vehicle VOTT) was a ssigned in one sensitivity analysis scenario. 374 

Alternatively, while being free of driving obligations is a distinct advantage for SAEVs, the type 375 

of productive or leisure ac tivity that can be pursue d while traveling in a ve hicle is still lim ited. 376 

Cyganski et al. (2015) conducted a stated prefer ence survey on AV use and found that only 13%  377 

of respondents reported the ability to work as a primary advantage of AVs over manually-driven 378 

vehicles. To ensure th at the ability  to pursue alternative activities while in a SAEV is not 379 

overvalued, the sensitivity analysis here also includes a scenario where SAEV VOTT is valued at 380 

50% of private vehicle VOTT. Mo de choice model results (shown in Figure 3a) reveal that th e 381 

SAEV VOTT seems to have little impact on tr ansit mode share. As th e value of SAEV VOTT  382 

approaches that of private vehicle V OTT, SAEV loses market share (almost directly) to p rivate 383 

vehicles, with relatively few SA EV trips switching to transit mode. These findings suggest that 384 

the relative utility of SAEVs is highly dependent on the individual traveler’s choice of in-vehicle 385 

activity and valuation of  that activity as compared to driving. Cyganski et  al. (2015) found that 386 

higher income travelers are more likely to wor k in AVs th an lower income travelers, f urther 387 

implicating SAEVs’ attr activeness for high-VOTT travelers on longer, and thus more work-388 

productive, trips. 389 

 390 



 391 

Figure 3a. Mode Share Sensitivity to SAEV VOTT Effects 392 

 393 

 394 

Figure 3b. Mode Share Sensitivity to SAEV Fares  395 
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In the base three-m ode model, SAEV fare is  set at $0.85 per m ile. With varying operator 396 

missions (whether it be private operators wishing to maximize profit or public agencies focusing 397 

on reduction of congestion and mobile em issions), the price of SAEV service can differ  398 

drastically. This sensitivity analysis examines the impact of a higher SAEV fare ($1.00 per m ile) 399 

and a lower SAEV fare ($0.75 per mile) on mode shares. Mode choice model results (shown in 400 

Figure 3b) show that a higher SAEV fare causes SA EV service to lose  market share to mostly 401 

private vehicles (with some trips switching from SAEVs to transit), further confirming SAEV’s 402 

substitutability for private vehicles for high-income travelers. Elastici ties show that private 403 

vehicle mode is slightly more sensitive to SA EV VOTT valuation than transit m ode: For a 1% 404 

increase in SAEV VOTT, private vehicle m ode share is predicted to increase 0.58% and transit 405 

mode share by 0.56%. On the other hand, variation in SAEV prici ng demonstrates that transit 406 

mode share is more sensitive than private vehicle mode share to SAEV fare. For a 1% increase in 407 

SAEV fare, private vehicle m ode share is expected to increase by 0.94% and transit mode share 408 

by 1.00%. 409 

 410 

As SAEV VOTT and fare parameter changes increase and decrease projected SAEV mode share, 411 

the number (and concentration) of  SAEV trips in the gridded region also changes. The agent-412 

based model results (Table 5) show  the effects of this change in SAEV trip dem and on service 413 

metrics such as SAEV fleet size,  average u ser wait tim es, and induced empty VMT (for 414 

relocation and charging). W hen SAEV mode share inc reases with Low SAEV VOTT and Low 415 

Price scenarios, the denser SAEV trip dem and lead to decreased user wait tim es (by 4.8 and 416 

12.2% compared to the base case) and increased vehicle utilization (as measured by the average 417 

daily miles per vehicle, which are 7.4 to 19.1% hi gher than the base case) . Increase in SAEV 418 

trips also allows vehicles to travel fewer m iles for traveler pickup, decreasing total induced 419 

empty VMT in the Low SAEV VOTT and Low Price scenarios by 16.1 and 26.5%, respectively, 420 

compared to the base case. Because trip characteristics (such as distance and traveler VOTT) are 421 

drawn from the sam e distributions for all region cells, there are only sm all decreases in em pty 422 

VMT for relocation and charging purposes as a resu lt of increased SAEV trip concentration. In 423 

other words, because th ere are no zonal variations  in socio demographic characteristics in th is 424 

model, the geographic spread of SAEV trip demand is relatively consistent regardless of demand 425 

intensity.  426 

Table 5. SAEV Fleet Metrics across Sensitivity Analysis Scenarios 427 

Base 

Low 
SAEV 
VOTT 

High 
SAEV 
VOTT 

Low 
Price 

High 
Price 

SAEV VOTT 
(as % of Private Vehicle VOTT) 35% 25% 50% 35% 35%
Fare ($/mile) $0.85 $0.85 $0.85 $0.75 $1.00
Fleet Size 84,945 106,686 54,787 137,323 45,496
Total Trips Served per Day 3.90M 4.03M 3.75M 4.26M 3.62M
Avg Daily Miles per Veh  142.7 153.3 125.0 169.9 105.0
Avg Daily Trips per Veh  45.9 37.7 68.4 31.0 79.6
Avg Trip Distance (mi) 10.6 11.4 8.50 11.9 8.54
Avg Wait Time Per Trip (min) 3.11 2.96 3.36 2.73 3.62



% Total “Empty Vehicle” Miles Traveled  7.70% 7.19% 9.06% 6.76% 9.43%
% of Empty VMT for Relocation 2.79% 2.76% 2.87% 2.69% 2.70%
% of Empty VMT for Charging 1.81% 1.83% 1.77% 1.79% 1.82%
% of Empty VMT for Traveler Pickup 3.10% 2.60% 4.43% 2.28% 4.90%
Max % of Concurrent In-Use Vehicles 38.6% 41.5% 34.7% 48.1% 29.1%
Max % of Concurrent Charging Vehicles 53.5% 54.1% 47.99% 58.0% 40.7%
Operational Cost per Equivalent Occupied 
Mile Traveled $0.389 $0.383 $0.400 $0.378 $0.409
Daily Revenue $9.41M $12.8M $5.24M $16.2M $4.29M
Revenue-to-Cost Ratio 2.00 2.04 1.92 1.85 2.19
 428 

Interestingly, the average trip d istance of scenarios with high SAEV trip dem and (Low SAEV 429 

VOTT and Low Price) are longer than those of scenarios with low SAEV trip dem and (High 430 

SAEV VOTT and High Price). So while the vehicles in high-dem and scenarios are utilized for 431 

more miles each day, they actually serve fewer trips per day. However, the households who take 432 

these longer trips as SAEV VOTT and fare decrease are different, as reflected by the revenue to 433 

cost ratios. Both the Low SAEV VOTT and Lo w Price scenarios demand a bigger fleet (to serve 434 

increased SAEV demand) compared to the b ase case, but the Low SAEV VOTT scenario 435 

registers a bigger profit m argin than the ba se case while the Low P rice scenario does the  436 

opposite. As discussed previousl y, travelers who can do productive work while traveling in a 437 

SAEV will view their tim e in a SAEV as less costly, especially as trip distances increase. In the 438 

Low SAEV VOTT scenario, m ore high income tr avelers’ longer trips are captured by SAEV 439 

mode. On the other hand, the Low Price scenar io captures longer trips from  lower income  440 

travelers, as the advantage of SAEVs’ shorter wait times outweigh the fare advantage of transit 441 

in trips that travel between suburban and exurban zones. 442 

 443 

Overall, the largest absolute daily revenue is generated by the Low Price scenario, simply due to 444 

the significantly increased trip demand. However, when revenue is compared to costs, the High 445 

Price scenario yields the most favorable ratio.  446 

Origin, Destination, and Combination Pricing 447 

Sensitivity testing results revealed that different assumptions in SAEV VOTT and fare resu lts in 448 

a wide range (14-39%) of SAEV mode shares. These different tr ip demands require different  449 

infrastructure investments and location placem ents to acco mmodate increasing and decreasing 450 

trip densities. They also heavily impact revenue and profit margins, as shown in Table 5.  451 

 452 

Next, this study analyzes how various pricing st rategies can affect fleet operations (with the 453 

same vehicle fleet size, charging infrastructu re, and trip dem and). Table 6’s results em ploy the 454 

charging strategies describe d in the Mode Choice Methodol ogy section, all assuming SAEV 455 

VOTT to be 35% of private vehicle VOTT and a base distance pricing of $0.85 per mile. 456 

 457 

Pricing Scheme 
Distance-

Based 
Origin-
Based  

Destination-
Based  Combo  

Private Vehicle Mode Share 60.8% 63.9% 67.2% 68.6%
Avg Private Vehicle VOTT ($/hr) $17.97 $17.57 $17.01 $17.57



Avg Private Vehicle Trip Distance (mi) 7.78 8.31 7.67 8.16
Transit Mode Share 12.1% 11.7% 12.0% 13.1%
Avg Transit VOTT ($/hr) $3.62 $3.58 $3.31 $3.57
Avg Transit Trip Distance (mi) 19.4 19.1 18.2 18.7
SAEV Mode Share 27.1% 24.4% 20.8% 18.3%
Avg SAEV VOTT ($/hr) $19.62 $18.78 $21.92 $23.17
Avg SAEV Trip Distance (mi) 10.6 10.1 12.6 12.2
Total Trips Served per Day 3.90M 3.85M 3.72M 3.68M
Avg Daily Miles per Veh  142.7 122.6 117.1 101.2
Avg Daily Trips per Veh  45.9 45.3 43.9 43.3
Avg Wait Time Per Trip (min) 3.11 2.51 3.03 2.40
% Total “Empty Vehicle” Miles Traveled 7.70% 8.11% 7.37% 7.83%
% of Empty VMT for Relocation 2.79% 3.72% 3.11% 4.24%
% of Empty VMT for Charging 1.81% 1.98% 1.80% 2.02%
% of Empty VMT for Traveler Pickup 3.10% 2.41% 2.46% 1.57%
Operational Cost per Equivalent Occupied 
Mile Traveled $0.389 $0.398 $0.395 $0.405
Daily Revenue $9.41M $8.16M $8.35M $7.27M
Revenue to Cost Ratio 2.00 1.97 2.12 2.08

Table 6: SAEV Fleet Metrics across Distinctive Pricing Strategies 458 

Compared to distance-based pricing, the origin-based pricing scheme seems effective in reaching 459 

a more balanced vehicle supply and de mand. This is reflected by the 22.3% reduction in 460 

unoccupied VMT for  traveler pickup (com pared to distance-based pricing), which then 461 

corresponds to a 19.3% reduction in average SAEV wait tim es. However, this efficiency 462 

improvement comes with a 10% reduction in S AEV demand (mode share drops from  27.1% in 463 

distance-based pricing to 24.4% in  origin-based pric ing) and 13.3% decrease in daily revenue. 464 

The disproportionate revenue reduction is a re sult of discounted SAEV trips being m ore 465 

accessible to lower-VOTT households, as witne ssed in the 4.3% reduction in average SAEV 466 

VOTT between distance- and origin-based pricing. 467 

 468 

Destination-based pricing, com pared to distance-based pricing, exhi bits a negligib le (less than 469 

1%) reduction in empty VMT for charging purposes. Due to the c overage-maximizing nature of 470 

the charging station site genera tion methodology used here (discusse d in detail in Chen et al. 471 

[2015]), the distance between the destination cell and the nearest charging station varies little. 472 

However, this pricing schem e did have the effect of discouragi ng shorter trips from  choosing 473 

SAEV mode, as the charging surcharge of the SAEV fare becomes a larger portion of the overall 474 

fare as trip distances decrease. As discussed previously, high-VOTT travelers favor long SAEV 475 

trips. Thus, the decrease in short SAEV trips is accompanied by an 11.7% increase in averag e 476 

SAEV VOTT. 477 

 478 

The combination pricing scheme results shows some characteristics of both the orig in- and 479 

destination-based pricing schemes: Average SAEV wait times are reduced by 22.8% and average 480 

SAEV VOTT increases 18.1%. The performance metrics of the combination pricing schem e 481 



seems to have two aspects which  appeal to time-sensitive/high-VOTT travelers: minimized wait 482 

times and pricing which favors longer-distance trip s. This pricing schem e also resulted in the 483 

highest transit mode share and lowest SAEV mode share. 484 

SUMMARY AND CONCLUSIONS 485 

 486 

This study explores the im pact of pricing strategies on SAEV m arket share in a discrete-tim ed 487 

agent-based model of a simulated region with private vehicle, transit, and SAEVs serving as the 488 

mode choice alternatives. The m odel specification delivers roughly an 85%/15% s plit between 489 

private vehicles and transit trips before the introduction of SAEVs. Wh en the SAE V mode is 490 

offered at $0.85 per mile (and users are assumed to value SAEV IVTT at 35% the cost of private 491 

vehicle IVTT), the model estimates that 27% of all person-trips in the region (of at least 1 mile in 492 

distance) will select SAEVs (with 90% of these trips previously choosing private vehicle travel, 493 

before introduction of SAEVs).  494 

 495 

Sensitivity analysis suggests that SAEV mark et share can range from  14% to 39% under 496 

plausible variations in SAEV VOTT and fare assumptions. Under all scenarios, SAEVs prove to 497 

be substitutable for private vehi cle travel, assuming that single-occupant shared-vehicle trips 498 

offer the same benefits as using one’s privately owned vehicle for a single-occupant vehicle-trip, 499 

for any trip type.  W hile private vehicle mode share is most sensitive to persons’ V OTT during 500 

SAEV travel, transit mode shar e is m ost sensitive to SAEV fare assumptions. These results 501 

suggest that once EV a nd AV technologies gain market maturity and becom e less costly, low -502 

VOTT trip makers will start to choose SAEVs over transit, particularly in areas with poor transit 503 

service (as reflected by longer transit-access and wait times), echoing findings from Levin and  504 

Boyles’ (2015) center-city, peak-period simulation. Model results also suggest that SAEVs will 505 

attract longer trips away from  private vehicles, particular ly among high-VOTT travelers who 506 

find SAEV travel m uch less burdensom e than dr iving. Vehicle features that encourage and 507 

enhance work productivity (such as reliable W iFi, ergonomic work surfaces and seating, and 508 

reduced road noise) will likely attract longer trips from high-VOTT travelers willing to pay 509 

higher fares (Mokhtarian et al. 2013). Like airlin es, public SAEV operators m ay find the best 510 

balance of profitability and service com pleteness by offering a refined, work-enhancing vehicle 511 

environment at higher fares to serve high-VOTT travelers (similar to the first- and business-class 512 

airplane cabins) and a discounted, sufficiently basic service to serve low-VOTT travelers (similar 513 

to economy-class airplane cabins).  514 

 515 

Model outputs from  various SAEV  pricing schemes show that spec ific fleet metrics can be 516 

improved via targeted strategies. For example, fares that seek to balance available S AEV supply 517 

with anticipated trip dem and (over space and tim e) can decrease av erage wait tim es by 19 to 518 

23%, demonstrating the effectiven ess of congestion pricing in a vehicle-balancing framework. 519 

However, trade-offs are eviden t in these prici ng schemes: fare stru ctures that favor higher 520 

revenue-to-cost ratios (by targ eting higher-VOTT travelers) in evitably reduce SAEV mode 521 

shares, while those that favor greater m arket share (by appealing to a wider range of travelers 522 

and VOTTs) inevitably produce low er revenue-to-cost ratios. These pric ing outputs emphasize 523 

the role of the SAEV operato rs’ goals when  selecting a fare structure. For private SAEV 524 

operators, whose goal typically is  to m aximize profits, a com bination pricing schem e that 525 

minimizes user wait times while discouraging shorte r trips (which tend to incur a higher level of 526 



empty VMT-to-occupied VMT) are m ost suitable. For a public SAEV operator, whose goal 527 

presumably is to maximize equitable access to SAEVs while still reducing wait times, a supply-528 

and-demand (origin-based) pricing scheme may be most suitable.  529 

 530 

The model outputs also reinforce the importance of efficient parking prices, since SAEVs will be 531 

more competitive against private vehicles in ar eas which prices parking marginally according to 532 

usage rather than subsidies th rough development policies (e.g. requi ring developers to provide 533 

specific numbers of parking sp aces per retail square footage) or em ployer-provided 534 

benefits.Under-priced and inefficiently-priced parki ng spaces in m ost U.S. and non-U.S. cities 535 

play a d irect role in  increasing traffic congestion, housing inaffordability, sprawl, and m obile-536 

source emissions (Litman 2011). Inefficient parking prices also cause unde rvaluation of one of 537 

SAEVs’ key benefits: reduced parking dem and (and out-of-pocket parking costs), decreasing 538 

their competitive advantage relative to private vehicles.  539 

 540 

The pricing strategies and sensit ivity analysis explored here offer insights on the m any factors 541 

that influence SAEV mode shares an d fleet performance. However, this agent-based model and 542 

application is lim ited in severa l ways. For ex ample, more than three m odes are regularly 543 

possible, including privately- held AVs, which m ay become very popular; thus, a vehicle-544 

ownership model (upstream ) is needed, along with non-motori zed modes and trip distances  545 

below 1 mile. Furthermore, a shared-vehicle trip  may not offer the same utility as a privately -546 

owned-vehicle trip for all trip types. For example, many young children and elderly persons may 547 

require special equipment (like car seats and w heel-chair-accessible features) that m ay not be  548 

available in fleet vehicles. Ne vertheless, while autonomous driving technology is in its infancy 549 

(and expensive), SAEVs offer users access to  AV technology without significant up-front 550 

investment. Additionally, as mentioned in the results discussion, the lack of more individual trip-551 

maker and trip -type attributes o ver space and time (by tim e of day and day of year) 552 

oversimplifies the mode (and destination) choice process. In reality, urban geography is highly 553 

heterogeneous in term s of trip generation an d attraction rates, by tim e of day and acros s 554 

demographic characteristics. Moreover, trips are segments of com plex tours with a variety of  555 

constraints on them . More clustered origins and destinations , and routing opportunities m ay 556 

make the systems more efficient, but variations over the days of week a nd months of year m ay 557 

make fixed fleets less able to se rve all comers. Fortunately, pricing can be m ade flexible, and 558 

vehicles can hold more than one traveler, so operators have a variety of price-setting strategies to 559 

explore. The future is uncertain, but interesting and full of opportunity for those who make use of 560 

these new technologies in socially meaningful ways.  561 
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