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ABSTRACT 21 
This study anticipates changes in U.S. highway and rail trade patterns following widespread 22 

availability of self-driving or autonomous trucks (Atrucks). It uses a random-utility-based 23 

multiregional input-output (RUBMRIO) model, driven by foreign export demands, to simulate 24 

changes in freight flows among 3109 U.S. counties and 117 export zones, via a nested-logit 25 
model for shipment or input origin and mode, including the shipper’s choice between 26 

autonomous trucks and conventional or human-driven trucks (Htrucks). Different value of travel 27 
time and cost scenarios are explored, to provide a sense of variation in the uncertain future of 28 
ground-based trade flows.  29 

Using the U.S. Freight Analysis Framework or FAF4 data for travel times and costs and 30 
assuming that Atrucks lower trucking costs by 25% (per ton-mile delivered), domestic truck flow 31 
values are predicted to rise 2%, while rail flow values fall 16.1%. Due to predictions of change 32 
trip tables (shipment origins), rail flow volumes are actually predicted to rise for trip distances 33 

under 250 miles or greater than 1,550 miles in distance, with truck volumes rising for other 34 
distances. Introduction of Atrucks enables longer truck trade, but the low price of railway 35 
remains competitive for trade distance over 1,550 miles. Htrucks continue to dominate in 36 

shorter-distance freight movements, while Atrucks dominate at distances over 550 miles. Seven 37 
and eleven commodity sectors by truck see an increase in domestic flows and export flows, 38 
respectively. However, total ton-miles traveled by the 20 commodity groups falls, as long-39 
distance railway use becomes relatively less attractive.  40 

 41 

Key words: autonomous trucks, spatial input-output model, nationwide trade flow patterns, 42 

integrated transportation-land use modeling 43 
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MOTIVATION 44 
Self-driving, fully-automated or autonomous vehicles (AVs) are an emerging transportation 45 
technology that may transform both passenger and freight transport decisions. Semi-automated 46 
trucks may enable automated driving under supervision and limited circumstances, such as 47 

driving long distances on an interstate. Fully automated self-driving trucks or “Atrucks” are 48 
those that can leave the truck terminal and travel to a destination without human intervention or 49 
presence in the truck cab (Goodwill, 2017). Atrucks may be equipped with other automated 50 
functions, like drop-offs and pick-ups, but most experts expect an attendant on board, doing 51 
other types of work, sleeping as needed, and ensuring thoughtful deliveries and pickups. Such 52 

multi-tasking of vehicle attendants will allow for extended use of commercial trucks (e.g., every 53 
day, almost 24 hours a day) and greater labor productivity, resulting in lower per-mile and per-54 
ton-mile freight delivery costs. 55 

In the United States, trucks carry 1,996 billion ton-miles in 2014, which is 37.7% of total 56 

ton-miles transported in that year (BTS, 2017). Investment in and use of Atrucks will affect not 57 
only national and regional economies (Clements and Kockelman 2017), but trade patterns, 58 

production levels, and goods pricing. Commercial trucks consume about 20% of the nation’s 59 
transportation fuel, and self-driving technologies are predicted to reduce those diesel fuel bills by 60 

4-7% (Liu and Kockelman 2017; Barth et al., 2004; Shladover et al., 2006).  61 
Atrucks can reduce some environmental impacts, lower crash rates, and increase 62 

efficiency in warehousing operations, line-haul transportation, and last-mile deliveries. Platooned 63 

convoys should enable following truck drivers to avoid certain restrictions on service hours, 64 
enabling longer driving distances. Uranga (2017) predicts greater use of Atrucks before 65 

passenger vehicle automation, thanks to the more obvious economic benefits of self-driving 66 
trucks (which start with higher price tags, making the automation investments less of a cost 67 
burden). Of course, driver job loss is also a concern, and the International Transport 68 

Forum (O’Brien, 2017) predicts that up to 70% of all U.S. truck-driving jobs could be lost by 69 

2030 (due to vehicle automation). But trucks may still require driver presence, due to loading 70 
dock restrictions, unusual problems on the road, and more complex operating systems. 71 

While there is active investigative interest on the travel and traffic effects of self-driving 72 

cars, research into the travel and traffic impacts of Atrucks is dearly lacking. This paper 73 
anticipates Atrucks’ trade pattern and production impacts across the U.S., and begins with a 74 

review of relevant works. It then discusses the random-utility-based multi-regional input-output 75 
(RUBMRIO) model methodology for tracking trade across zones or regions, describes a sub-76 

nested mode choice model for Atrucks (versus Htrucks), and the results of various trade-scenario 77 
simulations across U.S. regions, highways, railways, and industries. 78 

 79 

RELEVANT LITERATURE 80 
Two papers currently investigate U.S. passenger-travel shifts, due to AV use (LaMondia et al., 81 

2016; Perrine et al., 2017). Related topics include fuel consumption, congestion impacts, shared-82 
fleet operations, dynamic ride-sharing, energy use, emissions, and roadside investments (see, 83 

e.g., Fagnant and Kockelman, 2014; Chen et al., 2016; International Transport Forum 2015; 84 
Land Transport Authority, 2017; Kockelman et al., 2016). LaMondia et al. (2016) forecasted 85 
U.S. mode shares for person-trips over 50 miles (one-way) from the state of Michigan, following 86 
the introduction of AVs. They predicted that 25% demand of airline passenger trips under 500 87 
miles will shift to autonomous vehicles.. Perrine and Kockelman (2017) anticipated destination 88 
and mode-choice shifts in long-distance U.S. person-travel, including a major loss (48%) of 89 
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airline revenue, using 4,566 National Use Microdata Area zones (NUMAs). The anticipate, long-90 

term effects of AV access on long-distance personal travel are striking. 91 
Some companies have written about the potential benefits of Atrucks. A DHL report 92 

(Kückelhaus, 2014) notes that Atrucks could lower their freight costs by 40% per vehicle- or ton-93 

mile. Convoy systems would allow long-distance drives with large quantities of goods, through 94 
which Atrucks could reduce fuel use by 10 to 15% (Clements and Kockelman, 2017). Crash 95 
counts may fall by 50 percent or more (Kockelman and Li, 2016), along with various insurance 96 
costs. However, changing freight travel and land-use patterns due to Atrucks have been 97 
neglected. This is a new area of Atrucks that needs to be explored. 98 

  99 

Trade Modeling 100 
Input-Output (IO) analysis, originally proposed by Leontief (1941), uses matrix algebra to 101 
characterize inter-industry interactions within a single region, as households and government 102 

agencies spend money on goods, which are produced by mixing inputs from other industries, and 103 
so on. Demand is met by production adjustments, based on expenditure linkages across 104 

industries. Isard’s (1960) spatial IO model allows for spatial disaggregation using fixed shares.. 105 
More recent extensions exploit random utility theory and entropy-maximization properties, as 106 

evident in the MEPLAN (Echenique et al., 1990), DELTA (Simmonds and Still, 1998), 107 
TRANUS (De la Barra et al., 1984), PECAS (Hunt and Abraham, 2003) and KIM models (Kim 108 
et al., 2002). These models also allow a land-use transportation feedback cycle, with freight and 109 

person (labor and consumer) flows responding to changes in network routes and travel costs. 110 
The open-source RUBMRIO model is a similar extension, with applications to the state 111 

of Texas and U.S. counties. Kockelman et al. (2005) described the RUBMRIO’s application to 112 
Texas’s 254 counties, across 18 social-economic sectors and two modes of transport, meeting 113 
foreign export demands at 31 key ports. Huang and Kockelman (2010) developed a dynamic 114 

RUBMRIO model to equilibrate production and trade, labor markets and transportation networks 115 

simultaneously for Texas’ counties over time (better recognizing starting distributions of labor 116 
and employment). Kim et al. (2002) used such a model for estimating interregional commodity 117 
flows and transportation network flows to evaluate the indirect impacts of an unexpected event 118 

(an earthquake) on nine U.S. states, represented by 36 zones.  119 
Guzman and Vassallo (2013) used a RUBMRIO-style approach to evaluate the 120 

application of a distance-based charge to heavy-goods vehicles across Spain’s motorways. Maoh 121 
et al. (2008) used the RUBMRIO model to simulate weather impacts on Canada’s transportation 122 

system and economy. Du and Kockelman (2012) calibrated the RUBMRIO model to simulate 123 
U.S. trade patterns of 20 commodities among 3,109 counties, with its nested-logit model for 124 
input origin and truck-versus-rail mode choices. They noted how transportation cost changes 125 
(from generically more efficient or less efficient travel technologies, for example) were 126 
important, especially for central U.S. counties.   127 

This study builds off of the Du and Kockelman (2012) work by adding the Atruck option 128 
into a sub-nest for mode choice (allowing for strong correlation in the Atruck vs. Htruck choice). 129 

The application’s 20 socio-economic sectors, technology costs, and other assumptions are 130 
described below. 131 

  132 

DATA SETS 133 
Data sets used for RUBMRIO model include the disaggregated freight zonal data from the U.S. 134 
Commodity Flow Survey (CFS), trade flow data from the U.S. DOT’s Freight Analysis 135 
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Framework (FAF) version 4, industry-by-industry transaction table and regional purchase 136 

coefficients (in year 2008) from IMPLAN, and railway and highway network data from Caliper’s 137 
TransCAD 7.0. 138 
  139 

Freight Data 140 
FAF4 integrates trade data from a variety of industry sources, with emphasis on the Census 141 
Bureau’s 2012 CFS and international trade data (Fullenbaum and Grillo, 2016). It provides 142 
estimates of U.S. trade flows (in tons, ton-miles, and dollar value) by industry, across 7 modes 143 
(truck, rail, water, air, pipeline, and others), and between all 132 FAF zones. FAF4’s origin-144 

destination-commodity-mode annual freight flows matrix was used to predict domestic and 145 
export trade flows by zone. Among the nation’s 132 FAF4 zones, 117 Export FAF zones are used 146 
here as FAF4 shows foreign export flow exiting U.S. from 117 zones, as shown in gray in Figure 147 
1(a).  148 

FAF4 trade-flow data were then disaggregated into county-level matrices using the 2012 149 
CFS boundary data which identifies the counties that belong to each of the FAF4 zones. Ten 150 

metro areas were also added for the CFS in year 2012, and 3109 contiguous counties remain, 151 
after excluding the distant states of Hawaii and Alaska. Figure 1(b) shows the resulting 3109 152 

counties. Interzonal travel times and costs by rail, Atruck and Htruck were all computed using 153 
TransCAD software, for the 3109×3109 FAF4 county matrix based using shortest highway and 154 
railway paths. All intra-county travel distances were assumed to be the radii of circles having 155 

that county’s same area.  156 

 157 

(a) Continental United States’ FAF4 117 Export Zones 158 
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 159 

(b) Continental United States’ 3109 Domestic Freight Counties 160 

Figure 1 U.S. Domestic and Export Zones for Trade Modeling. 161 
 162 
Economic Interaction Data 163 
The model’s embedded IO matrices’ technical coefficients and regional purchase coefficients 164 

(RPCs) were obtained through IMPLAN’s transaction tables, as derived from U.S. inter-industry 165 

accounts. Technical coefficients reflect production technology or opportunities (i.e., how dollars 166 
of input in one industry sector are used to create dollars of product in another sector) and are core 167 
parameters in any IO model. RPCs represent the share of local demand that is supplied by 168 

domestic producers. RPC values across U.S. counties are assumed constant here, since variations 169 
are unknown. However, counties closer to international borders are more likely to “leak” sales 170 

(as exports) than those located centrally, everything else constant. And production processes or 171 
technologies can vary across counties (and within industries, across specific manufacturers and 172 

product types, of course). This application assumes that all U.S. counties have access to the same 173 
production technologies, or technical coefficients table.  174 

IMPLAN’s 440-sector transaction table was collapsed into 18 industry sectors, plus 175 
Household and Government sectors to represent the U.S. economy in this trade-modeling 176 

exercise. Since FAF4 uses the same 43 two-digit Standard Classification of Transported Goods 177 
(SCTG) classes (BTS, 2017) as the 2007 U.S. Commodity Flow Survey (CFS), IMPLAN’s 440 178 
sectors were bridged to a corresponding SCTG code based on the 2007 North American Industry 179 

Classification System or NAICS (Census Bureau, 2017). SCTG code 99 (for other good types) is 180 
not tracked here. See economic sectors for RUBMRIO model application table from Du and 181 
Kockelman (2012). 182 

 183 
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METHODOLOGY 184 
In random utility choice theory, error terms enable unobserved heterogeneity in the decision-185 
making process. Here, the RUBMRIO multinomial logit model has three branches, for origin 186 
choice, rail versus truck mode choice, and autonomous vs human-driven truck choice, as shown 187 

in Figure 2.  188 

 189 

Figure 2 Random Utility Structure for Shipment Origin, Mode, and Truck-type Choices. 190 
 191 
Equation (1) provides the three mode-choice utilities, conditioned on knowing a shipment’s 192 

origin (i), destination (j), and industry or commodity type (m): 193 

Uij, rail
m =Ṽij, rail

m
+Ṽij

m
+εij, rail

m +εij
m

Uij, truck, Atruck
m =Ṽij, truck, Atruck

m
+Ṽij, truck

m
+Ṽij

m
+εij, truck,Atruck

m +εij, truck
m +εij

m

Uij, truck, Htruck
m =Ṽij, truck, Htruck

m
+Ṽij, truck

m
+Ṽij

m
+εij, truck,Htruck

m +εij, truck
m +εij

m

                                          (1) 194 

where   195 

Ṽij

m
 = systematic utility of selecting origin i for acquisition of commodity m, 196 

Ṽij, rail

m
, Ṽij, truck

m
 = systematic utilities associated with selecting origin i and rail mode/any truck 197 

type for movement of commodity m, 198 

Ṽij, truck, Atruck

m
,Ṽij, truck, Htruck

m
 = systematic utilities associated with selecting origin i and 199 

Atruck/Htruck for movement of commodity m, 200 

εij
m, εij, rail

m , εij, truck
m , εij, truck,Htruck

m , εij, truck,Atruck
m  = random error terms associated with shipment 201 

origin, rail mode, truck mode, human-driven truck and self-driving truck choice respectively.   202 

 203 

Choice of origin 

Choice of mode 

Choice of truck 

rail truck 

Atruck Htruck 

1 2 3 4 … 

Level 3 

Level 1 

Level 2 
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Origin Choice (Level 3) 204 
Relying on nested logit formulae provided in Ben-Akiva and Lerman (1978), the probability of 205 
commodity-type m inputs coming to zone j from zone i (i.e., the choice likelihood [or input 206 
share] of zone i as an origin for this good’s demand in zone j) is given by: 207 

Pij
m=

exp(Vij
m

)

∑ exp(Vij
m

)
i

                                                                                                                         (2) 208 

where 209 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
θij,mode

m
Γij,mode

m                                                                                            (3) 210 

is the system utility using origin i for commodity m, and 211 

Γij,mode
m =ln (exp (

Vij, rail
m

θij,mode
m )+exp (

Vij,truck
m

θij,mode
m ))                                                                                           (4) 212 

is the logsum of mode choice, with scale parameter θij,mode
m

=1.2. 213 

 214 

Mode Choice (Level 2) 215 
Since the mode choice nested logit’s random error terms are assumed to follow an iid Gumbel 216 
distribution, and setting the initial dispersion to scaling factor to 1, the probability of commodity 217 

m being transported by each of the two major modes (rail and truck), between any given ij pair, 218 
are as follows: 219 

Prail|ij
m =

exp(
Vij, rail

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

Ptruck|ij
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

                                                                                                       (5) 220 

where 221 

Vij, rail
m =β

0, rail

m
+βr,time

m
×timeij, rail+βr,cost

m
×costij, rail

and Vij, truck
m

=0+θij,truck
m

Γij,truck
m                                      

                                                                        (6) 222 

are the general modes’ systematic utilities and 223 

Γtruck
m =ln(exp (

Vij, truck,Atruck
m

θij,truck
m ) +exp (

Vij, truck,Htruck
m

θij,truck
m ))                                                                            (7) 224 

is the logsum for the truck-mode choice, with scale parameter θij,truck
m

 = 1.4 for base case. Travel 225 

time is a common component for the Atruck and Htruck utilities, since this work does not 226 
assume one is faster. Here, the truck mode serves as the base mode, so only the rail mode has an 227 
alternative specific constant (ASC).  228 
 229 

Truck Choice (Level 1) 230 
The probability of freight flow commodity m from zone i to zone j using mode Atruck and 231 

Htruck respectively in nest truck is given by: 232 
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PAtruck|ij,truck
m =Ptruck|ij

m ×PAtruck|truck
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

×
exp(

Vij, truck,Atruck
m

θij,truck
m )

exp(
Vij, truck,Atruck

m

θij,truck
m )+exp(

Vij, truck,Htruck
m

θij,truck
m )

PHtruck|ij,truck
m =Ptruck|ij

m ×PAtruck|truck
m =

exp(
Vij,truck

m

θij,mode
m )

exp(
Vij, rail

m

θij,mode
m ) + exp(

Vij,truck
m

θij,mode
m )

×
exp(

Vij, truck,Htruck
m

θij,truck
m )

exp(
Vij, truck,Atruck

m

θij,truck
m )+exp(

Vij, truck,Htruck
m

θij,truck
m )

                (8) 233 

where 234 

Vij, truck,Atruck
m =β

0, Atruck

m
+β

t,time
m

×timeij,truck+βt,cost
m

×costij,Atruck

Vij, truck, Htruck
m =0+β

t,time
m

×timeij,truck+β
t,cost

m
×costij,Htruck

                                                         (9)  235 

are the system utilities of moving commodity m from zone i to zone j using Atruck and/or Htruck 236 

modes (in the truck nest).  237 

 238 

RUBMRIO Model Specification 239 
An equilibrium trade-flow solution (where all producers obtain the inputs they need, and all 240 

export demands are met) can be achieved in RUBMRIO via Figure 3’s iterative equation 241 
sequence. Zhao and Kockelman (2004) proved solution uniqueness. Flow-weighted averages of 242 

shipments’ travel costs create input costs, which merge together to create output costs, as 243 
commodities (and labor) flow through the production and trade system. Once the solutions have 244 
stabilities (with domestic flow value changing by less than 1% between iterations), final 245 

disutilities of travel and trade provide mode shares by OD pair and commodity or industry sector.  246 
This iterative process’ calculations required about 2.25 hours using an Atruck-modified 247 

version of Kockelman et al.’s C++ open-source program (available at 248 
http://www.caee.utexas.edu/prof/kockelman/RUBMRIO_Website/homepage.htm). 249 

http://www.caee.utexas.edu/prof/kockelman/RUBMRIO_Website/homepage.htm
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 250 

Utility of purchasing commodity m from zone i and transporting to zone j and k 

𝑉𝑖𝑗
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𝑚 
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𝑥𝑖
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𝑚

𝑗
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𝑚

𝑘
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𝑛
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𝑋𝑖𝑗
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𝑚
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𝑚 
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𝑚 𝑖
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𝑐𝑗
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𝑚  𝑖

 𝑋𝑖𝑗
𝑚

𝑖
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𝑝𝑗
𝑛 = ∑ 𝑎0𝑗
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𝑚
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Figure 3 RUBMRIO Solution Algorithm (Adapted from Du & Kockelman [2012], Figure 251 

2). 252 
 253 
RUBMRIO’s utility functions for domestic and export trade-flow splits (across shipment origin 254 

alternatives) depend on the cost of acquiring input type m from zone i, as well as zone i's “size” 255 
(measured as population here). Since there are three mode alternatives for these shipments, with 256 
the two truck modes sub-nested, the competing travel costs can be shown as logsums (the 257 
expected maximum utility or minimum cost of acquiring that input from different origin zones). 258 
After substituting those logsums into Figure 3’s trade-flow equations, one has equations (10) and 259 

(11), where Vij
m and Vik

m are the utilities of purchasing one unit of industrial m’s goods from 260 

region i for use as inputs to zone j’s production process, or for export via zone k, respectively. 261 

Vij
m=-p

i
m+γmln(pop

i
)+λ

m
×θij,mode

m
×ln

(

 
 
 
 

exp (
β

0, rail
m

+βr,time
m

×timeij, rail+βr,cost
m

×costij, rail

θij,mode
m )

+exp

(

 
 θij,truck

m

θij,mode
m ×ln(

exp (
β

0, Atruck
m

+βt,time
m

×timeij,truck+βt,cost
m

×costij,Atruck

θij,truck
m )

+exp (
βt,time

m
×timeij,truck+βt,cost

m
×costij,Htruck

θij,truck
m )

)

)

 
 

)

 
 
 
 

 (10) 262 

Vik
m=-p

i
m+γmln(pop

i
)+λ

m
×θik,mode

m
×ln

(

 
 
 
 
 

exp (
β

0, rail
m

+βr,time
m

×timeik, rail+βr,cost
m

×costik, rail

θik,mode
m )

+exp

(

  
 θik,truck

m

θik,mode
m ×ln

(

 
 

exp(
β

0, Atruck
m

+βt,time
m

×timeik,truck+β
t,cost

m
×costik,Atruck

θik,truck
m )

+exp(
βt,time

m
×timeik,truck+β

t,cost

m
×costik,Htruck

θik,truck
m )

)

 
 

)

  
 

)

 
 
 
 
 

(11) 263 

Parameter assumptions for γm, λ
m

 and βm are based on Du and Kockelman’s (2012) work, 264 

which has two levels of random utility structure – for origin and mode choices. Here, the rail’s 265 

ASCs were set equal to the negative of the ASCs used for truck in their research, since a second 266 
type of truck mode was added as Atrucks.  And the Atruck ASCs were assumed to be -0.1, 267 
because Atrucks is assumed to have higher preference related to safety compared with Htruck 268 

with the same operation cost. After assembling all these inputs, a series of different network and 269 
Atruck cost scenarios can be examined, using the RUBMRIO solution algorithms.  270 

 271 

SIMULATION RESULTS 273 
Figure 3’s RUBMRIO equations were used to estimate U.S. trade flows between the nation’s 274 
3109 contiguous counties, as well as to 117 FAF4 export zones, across 20 industries and 3 travel 275 
modes. $10.7 trillion in trade flows were generated to meet the year 2015 export demand of 276 
$1.15 trillion, as obtained from FAF4 (with 24%, 18%, 17%, and 16% of those exports headed to 277 
Canada, Mexico, Europe and East Asia, respectively). The inter-county (domestic) flows account 278 

for 71.3% of FAF4’s domestic $15.0 trillion trade flow. It is not 100% because the nation has 279 

another $2.5 trillion in import flows (according to FAF4, coming from other countries), which 280 

are not tracked here.  281 
The base-case scenario assumes Htruck travel costs of $1.73 per Htruck-mile and railcar 282 

costs of $0.6 per container-mile (with different commodities filling containers differently, in 283 
terms of dollars per container).  Table 1 compares RUBMRIO trade flow results to those in the 284 
FAF4 database, after aggregating the 3109 trade zones into the 129 FAF zones, and counting the 285 
number of OD pairs that deliver the first 10 percent of trade flows (in dollar terms, rather than 286 
ton-miles or dollar-miles, for example), then the next set of OD pairs, and so forth (summing to 287 
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129 x 129 [domestic flows] zones pairs or 129 x 117 [export flows] zone pairs each). For 288 

example, the smallest-value domestic shipments that move $1.07 trillion, which is 10% of total 289 
domestic flow $10.7 trillion, come from 9604 FAF-zone pairs, according to the model results. In 290 
some contrast, FAF4 values suggest that there are over 12,000 zone pairs involved in that first 291 

(smallest-shipment-size) set of flows. This comparison suggests that the base case RUBMRIO 292 
model equations and assumptions deliver reasonable trade-flow estimates, of FAF4 volumes. 293 
However, RUBMRIO tends to “spread out” the trades across more OD pairs (with fewer small-294 
size shipments) than FAF4 data suggest. In other words, RUBMRIO shows less concentration of 295 
trade dollars or shipment sizes in the biggest OD trading patterns, for both domestic and export 296 

flows. There is obviously much more to U.S. trade than an origin’s population and its relative 297 
location on railways and highways, versus competing shipment sources. It is interesting how 298 
close RUBMRIO can come to replicating many trade patterns with a short set of equations 299 
(Figure 3 plus equations 10 and 11). 300 

  301 

Table 1 Cumulative Distribution of RUBMRIO and FAF4 Trade Flows 302 

 303 

 Domestic Flows Export Flows 

RUBMRIO FAF4 RUBMRIO FAF4 

0%-10% 9604 12,646 13,251 13,971 

10%-20% 2738 2064 870 552 

20%-30% 1579 935 410 257 

30%-40% 1005 479 234 146 

40%-50% 662 262 137 81 

50%-60% 433 134 85 40 

60%-70% 283 64 53 26 

70%-80% 188 36 31 14 

80%-90% 108 16 16 4 

90%-100% 41 5 6 2 

 304 
To look at trade patterns spatially, Figure 4 shows domestic trade flows above $5 billion and 305 
export trade flows about $1 billion. Many major domestic flows exist between western states, 306 

like California and Washington, to various eastern regions/FAF zones. In some contrast, major 307 
export flows (within the continental U.S., to access a port) also exist between coastal cities and 308 
their adjacent regions (often adjacent states). Moreover, exports from California ports appear to 309 
come largely from the Great Lakes region instead of from the Eastern Seaboard, thanks to a 310 
heavy export of Michigan-manufactured automobiles and trucks.  311 
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(a) Domestic Flows (Million $) (b)Export Flows (Million $) 

Figure 4 Base Case Domestic and Export Trade Flows, between FAF4 zones. 312 
 313 

Sensitivity Analysis 315 
Since great uncertainty still exists about the relative costs of acquiring and deploying Atrucks, 316 

multiple scenarios were tested here, with different parameter assumptions. Atruck operating 317 
costs are expected to be much lower than Htruck costs, overall, thanks to a reduction in 318 

operator/attendant burden from the driving task and Atrucks’ greater utilization, as their 319 
attendants rest/sleep or perform other duties (and are not subject to strict hours of service 320 
regulations, since they cannot cause a fatal crash, for example). Wages and benefits may fall, or 321 

simply shift from administrative and service workers that used to be officed (e.g., those 322 
managing carrier logistics, customer service calls, or shipper billing) to workers that now travel 323 

between states on-board a moving office (and help with pickups and deliveries, as those arise).  324 
Scenario 1 serves as a reference, high-technology (Atrucks in operation) case for the 325 

following discussion of nine different Atruck scenarios. Base case is the mode share before 326 

Atrucks implementation. After the introduction of Atrucks, the mode share of trucks increases 327 

compared to rail, but the total ton-mile and dollar mile decreases. Compared to Scenarios 1 328 

through 3, the cost of Htruck use is assumed to be 20% higher (in Scenarios 4 through 6) or 329 
lower (Scenarios 7 through 9), while Atruck costs are assumed to be 75%, 50%, and 25% of 330 

Htruck costs (per ton-mile, container-mile or commodity-mile), respectively, resulting in 9 (3 x 331 
3) separate scenarios. Table 2 presents basic mode split results for FAF4 and these 9 scenarios. 332 
Interestingly, Atruck splits (either by dollar-miles carried or ton-miles transported) are very 333 

stable across the 9 scenarios, at around 90 percent and 85 percent, regardless of the relative price 334 
variation.  335 

Sensitivity analysis is also applied for Atruck ASCs and scaling parameters for the nested 336 
logit model. With slight changes, the more attractive that one makes Atrucks, relative to Htrucks, 337 
the more dollar-miles and ton-miles will be carried by trucks. For the test of scaling parameter, if 338 

increased substitution is assumed between alternatives in the truck nest or the mode nest, the 339 

truck split will increase slightly. 340 
 341 

Table 2 Sensitivity Analysis 342 
(a) Operation Cost Test Results 343 

Scenario 
Cost 

of 

Htruck 

Cost 

of 

Atruck 

109 dollar-miles 109 Ton- miles 

Rail % Truck % Rail % Truck % 

Base - - 1.87 10.5% 15.90 89.5% 6.89 13.83% 42.93 86.2% 
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1* 100% 75% 1.45 8.9% 14.77 91.0% 6.07 13.33% 39.46 86.7% 

2 100% 50% 1.44 9.3% 14.12 90.8% 6.10 13.98% 37.52 86.0% 

3 100% 25% 1.43 9.7% 13.38 90.3% 6.16 14.87% 35.26 85.1% 

4 80% 75% 1.46 9.2% 14.40 90.8% 6.15 13.83% 38.31 86.2% 

5 80% 50% 1.45 9.5% 13.84 90.5% 6.20 14.47% 36.64 85.5% 

6 80% 25% 1.44 9.8% 13.25 90.2% 6.23 15.17% 34.85 84.8% 

7 120% 75% 1.47 8.9% 14.99 91.1% 6.07 13.10% 40.26 86.9% 

8 120% 50% 1.42 9.0% 14.40 91.0% 6.12 13.76% 38.35 86.2% 

9 120% 25% 1.41 9.4% 13.52 90.6% 6.16 14.57% 36.11 85.4% 

(b) Atruck ASCs Test 344 

Scenario ASC for Atruck 
109 dollar-miles 109 Ton- miles 

Rail % Truck % Rail % Truck % 

1* -0.1 1.45 8.9% 14.77 91.1% 6.07 13.3% 39.46 86.7% 

2 -0.3 1.45 8.9% 14.81 91.1% 6.08 13.3% 39.59 86.7% 

3 0.1 1.46 9.2% 14.40 90.8% 6.15 13.8% 38.32 86.2% 

(c) Scaling Parameters Test 345 

Scenario θij,mode
m

 θij,truck
m

 
109 dollar-miles 109 Ton- miles 

Rail % Truck % Rail % Truck % 

1* 1.2 1.4 1.45 8.9% 14.77 91.0% 6.07 13.3% 39.46 86.7% 

2 1.2 1.3 1.54 9.2% 15.13 90.8% 5.70 12.2% 41.10 87.8% 

3 1.1 1.4 1.50 9.6% 14.15 90.4% 6.52 14.8% 37.77 85.3% 

 346 

Figure 5 illustrates estimated changes in flow patterns for trucks and railroads before and after 347 
the introduction of Atrucks (where truck flows are the sum of Atruck and Htruck flows). The 348 

measurement scale is adjusted to reflect only the most common OD pairs and major flow 349 

volumes (since much more is carried by truck [than by rail] in the U.S. and for domestic [rather 350 
than export] purposes). For domestic trade flows, rail trade patterns suggest a dramatic shift 351 
toward continuing various trans-continental rail flows, following the introduction of Atrucks, 352 

from an end-point concentration in central Colorado. This is probably because Atrucks have 353 
replaced some of the mid- or long-distance flows from central Colorado so that rail trade goes 354 

directly from west locations to east locations. Truck flows are predicted to lose many interactions 355 
between the western U.S. and Floridian and northeastern regions, but experience greater 356 
interactions among northwestern regions. Export trade flows is much lighter than domestic 357 
flows, in general, and their connections among southern, northwestern and northeastern U.S. 358 

regions appear enhanced by rail ties, following introduction of Atrucks, while trucks appear to 359 
lose overall trade flows between the nation’s northwest and southeast regions.  360 
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(a) Domestic Rail Trade Flows Before Atrucks (b) Domestic Rail Trade Flows After Atrucks 

  
(c) Domestic Truck Trade Flow Before Atrucks (d) Domestic Truck Trade Flow After Atrucks 

  
(e) Export Rail Trade Flows Before Atrucks (f) Export Rail Trade Flows After Atrucks 

  
(g) Export Truck Trade Flows Before Atrucks (f) Export Truck Trade Flows After Atrucks 

Figure 5 Principal U.S. Trade Flow Patterns Before and After Atrucks ($ Million). 361 
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  362 
Trip-length distributions are another meaningful way to view Atrucks’ effects on travel patterns. 363 
Figure 6 shows such distributions for domestic rail shipments, (total) truck shipments, and 364 
Atruck versus Htruck shipments. Figure 6(a) shows that rail flows are predicted to rise at short 365 

distances (under 250 miles between counties) and very long distances (over 1550 miles), while 366 
trucks see flow increases on longer trips: between 350 miles and 2150 miles. This is likely 367 
because Atrucks are quite competitive for mid- and long-distance trade. However, when input 368 
access distances exceed 2000 miles, railway’s lower costs prove very competitive, for many 369 
commodities (e.g., those that are less time-sensitive, low value per ton, and/or perishable).  370 

Figure 6(c) illustrates mode splits between Atrucks and Htrucks, across domestic trade-371 
flow distances. Htrucks appear to still dominate up to about 300 miles of distance, and Atrucks 372 
clearly dominate after about 750 miles of travel distance. Interestingly, truck movements appear 373 
to peak at just 150 miles of (inter-county) travel distance, for domestic shipments, while Atruck 374 

flow values do not peak until 2,750 miles of travel distance. 2,750 miles is essentially the 375 
distance separating the nation’s two largest regions: New York City and Los Angeles (as well as 376 

Miami to Los Angeles, for example), making this an important OD pair for many commodities 377 
(like finance, insurance and service goods).  378 

 
(a) Trade Flow Distances by Rail Before & After Atrucks 
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(b) Trade Flow Distances by All Trucks Before & After Atrucks 

 
(c) Trade Flow Distances by HTrucks & Atrucks (After Introduction of ATrucks) 

Figure 6 Trip Length Distributions for U.S. Rail and Trucks Flows, Before and After 379 
Atrucks. (Note: x-axis values are distance mid-points for those bins.) 380 
 381 

Table 3 shows commodity flow changes by mode, following the introduction of Atrucks, under 382 

the Base Case vs. reference Scenario 1. Domestic truck flows are forecast to decrease 8% by ton-383 
mile and rail flow values fall by 12.6%. Machinery, miscellaneous, durable and non-durable 384 
manufacturing trade flows (between U.S. counties) are predicted to experience a large decrease 385 
(greater than 70%) as a result of Atruck implementation. This boost trend in ton-mile also 386 
happens to agriculture, forestry, fishing, hunting, chemicals, plastics and primary metal 387 
manufacturing, which showed a rise of greater than 60%. This is probably because Atrucks 388 
becomes a way better than train to transport these commodities to further destinations in time. 389 
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With the availability of Atrucks, food, beverage, tobacco product, computer, electronic product 390 

and electrical equipment manufacturing by trucks increase by approximately 30%. However, rail 391 
flow of these products increases more than double. Although the advent of Atrucks increases the 392 
demand, railway remains to be an effective and efficient way for transporting these commodities. 393 

Seven sectors see a decrease in total (domestic) value shipped, while 13 sectors gain an increase.  394 
In terms of export flows, predicted truck flow values witness increases arranging from 395 

9.8% to 95.7%, except for durable and non-durable manufacturing, which decreases by 90.9%. 396 
This might be the same reason as discussed for domestic flow. Total rail flow of commodities 397 
headed for U.S. export zones rises by 75.7% while total truck flow decreases by 1.5%. 398 

Interestingly, total export flows see rising trend for all types of commodities.  399 

Table 3 Change in U.S. Trade Flow Ton-miles Before and After Atrucks 400 
  401 

Million 

ton-miles 
Domestic Truck Domestic Rail Domestic Total 

Sector Before After % Before After % Before After % 

1 27.89 45.20 62.1% 0.004 0.002 -40.8% 27.89 45.20 62.1% 

2 1,237.8 1,516.8 22.5% 757.7 931.7 23.0% 1,996 2,448 22.7% 

3 4,652.7 4,993.0 7.3% 2,874.6 3,948.2 37.3% 7,527 8,941 18.8% 

4 131.36 170.11 29.5% 8.11 26.66 228.8% 139.47 196.76 41.1% 

5 58.51 109.37 86.9% 4.98 1.17 -76.6% 63.49 110.54 74.1% 

6 43.19 69.77 61.6% 4.94 1.53 -69.1% 48.13 71.30 48.1% 

7 59.92 99.30 65.7% 8.82 5.57 -36.9% 68.74 104.87 52.6% 

8 200.87 225.46 12.2% 9.88 0.19 -98.1% 210.75 225.64 7.1% 

9 8.61 15.49 79.8% 0.09 0.25 188.0% 8.70 15.74 80.9% 

10 8.12 10.89 34.1% 0.05 0.20 262.9% 8.18 11.09 35.6% 

11 22.96 29.69 29.3% 2.34 2.01 -14.3% 25.30 31.69 25.3% 

12 262.70 43.43 -83.5% 405.65 759.98 87.3% 668.35 803.41 20.2% 

13 10.99 18.98 72.7% 0.13 0.16 23.3% 11.12 19.14 72.1% 

14 164.19 143.04 -12.9% 12.24 1.36 -88.9% 176.43 144.40 -18.2% 

15 2,498.5 2,226.5 -10.9% 191.01 20.63 -89.2% 2,690 2,247 -16.4% 

16 496.17 441.67 -11.0% 36.40 2.90 -92.0% 532.6 444.6 -16.5% 

17 13,918 12,388 -11.0% 1,021.3 55.1 -94.6% 14,939 12,443 -16.7% 

18 16,701 14,701 -12.0% 1,239.1 80.4 -93.5% 17,940 14,781 -17.6% 

19 330.63 292.18 -11.6% 24.44 1.57 -93.6% 355.1 293.8 -17.3% 

20 1,250.1 1,107.6 -11.4% 92.62 10.16 -89.0% 1,342.7 1,117.7 -16.8% 

SUM 42,084 38,647 -8.2% 6,694.5 5,849.8 -12.6% 48,778 44,497 -8.8% 

Thousand 

ton-miles 
Export Truck Export Rail Export Total 

Sector Before After % Before After % Before After % 

1 136.5 230.9 69.2% 0.0100 0.0003 -96.8% 136.5 230.9 69.2% 

2 69,583 82,890 19.1% 42,297 51,492 21.7% 111880 134382 20.1% 

4 110,132 137,754 25.1% 6,546 23,343 256.6% 116678 161097 38.1% 

5 18,718 34,371 83.6% 1,830.6 372.4 -79.7% 20548 34744 69.1% 

6 24,069 35,906 49.2% 2,847.0 706.6 -75.2% 26916 36612 36.0% 

7 5,343 8,848 65.6% 826.11 449.08 -45.6% 6169 9297 50.7% 

8 11,419 12,537 9.8% 529.54 9.91 -98.1% 11949 12547 5.0% 

9 5,166 10,112 95.7% 43.99 0.37 -99.1% 5210 10112 94.1% 
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10 7,378 9,672 31.1% 38.77 0.11 -99.7% 7417 9672 30.4% 

11 31,291 44,488 42.2% 13,475 3,223 -76.1% 44766 47711 6.6% 

12 119,506 10,863 -90.9% 141,356 289,143 104.5% 260862 300007 15.0% 

13 10,684 19,365 81.2% 119.1 7.4 -93.7% 10803 19372 79.3% 

SUM 413,426 407,037 -1.5% 209,909 368,747 75.7% 623335 775784 24.5% 

 402 

CONCLUSIONS 403 
This study used the RUBMIO trade model to anticipate the shifts in U.S. trade patterns due to the 404 
introduction of a Atrucks.  Lower-cost trucking operations will impact choice of mode as well as 405 
input origins, affecting production and flow decisions for domestic and export trades. Here, 20 406 
commodity types are tracked using the 2012 CFS and FAF4 data sets. Sensitivity analysis allows 407 
for variations in predictions, given the great uncertainty that accompanies shippers’ future cost-408 

assessments, adoption rates, and use of Atrucks. Such predictions should prove helpful to 409 

counties and regions, buyers and suppliers, investors and carriers, as they prepare for advanced 410 

automation in our transportation systems.  411 
This study is an initial attempt to reflect self-driving trucks in long-distance freight 412 

systems. It relies on U.S. highway and railway networks as well as FAF4 trade data. Extensions 413 
of this work may wish to reflect other modes, like airlines, waterways, and pipelines, as well as 414 
multi-modal and inter-modal flows, local supply-chains, urban logistics, and local production 415 
capabilities and port capacities.  In terms of the RUBMRIO model’s specification, reflecting the 416 
dynamic evolution of population and employment patterns (as in Huang and Kockelman [2010]), 417 

commuting and shopping trips, with intra-regional and inter-regional congestion, as well as 418 
seasonal variations in certain shipments (like agriculture and coal) may prove very helpful. 419 

Further extensions on random utility models employed here can come through different nesting 420 
structures, as well as operator awake hours, routing, and delivery scheduling.  421 
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