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ABSTRACT 

To dramatically reduce traffic congestion, improve road operations, and benefit many 
travelers, this paper applies policies of credit-based congestion pricing (CBCP) across the 
Austin, Texas regional network. Scenarios evaluated include those selecting links with 
maximum delays, by variably tolling bridges and by recognizing congestion externalities 
across all links. Travel demand models with full congestion feedback are used to deliver 
inputs for normalized logsum differences to quantify and compare consumer surplus changes 
across traveler types, around the region. This study aims to find a harmonic condition 
between decreasing traffic congestion and improving travelers’ welfare by changing tolling 
values and tolling links simultaneously. Results suggest that limited tolling locations under 
four broad times of day can do more harm than good, unless travelers shift out of the PM and 
AM peak periods. When using CBCP across all congested links at congested times (10% of 
revenues will be used as administrative costs) of day, an average benefit of $1.61 per 
licensed driver per weekday is estimated, with almost all travelers benefiting, and 95.04% 
traffic analysis zone’s (TAZ) value of travel time (VOTT) group 1 (VOTT is $5/h) will 
benefit from the CBCP. Using twice the difference between marginal social cost (MSC) and 
the average cost (AC) (on each subset of links) appears to benefit more people, although 
tolling high on various links adds to congestion elsewhere. Tolling on top 500 links will 
benefit 97% of TAZs’ VOTT3 (VOTT is $25/h) travelers & 99% of TAZs’ VOTT5 (VOTT 
is $45/h) travelers. 
Keywords: Travel Demand Modeling, Credit-based Congestion Pricing, Traveler Welfare, 
Traffic Congestion, Travel Behavior. 
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BACKGROUND 1 

Researchers have recognized the negative externalities brought by traffic congestion and 2 
showed that congestion pricing (CP) is a way to internalize the congestion external cost and 3 
alleviate traffic congestion (Vickery, 1969; Vehoef et al., 2000; Yang, 2000) through 4 
influences on users’ travel behavior and thus effects on travel cost and time (Vehoef et al., 5 
2002; Paleti et al., 2014; Lu et al., 2015; Liu et al., 2017; Romero et al., 2019; Huan et al., 6 
2019). CP increases the direct travel cost for some routes and preserves competitive access to 7 
some congested links, which results in the redistribution of traffic across time and space 8 
throughout the network. Travelers perceiving different value of travel times (VOTTs) present 9 
different travel behavior in response to CP, reflected by destination choice, departure time 10 
choice, route choice and mode choice. Under the CP policy, travelers may choose a closer 11 
destination, alter mode of transit, shift departure time to off-peak time, and detour to avoid 12 
congested links or peak time (Yamamoto et al., 2000), which will decrease traffic volumes on 13 
the congested links and reduce congestion across the network (Li, 1999; Yang & Huang, 14 
1999; Cheng et al., 2017; Hall, 2018). According to BPR function (BPR, 1964), less traffic 15 
volume on the link leads to reduced travel time, along with lower levels of driving stress 16 
during congestion (Stefanello, et al., 2017), decreased fuel cost, decreased vehicle-hours 17 
traveled (VHT) and vehicle-miles traveled (VMT), and increased consumer surplus (Gupta et 18 
al., 2006).  19 

After first being introduced in Singapore in 1975, CP was implemented and analyzed in many 20 
cities, including London (Schade & Baum, 2007), Stockholm (Eliasson & Jonsson, 2011), 21 
Gothenburg (Börjesson et al., 2015), Bergen and Oslo in Norway (Tretvik, 2003), and New 22 
York City in the United States (Schaller, 2010). CP has shown merit during its 23 
implementation, but many disadvantages have been revealed. Although Van den Berg & 24 
Verhoef (2011) indicated that CP can improve social welfare of the majority (55% in 25 
first-best pricing) of travelers (even without returning toll revenues to them), CP 26 
implementation effects depend largely on drivers’ acceptability and responses (Gibson et al., 27 
2015) because of the equity and fairness issues (Eliasson et al., 2016). This policy is often 28 
rejected by the public because it is considered an additional tax (Cipriani et al., 2019), or a 29 
cost that was free previously. Critics often suggest that CP is unfair for traveler groups with 30 
lower income (Ecola & Light, 2009), because it ignores people’s affordability and burdens 31 
low-income drivers. With CP, road users with a high VOTT are more willing to pay to 32 
experience less travel delay, while low VOTT roadway users are more likely to give the 33 
right of way to high VOTT travelers by shifting travel mode, departure time and routes to 34 
avoid paying tolls. Arnott et al. (1988) and Lindsey (2004) pointed out that user heterogeneity 35 
in VOTT and trip-timing preferences cannot be ignored, influencing on traffic assignment 36 
and welfare effects (Van den Berg, 2014).  37 

Credit-based Congestion Pricing Policy (CBCP) 38 

In order to reduce negative impacts of CP and boost the acceptance of CP policy, most 39 
roadway users should benefit from traffic demand management policy (Adler et al., 2001). 40 
Credit-based congestion pricing (CBCP) policy is proposed by Kockelman and Kalmanje 41 
(2004) as a revenue-neutral strategy to tackle the equity issue, by allocating the toll budget as 42 
credits given back to eligible travelers. Under CBCP, drivers who shift their departure time or 43 
routes may pay nothing or even make money, while those who still travel at peak hours or 44 
travel long distances will pay money. As a major difference from CP, travelers with small 45 
VOTTs who make sacrifices to reduce network congestion (e.g. give up driving cars, 46 
departing at non-peak times or detouring to uncongested routes) can receive credit as 47 
compensation. Kockelman and Kalmanje (2004) concluded that CBCP may provide the most 48 
equitable and efficient implementation alternative, have the potential to alleviate traffic 49 
congestion, and benefit most travelers across the region. They suggested that most Austin 50 
residents would be better off under policies that employ CBCP (tolling all roads), whereas 51 
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relatively few would benefit under a simple CP policy. Kockelman and Kalmanje (2005) 1 
polled the public in Austin, TX, and CBCP turned out to be a competitive option. Gulipalli 2 
(2011) also interviewed and received feedback from transportation economists, toll 3 
technology experts, highway administrators, and policy makers in 2011, and concluded that 4 
CBCP may be viable both politically and technologically, regarding the rapid technology 5 
advancement and increasing congestion in many urban regions. Gulipalli and Kockelman 6 
(2008) evaluated distinctive CBCP policies across the Dallas-Fort Worth, Texas metroplex by 7 
estimating traffic, air-quality and welfare impacts of pricing all congested links versus along 8 
major highways, relative to the status quo scenario. They estimated that 50-65% of travelers 9 
in the Dallas-Fort Worth 9-county region would benefit from the tested CBCP policies, while 10 
removing all heavy-congested roadway points (except unexpected events, like crashes 11 
removing a freeway lane from use) in an efficient and equitable way. Kockelman and Lemp 12 
(2011) used logsum differences to anticipate mode, destination, route-choice, travel time, 13 
traffic, and consumer welfare effects of CBCP for a toy network across three times of day 14 
(AM, mid-day [MD] and PM). Recognizing two groups of travelers (high VOTT versus low 15 
VOTT), they estimated how travelers (especially travelers with low VOTT) would be better 16 
off if one of the two routes to the distant destination was operated under a CBCP policy. 17 

First-best and Second-best Tolling Strategies 18 

Due to variable-toll information issues and relatively high toll-application costs of the past, 19 
researchers and policymakers have focused on “second-best” deployments, like tolls on a 20 
small subset of links or use of area-type or cordon-type tolls (Verhoef, 2002; Yang et al, 2003; 21 
Rouwendal and Verhoef, 2006; Verhoef et al., 2010). First-best congestion pricing requires 22 
pricing of congestion externalities in real time on all congested links, making it impractical in 23 
the past or many current settings (Kockelman et al., 2011; Gholami, et al., 2015; Cheng et al., 24 
2019, Cipriani et al., 2019). Noted by Zhang and Ge (2000 & 2004), first-best toll 25 
applications can significantly increase information and uncertainty burdens on roadway users, 26 
resulting in political resistance to their implementation. Many thoughtful versions of 27 
second-best pricing can harmonize system efficiency gains, system investment and operating 28 
costs (Johansson & Sterner, 1998). Gupta et al. (2006) found that it may be wise to price only 29 
Austin’s bridges during peak times of day to achieve consumer surplus gain and dramatically 30 
relieve the region’s congestion, rather than applying MCP (Marginal Cost Pricing) at all 31 
congested times of day on all bridges. 32 

Most CBCP research to date (Gulipalli & Kockelman, 2008; Kalmanje & Kockelman, 2009; 33 
Lemp & Kockelman, 2009) puts emphasis on freeway tolls, due to the real cost of toll 34 
collection using past technologies. Most CP research focuses on small and generic networks 35 
(Verhoef et al., 2002 & 2010; Yang et al., 2003; Zhang et al., 2004; Koh et al., 2009), with 36 
difficulty in calculating and optimizing across complex, real networks. Recognizing the 37 
potential benefits of CBCP policy and emerging technologies (for 5G cellular applications, 38 
with free real-time routing guidance and low-cost on-board dongles, for example), this paper 39 
applies various road-pricing strategies across Austin’s 6-county region to compare the effects 40 
of different tolling strategies on travelers’ behavior, traffic and welfare. Using the Capital 41 
Area Metropolitan Planning Organization’s (CAMPO’s) year-2020 networks and household 42 
travel demand assumptions, this work identifies the most “congested” (i.e., delay-inducing, 43 
due to high travel and high delays) 100 links among Austin’s 25,176 coded roadway links, 44 
calculates the difference between the MSC (Marginal Social Cost) and AC (Average Cost) as 45 
the toll value, and then draws them on the map and finds the distribution of the most 46 
congested links. To see if limited tolling applications may be helpful, the work simulates 47 
scenarios of tolling the worst 25 links, then the worst 50, 100, 500, and 1000 links in this 48 
network, and analyzes their delay impacts respectively. Since these scenarios will mostly add 49 
VMT and VHT (as motorists largely shift to more circuitous routes), the work compares the 50 
effects of tolling the region’s 7 bridges across the Colorado River, to avoid re-routing options 51 
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for those with origins and destinations on opposite sides of these famously congested links. 1 
Finally, it recognizes the option of GPS-based tolling to apply CBCP across all congested 2 
links, across the four broad times of day that align with CAMPO’s trip-based model. In all 3 
scenarios, two modes of travelers (automobile and bus) are sorted by 5 VOTT classes (from 4 
$5/hr to $45/hr, in steps of $10/hr), and 3 trip purposes (home-based work [HBW], 5 
home-based non work [HBNW] and non-home based [NHB]) in four times of day (AM, PM, 6 
MD, NT [night]). Traffic and welfare impacts of these strategies are compared and analyzed 7 
based on simulation results. More details on methods and results are provided in the 8 
following sections. 9 

METHODOLOGY 10 

This section introduces the methodologies used to simulate and analyze the influence of 11 
CBCP policy, including travel demand model descriptions as well as the methods that are 12 
used to calculate toll values, pick out the top worst links and compute welfare changes. The 13 
methodology provided in this section can be used to seek a balance between decreasing 14 
traffic congestion and improving traveler welfare by changing the number of tolling links and 15 
tolling values of links. The number of tolling links (the worst 25, 50, 100, 500, and 1000 links, 16 
and 7 bridges) and three types of tolling values are combined as testing scenarios to be 17 
simulated in the travel demand model.  18 

Travel Demand Model  19 

The Travel demand model used in this paper is a traditional four-step model, including trip 20 
generation, trip distribution, mode choice, time of day and traffic assignment. As noted in 21 
previous sections, travelers were divided into five VOTT groups from $5/hr to $45/hr ($5/hr, 22 
$15/hr, $25/hr, $35/hr and $45/hr) to evaluate the influence of CBCP on travel patterns and 23 
road conditions. Each VOTT group represents one household income group that is 24 
categorized by the CAMPO travel demand model (2010), which also provides the share of 25 
each group in each traffic analysis zone (TAZ). These five income groups are households 26 
with income under $19,999, between $20,000 and $34,999, between $35,000 and $49,999, 27 
between $50,000 and $74,999 and over $75,000, respectively. The median income of the five 28 
income groups can be transferred to VOTT as $4.96/hr, $13.64/hr, $21.08/hr, $31/hr and over 29 
$37/hr respectively (Median income per year divided by a factor of 2016 (21 workdays in a 30 
month × 12 months in a year × 8 work hours in a day). Therefore, VOTTs for the five groups 31 
were assumed to be from $5/hr to $45/hr, in steps of $10/hr, for easy scenario comparisons.  32 

Trips made by these five VOTT groups in each TAZ were also categorized by three trip 33 
purposes. In terms of HBW and HBNW trips in every TAZ, trip production by a VOTT 34 
group was determined by the TAZ’s total production of the specific purpose, multiplied by 35 
the population percentage of the corresponding income groups. NHB trips produced by five 36 
VOTT groups were assumed to be evenly distributed across the population, because NHB is 37 
more complex and not directly correlated with family income. Using the Quick Response 38 
Method trip generation module in TransCAD 7.0, trip productions in each TAZ are calculated 39 
based on income per household (median income), household auto ownership (e.g. 0, 1, 2, or 40 
3+) and retail and non-retail employment in each TAZ. TransCAD includes a trip-rate 41 
cross-classification table from NCHRP 187 that can be used to estimate trip rates based on a 42 
TAZ’s average demographics which were obtained from the CAMPO model directly (e.g. 43 
number of person trips produced per TAZ by each household income group and household 44 
auto ownership in this paper). This trip production rate was multiplied by the number of 45 
corresponding traveler groups to obtain the total production of that group. The attraction 46 
model is a regression equation that estimates the number of person trips attracted to a zone, 47 
based on retail and non-retail levels of employment in the zone in 2020. The trip generation 48 
table was balanced by holding production constant and adjusting attractions. The trip 49 
generation step obtained 15 tables of production and attraction for the five VOTT groups by 50 
three trip purposes.  51 



After that, trip distribution was implemented separately for each VOTT group by purpose. 1 
The impedance function (Gamma function) used shortest path travel time as the impedance 2 
which considers the influence of the toll value. A binary logit mode choice model was then 3 
conducted considering only two modes (automobile and bus) for the five VOTT groups using 4 
different VOTTs, which are reflected in the utility function. Automobile utility was 5 
calculated based on cost and in-vehicle travel time (IVTT) of the five user groups, and the 6 
utility of buses was calculated by fare and IVTT. Automobile cost contains operating cost 7 
and parking cost at the destination. Model specifications for mode choices were adapted from 8 
Zhao and Kockelman (2018). Parameters of automobiles were distinct for the five VOTT 9 
groups (IVTT: -0.019; cost: -0.228, -0.076, -0.0456, -0.033 and -0.025 for five VOTTs). 10 
VOTT of all bus users was assumed to be homogenous as $8.14/hr (IVTT: -0.019; cost: -0.14) 11 
(Zhao &Kockelman, 2018), because buses are more likely to be favored by low VOTT 12 
groups. Kouwenhoven et al., (2014) estimated that VOTTs of bus riders in the Netherlands 13 
varies between €7.75/hour and €10.50/hour ($8.5/hr - $11.5/hr). Winter et al. (2019) 14 
proposed that for the regular bus, mean VOTT is €5.13/hr ($5.6/hr). Therefore, a VOTT of 15 
$8.14/hr can be considered a reasonable assumption. 16 

Fifteen production-attraction tables (for the five VOTT groups and three trip purposes 17 
separately) were obtained from mode choice, while the time of day procedure transformed 18 
them into 15 origin-destination tables. Time of day was divided into four time periods: 3 19 
hours (6 am to 9 am) for AM peak, 6 hours (9 am to 3 pm) for MD, 4 hours for PM peak (3 20 
pm to 7 pm), and 11 hours for NT (from 7 pm to 6 am). The PA-OD procedure and time of 21 
day transformations (requires an Hourly Lookup Table provided by CAMPO and adjusted by 22 
the road network traffic characteristics) are processed at the same time. The time of day 23 
procedure takes a 24-hour matrix, with information on the percent flow per hour, and 24 
produces hourly matrices. This procedure also provided means to convert person trips to 25 
vehicle trips. This conversion is based on hourly vehicle occupancy factors, specific to each 26 
hour in the day (1.5 for cars and 1 for truck (CAMPO, 2010)). A multi-modal multi-class 27 
traffic assignment (MMA) was carried out for the region’s two modes: automobiles (5 VOTT 28 
groups and 3 trip purposes) and commercial trucks. MMA allows researchers to explicitly 29 
model the influence of toll, each mode or class can have different congestion impacts 30 
(passenger car equivalent values), values of time, and toll cost. The commercial truck trip 31 
table was obtained from the CAMPO model directly. The convergence criteria are assessed 32 
by a relative gap that is an estimate of the distance between the sum of current travel time on 33 
links and sum of travel time on links in the last iteration. The convergence threshold is 0.0001 34 
and the number of iterations is 500 in each feedback iteration. 35 

Bureau of Public Roads (BPR) link performance function was used to calculate travel time 36 
(BPR, 1964). 37 

tl=tFFT,l(1+α(vl/cl)β) (1) 38 

where tl is the travel time on link l, tFFT,l is the free flow travel time on link l, v is the traffic 39 
flow on link l, c is the capacity of link l, v/c is the traffic service level, alpha and beta 40 
parameters are obtained from the CAMPO model. Travel time in each MMA will be fed back 41 
to the second step of traffic demand model (trip distribution) in the next iteration until they 42 
remain stable or meet the convergence criteria. Method of successive average is used to 43 
update travel time in each iteration. Due to computation complexity, 10 feedback iterations 44 
are used.  45 

Tolling Strategy 46 

Tolling strategies include the method of selecting toll links as well as toll value calculation. 47 
Toll links are selected based on the traffic assignment results from the base case scenario. 48 
Specifically, top worst links are picked out by the index that is calculated by Eq.2. 49 

Index=v/clam* (vlam/Tam)+v/clmd* (vlmd/Tmd)+v/clpm* (vlpm/Tpm)++v/clnt* (vlnt/Tnt)     (2)50 



 

 

where Tam is the time duration at am; v/ T aims at changing the unit of time duration to one 1 
hour. This index is created by making use of the traffic congestion index that is calculated by 2 
the average speed of the link that is weighted by traffic flow (Wang et al., 2009; Zheng & 3 
Chang, 2017). The v/c ratio reflects the road traffic congestion condition, and it is weighted 4 
by average flow across the four TODs (divided by time duration of four TODs) in this study 5 
to obtain the final index of each link. Different sets of toll links are picked out: top 25, 50, 6 
100, 500, 1000 links, and seven bridges that go across the Colorado River. These seven 7 
bridges, where congestion often occurs, are the main corridor to connect the north and south 8 
sides of the river.  9 

Optimum toll value on a link can be used as marginal external congestion cost, which is the 10 
difference between the marginal social cost (MSC) and the average cost (AC) (Smith, 1979; 11 
de Grange et al., 2017). MSC represents the marginal cost, which is the additional cost of 12 
adding one extra vehicle or trip to the traffic stream (Eq.3), and AC represents the average 13 
(private) cost (Eq.4) (Yang & Huang, 1998). Half of the difference, the original difference 14 
and twice the difference will be the toll values. These values will be analyzed (Eq.5) to 15 
determine which toll values work best on various links in the network. Assuming VOTT = 16 
$15/vehicle-hour that is used to change unit of time to cost. In each simulation iteration, the 17 
formal assignment results contain link travel time and traffic volume. In order to find the 18 
optimal toll for each link (the toll value should be adapted to the traffic flow on each link), 19 
toll values are updated based on previous iteration assignment results, and will be used for the 20 
next iteration (Sharon et al., 2016 & 2017), as Eq.6 shows. 21 
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where αl and βl are parameters of link l in BPR function, TT is the total travel time.  25 
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where n is the total number of iterations; τt-1 is the toll value used in the iteration t-1; τt is the 27 
toll value used in the iteration t.  28 

Similar to how travel time must be updated in the travel demand model, tolling values must 29 
also be updated in the travel demand model. Tolling values will be updated in the highway 30 
network of CAMPO in TransCAD. Both travel time and tolling may influence destination 31 
choice, mode choice and travel route choice. In addition, the route choice changes of travelers 32 
may affect traffic volume on each link, and thereby influence the travel time on each link. 33 
Therefore, toll value of each link should be adjusted to traffic volume on that link.  34 

Traveler Welfare Calculations 35 

Welfare changes due to tolling are used to evaluate policy effects. Small and Rosen (1981) 36 
refer to logsum differences as changes in consumer surplus or compensating variation (CV). 37 
This logsum method, used by De Jong (2007), Kalmanje et al (2009), Winkler (2016), and 38 
Ma and Kockelman (2016), is better than the rule of half method (rule of half assumes that 39 
the consumer demand (transport demand) curve is linear with respect to generalized costs), as 40 
it provides a comprehensive measure of impact across all destinations and modes 41 
(Kockelman et al., 2011). The expected maximum utility derived from all modes is calculated 42 
by Eq.7 (Kockelman et al., 2011). 43 
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where Γ denotes expected maximum utility for an upper-level alternative; i is trip origin; u 3 
indexes the 5 traveler groups; d is trip destination; and V is the utility of each mode between 4 
each origin and destination; m represents modes type; Attrd is the attractiveness of each 5 
destination (measured in terms of employment, population and area at destination zone 6 
(Kalmanje et al., 2009); Attr1 is the attractiveness of the any one TAZ which is a reference; 7 
ASCm represents mode-specific constants (with 0 for automobile and -2.8 for bus); GC stands 8 
for each trip’s total or generalized cost; iu,dm is an iid random error term from a Gumbel 9 
distribution. 10 

Changes in consumer welfare or surplus (CS) from one scenario to another for each traveler 11 
type can be computed as the logsum differences between those two scenarios. Here, those are 12 
computed with respect to the no-toll (base) scenario, as shown in Eq. 9 for HBNW and NHB 13 
trip purposes, and Eq. 10 for HBW trips (where travelers’ work locations are assumed fixed, 14 
at least in the near term) (Lemp et al., 2009): 15 
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where D is the set of destination alternatives for HBNW and NHB trips and αp is the marginal 17 
utility of money (Lemp et al., 2009). 18 
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where βc is the marginal utility of money (assumed to be 0.318 utils per $1, as discussed in 20 
Lemp et al. (2009) and P(j|i) is the probability of choosing destination j when the trip’s origin 21 
is zone i.  22 

The CBCP policy will benefit most or all travelers, after tolls are distributed to licensed 23 
drivers or any other budget-eligible population chosen by policymakers, in concern with 24 
citizen feedback. CBCP budgets or “credits” come from the toll revenues, minus 25 
tolling-system administrative costs, to enforce toll-tag accounts and to randomly audit system 26 
users. Such costs are assumed to be 10% of revenues, since technology costs are ushering in 27 
simpler ways of collecting tolls across large networks/everywhere. The remaining revenue 28 
would be returned to all licensed drivers (or other credit-eligible residents of the region) 29 
uniformly, to ensure equity in network access. Each licensed driver will receive a daily or 30 
monthly travel budget or “credit” ( = [$/day/eligible traveler]), and this is split across the 3 31 
trip purposes as follows: 32 

NN p /=  (11) 33 

where N is average number of trips per day each person makes and Np is average number of 34 
trips per person for trip purpose p each day. If  = $1.50/day/eligible traveler, the average 35 
number of trips per day is 3.4, the average number of HBW trips is 1, then the credit given 36 
back to drivers for HBW trip is $0.44/one trip /eligible traveler, and Λ will be added to CS 37 
calculated by Eq.10.  38 

Though NHB trips do not link to a home location, there are spread across the region, and 39 
estimates of person-level welfare changes from each CP scenario are computed for each of 40 



 

 

the 5 VOTT categories across all of the region’s 2,258 TAZs, to get a sense of each policy’s 1 
welfare impacts over space and across traveler types, as described below.  2 

The parameter values used in the methodology should be adjusted to meet the characteristics 3 
of the city analyzed. The city characteristics contain traffic and social conditions, trip 4 
characteristics, the highway network and so on. The values contain parameters used in the 5 
travel demand model, percentages of family income groups in each TAZ, VOTT of each 6 
traveler group, peak hour duration and so on. The analysis process and methodology can be 7 
replicated and validated by following the steps described in this section. 8 

APPLICATION RESULTS AND DISCUSSION 9 

Austin’s CAMPO region covers 6 counties, with 2,258 TAZs and 25,176 links, with the total 10 
length being 9977.69 km. Caliper Corporation’s TransCAD v 7.0 software and its GISDK 11 
code were used here to implement a four-step travel demand model. The analysis here 12 
assumes no real choice flexibility in departure times (across the four broad times of day use) 13 
and a gravity model for trip distributions. Although the Austin region already has 388 tolling 14 
stations (overhead gantries on relatively uncongested freeways, mostly far from the region’s 15 
core), a no-tolling scenario is used here as the base case simulation. This straightforward base 16 
case helps one appreciate the levels of congestion and delay expected for year-2020 travel 17 
demands without any tolling. The top 100 links generating the most travel delay per mile of 18 
length over the course of a 24-hr weekday (under the base case conditions) were then 19 
identified, and the associated external costs of those delays (differences between total link 20 
travel time and a new user’s travel time cost) per VMT are shown in Figure 1 (unit is cents 21 
per VMT) . The external costs of those delays are calculated by using the base case scenario’s 22 
traffic assignment results (link travel time and traffic flow) (Eq.5). 23 

CAMPO’s network shows 388 links as already tolled in year 2020, with the same toll 24 
showing in peak and off-peak times of day. Using the base case traffic volumes on those links, 25 
times those flat toll rates, returns $32.45 M in toll revenues per month (or $1.27/day per 26 
person). Interestingly, the toll rates currently being charged are returning much higher 27 
revenues than the scenarios examined here would generate, across the entire network, except 28 
when tolling all links, especially outside the PM Peak time of day. These top 100-delay links 29 
include 36 of Interstate Highway 35’s northbound links and 16 of IH35’s southbound links, 30 
along with 28 links along US 183 N, 12 along Loop 1 South, 4 along Loop 1 North, 2 on US 31 
183A, and 2 on US 290 W, with others scattered elsewhere. Assuming VOTT = 32 
$15/vehicle-hour, the marginal social cost of delay per added vehicle on the worst link in the 33 
network during the AM peak period (7 to 9 am) is just τ = 60 cents/VMT (at a point on US 34 
183 N). This max-toll value rises to 90 cents/VMT along Loop 1 North during the PM peak 35 
(3 to 7 pm). During the 6-hr MD and 11-hr NT hours, the delay values are so light on all 100 36 
links that no congestion-based tolls are justified by the base-case traffic assignments. 37 

https://youdao.com/w/travel%20characteristics/#keyfrom=E2Ctranslation
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(a) Top 100 Worst Links at Four TODs 2 
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 3 

(b) Top 100 Worst Links at PM and Labels of Important Roads 4 

Figure 1. Toll Values on Worst Top 100 Links (in cents/VMT) 5 

Altogether, 18 CP scenarios were simulated to compare to the base case (19th scenario), 6 
across 7 spatially distinctive settings: tolling the Top 25, Top 50, Top 100, Top 500, Top 7 
1000, and all congested links, along with targeting only the 7 bridges (each direction) across 8 
the Colorado River that divides the Austin region through its mid-section, creating a series of 9 



 

 

important bottlenecks (at US 183S, IH 35, Loop 1 and Loop 360) that serve as substitute 1 
routing options for trips having origins and destinations on either side of the river. In all of 2 
these scenarios, less than 5% of the CAMPO-coded network (which is just 30%of the 3 
complete regional street + highways network) carries a toll, and only at peak times of day. So, 4 
most links in most locations are non-tolled, under any scenario. Tolling a subset of links can 5 
relieve congestion everywhere, if travelers are reasonably flexible in destination, departure 6 
time, mode and/or route choices.  7 

The first set of 6 non-bridge-focused CP policies simply monetized the difference between 8 
the marginal travel time cost and average travel time cost curves from added vehicles on each 9 
link (as done in Kalmanje et al. [2009]). 13 other scenarios were also tested: 6 at double these 10 
rates and 7 at half these marginal-cost toll estimates. The argument for testing higher tolls is 11 
that most congested links are not being tolled under most scenarios. A double-toll approach 12 
helps reflect the fact that much of one’s multi-mile car (or truck) trip is causing external delay 13 
costs on others (those behind us in the traffic stream but going untolled in these scenarios. Of 14 
course, another important objective in setting tolls is to avoid over tolling, since most of the 15 
network is not tolled in most of these scenarios, so there are normally many “free” substitute 16 
routes, and traffic may shift too far away from the tolled links, resulting in sub-optimal 17 
outcomes. Thus, 6 of the 18 CP scenarios used half-delay-cost tolls instead, to see if welfare 18 
effects could be improved with this type of simple “second-best policy”. The final scenario 19 
was for bridge tolls only, and a simple $5 toll during AM and PM peak periods was used, in 20 
both directions, along with $3 MD and $0 NT bridge tolls, to keep things simple for travelers. 21 

Travel Behavior and Network Impacts 22 

Key performance metrics, like regional VMT, vehicle-hours traveled (VHT), distributions of 23 
volume-to-capacity (V/C) ratios, average travel speeds, and mode splits were computed here, 24 
for each scenario. These can help analysts obtain a sense of which polices can best 25 
approximate the first-best (all-congested-links tolled) scenario. Table 1 shows the VMT and 26 
VHT changes across the 6-county network before and after tolling, by time of day.  27 

 28 
TABLE 1. Regional VMT and VHT Values across Seven Scenarios 29 

VMT with 50% Marginal Cost Toll Rates 

VMT Base Case 
Top 5 

Links 
25 50 100 500 1000 All Links 

AM 8,714K mi 8,726K 8,728K 8,728K 8,743K 8,735K 8,764K 8,847K 

MD 12,915K 12,949K 12,949K 12,950K 12,949K 12,915K 12,918K 12,949K 

PM 11,992K 12,014K 12,020 12,024K 12,036K 12,035K 12,103K 12,317K 

NT 15,366K 15,366K 15,366K 15,366K 15,366K 15,366K 15,366K 15,367K 

SUM 48,988K 49,056K 49,065K 49,070K 49,096K 49,053K 49,151K 49,481K 

VMT with Marginal Cost Tolling  

VMT Base -- 25 50 100 500 1000 All Links 

AM 8,714K -- 8,722K 8,733K 8,750K 8,822K 9,012K 8,992K 

MD 12,915K -- 12912K 12912K 12,913K 12,930K 13,000K 13,014K 

PM 11,992K -- 12,024K 12,064K 12,087K 12,223K 12,599K 12,521k 

NT 15,366K -- 15,366K 15,366K 15,366K 15,366K 15,366K 15,366K 

SUM 48,988K -- 49,024K 49,076K 49,117K 49,342K 49,978K 49,893K 

VMT with 200% Marginal Cost Tolling + 7 Bridges Scenario 

VMT Base 7 Bridges 25 50 100 500 1000 -- 

AM 8,714K 8,793K 8,723K 8,736K 8,755K 8,835K 9,110K -- 

MD 12,915K 12,964K 12,914K 12,912K 12,910K 12,920K 13,050K -- 



 

 

PM 11,992K 12,126K 12,031K 12,075K 12,101K 12,246K 12,779K -- 

NT 15,366K 15,366K 15,366K 15,366K 15,366K 15,366K 15,366K -- 

SUM 48,988K 49,250K 49,035K 49,091K 49,133K 49,368K 50,307K -- 

VHT with 50% Marginal Cost Toll Rates 

VHT Base Case 
5 Top 

Links 
25 50 100 500 1000 All Links 

AM 349K hrs 355K 355K 355K 357K 350K 351K 357K 

MD 484K 486K 486K 486K 486K 484K 484K 486K 

PM 492K 500K 500K 499K 500K 493K 495K 505K 

NT 572K 572K 572K 572K 572K 572K 572K 572K 

SUM 1,898K 1,914K 1,914K 1,914K 1,916K 1,900K 1,902K 1,921K 

VHT with Marginal Cost Tolling 

VHT Base -- 25 50 100 500 1000 All Links  

AM 349K -- 351K 351K 353K 350K 373K 364K 

MD 484K -- 484K 484K 485K 488K 490K 487K 

PM 492K -- 495K 496K 499K 514K 551K 516K 

NT 572K -- 572K 572K 572K 572K 572K 572K 

SUM 1,898K -- 1,902K 1,904K 1,908K 1,934K 1,987K 1,939K 

VHT with 200% Marginal Cost Tolling + 7 Bridges Scenario 

VHT Base 7 Bridges 25 50 100 500 1000 -- 

AM 349K 362K 350K 352K 354K 363K 391K -- 

MD 484K 495K 484K 485K 485K 488K 495K -- 

PM 492K 511K 496K 498K 501K 523K 584K -- 

NT 572K 572K 572K 572K 572K 572K 572K -- 

SUM 1,898K 1,941K 1,903K 1,907K 1,913K 1,946K 2,043K -- 

As shown in Table 1, CP policies appear to add to VMT and VHT under all scenarios tested, 1 
though at relatively minor or moderate levels (ranging from 0.5% to 7% increases), versus the 2 
Base Case (no-toll scenario). The biggest increases come from the double-toll scenarios and 3 
Top 1000 link scenarios, which push many travelers – in most or all of the 5 VOTT classes - 4 
to longer routes, without having much effect on their destination choices, at least in the near 5 
term (when work and school trip patterns are largely fixed).  6 

Mode shifts are even more moderate across all scenarios, with 93% to 96% to 95% of 7 
VOTT1 ($5/hr) travelers relying on personal cars and trucks for their HBW, NHB and 8 
HBNW trips in the base case, respectively. If the top 500 worst links are tolled, the 9 
percentages will change to 92%, 95% and 95%. While 98% of VOTT5 ($45/hr) travelers 10 
doing so for these three trip purposes, almost regardless of CP policy. Austinites’ mode 11 
choices exhibit even more fixity than their destination choices. Only route choices seem 12 
malleable, making CP strategies tricky to implement under these modeling assumptions in 13 
this region.  14 

15 

Similarly, VMT-weighted averages of network speeds and V/C ratios suggest minimal shifts, 16 
excepting peak periods of day, when average V/C ratios fall by a few percentage points under 17 
the Top 1000 and All Links Tolled scenarios. Since V/C values over 0.77 are often 18 
considered “congested” (Boarnet et al., 1998), the shares of VMT on the CAMPO-coded 19 
network that experienced such V/C ratios were computed across the 19 scenarios. The shares 20 
of VMT are calculated by three steps: (1) Selecting out links with v/c larger than 0.75; (2) 21 
Summing the VMT of these links; (3) Calculating the percentage of VMT. There were 22 
important drops in the shares of high V/C ratios in the AM Peak (from 7% of all AM PK 23 

https://www.sciencedirect.com/science/article/pii/S0001457509000797#bib9


 

 

VMT to 5%, for example), but roughly 15% of PM Peak VMT stayed at the 0.77+ V/C ratio 1 
under most CP scenarios, shown in Figure 2.   2 

 3 

(a) AM                       (b) PM 4 

Figure 2. VMT Percentages Changes at v/c > 0.75 for Different Scenarios (Yellow Bar 5 
Represents the Base Case) 6 

Welfare Impacts 7 

This section brings the idea of CBCP into the welfare impacts assessment. Table 2 shows 8 
estimates of toll revenues each day, with a column for tolls minus 10% administrative 9 
expenses (to manage the system), to provide a total budget to distribute equitably across 10 
Austin’s 1.16 million licensed drivers in year 2020. CP revenue estimates rise from just 11 
$164,392 per day when tolling only the 25 most delay-inducing links to $1.88 million per day 12 
when tolling all congested links across the CAMPO-coded network. Table 2 also reflects the 13 
added delays induced by the marginal vehicle on those links, across 4 times of day (with NT 14 
tolls at $0 everywhere). The resulting travel credits (assigned to all of the region’s licensed 15 
drivers equally) would thus range from $16.65/month/person to $65.12/month per person, or 16 
$35.57 per month under the 7-tolled-bridges scenario. These all appear as reasonable travel 17 
“budgets” for those able to drive along the region’s roadways. Those who do not need their 18 
credits can donate them to special cases (single, working parent households who apply for 19 
special compensation, due to long work journeys at peak times of day). And visitors to the 20 
region (or anyone driving without a toll tag account) can be admitted freely up to a certain 21 
number of passes per month, in front of camera stations, where license plate recognition 22 
processes would lead to pay-by-mail toll collection. 23 

 24 
TABLE 2. Estimates of Tolls Revenues and Travel Credits across Scenarios 25 

 

AM Peak 

Toll Revs. 

per Day 

MD 

(mid-day) 

Toll Revs. 

per Day 

PM Peak 

Toll 

Revs. per 

Day 

Total Toll 

Revs. per 

Day 

Total 

Credits 

for 

Distrib. 

Credits 

per Driver 

per Day 

Credits per 

Driver per 

Month 

7 Bridges $312.16K $267.6K $396.05K $975.8K $0.88M $0.76/day $16.65/mo. 

25 $39.19K $12.65K $130.82K $182.66K $0.16M $0.14/d $3.12/mo. 

50 $73.45K $25.09K $217.92K $316.46K $0.28M $0.24/d $5.40/mo. 

100 $124.29K $36.23K $284.74K $445.28K $0.40M $0.34/d $7.60/mo. 

500 $420.48K $117.11K $857.04K $1,394K $1.26M $1.08/d $23.82/mo. 

1000 $1,164K $255.78K $2,395K $3,815K $3.43M $2.96/d $65.12/mo. 

All Links $571.56K $128.87K $1,383K $2,083K $1.88M $1.61/d $35.57/mo. 

Due to the content limitation, this research takes HBW trip purpose as an example to evaluate 26 
typical welfare changes under a CBCP policy. Figure 3 maps show expected variations in 27 



 

 

consumer surplus changes (∆CS) across policies and across Austin TAZs for the VOTT3 1 
($25/hr) and VOTT5 ($45/hr) classes. 2 



 

 

 

(a) 500 links VOTT3 (200% Marginal Cost Tolling)                   (b) 500 links VOTT3 (50% Marginal Cost Tolling) 



 

 

 

(c) 500 links VOTT5 (200% Marginal Cost Tolling)                          (d) All Congested Links Tolled VOTT3 (MC Tolling) 

 

Figure 3. Predicted Welfare Changes for Travelers with HBW Trip Purpose during AM Peak Period 



 

 

Under the 200% Marginal Cost Tolling assumption for the Top 500 (most delay-inducing) 1 
links (Fig 3a), 97% of the region’s TAZs’ VOTT3 travelers are estimated to benefit from the 2 
CBCP policy, while 98.5% of TAZs’ VOTT5 benefits (Fig 3c). Those whose work trips 3 
originate in the region’s far northwest or southern locations are estimated to face losses, on 4 
average, under this scenario, but the regional boundary is not realistic, and such travelers 5 
often have work trips elsewhere that may not be affected by the tolling policies or may be too 6 
short to matter, largely outside this 6-county region (as discussed by Gulipalli et al. (2007) 7 
for CBCP simulations in the DFW region). Under the 50% MC tolling assumption for the 8 
Top 500 links (Fig 3b), the losses are estimated to expand over these low-density TAZs, 9 
especially in the region’s northwest locations, so just 91% of the region’s TAZs have 10 
travelers expected to benefit, which is still a sizable share when one is trying to address all 11 
the inequities and serious economic and other losses that come with congested and unreliable 12 
networks. There are also strong cases to be made for the VOTT1, VOTT2 and VOTT4 13 
traveler classes, especially towards the regional core, where congestion abates. Therefore, 14 
under these cases, important expected-travel time savings and travel time reliability benefits 15 
emerge, helping deliver people (and packages and services) to their destinations in a timelier 16 
and less stressful way. 17 

 18 
CONCLUSIONS 19 

To alleviate traffic congestion with the objective of benefiting the most travelers, this work 20 
simulates the impacts of many CBCP policies across the 6-county Austin region in Year 2020. 21 
Personal travel demands were estimated for three different trip purposes, across 5 VOTT 22 
traveler classes, 2258 TAZs, and 4 times of day. Congestion tolls were applied to the Top 25, 23 
50, 100, 500, and 1000 highest delay-cost links in the network to reflect marginal delay costs 24 
on just those links, and then at half and then double those levels, to appreciate traffic and 25 
welfare changes. Flat tolls by time of day were also placed on the Colorado River’s 7 bridges, 26 
to see if that would avoid route-circuity effects witnessed in the other scenarios. This study 27 
aims to determine which tolling strategy combinations (number of tolling links and tolling 28 
values) can achieve a harmonic relationship between decreasing traffic congestion and 29 
improving travelers’ welfare. Tolling heavy on each link may increase travelers’ welfare but 30 
may create new congested links and make traffic worse. Although tolling less on the links 31 
may not cause much negative impact on the traffic network, travelers’ welfare will be 32 
weakened.  33 

With the increase of tolling links, the VMT and VHT increase, especially when tolling twice 34 
of the τ. Higher tolling values (twice of τ) decrease the average speed (VMT weighted) while 35 
decreasing the v/c (VMT weighted). The scenario that tolls 1000 links saw an average speed 36 
decrease of about 3% when tolling twice of τ, which is much worse than tolling half of τ or τ. 37 
The percentage of VMT with v/c > 0.75 was also worse than other scenarios, especially when 38 
tolling twice of τ on 1000 links. Tolling τ in different scenarios shows a similar trend to 39 
tolling twice of τ in different scenarios, while they show more positive influence on the 40 
traffic condition, most of the V/C (VMT weighted) decrease most, average speeds (VMT 41 
weighted) decrease less or increase more. Compared to other scenarios, tolling 500 links 42 
shows a better effect, with a small decrease of v/c (VMT weighted), increase or small 43 
decrease of average speed (VMT weighted) and small changes of percentage of VMT with 44 
v/c>0.75. 45 

Under the seven scenarios, tolling twice of τ on 500 links will benefit 96.59% of TAZs’ 46 
VOTT 3 travelers and 98.54% of TAZs’ VOTT 5 travelers. Compared to tolling half of τ, 47 
tolling twice of τ will benefit more people, although tolling too much on several links will 48 
worsen other links or create new congested links, so, in order to achieve a better traffic 49 
condition and a better welfare for travelers at the same time, travel demand models should be 50 
simulated to achieve a balance between the two. Tolling on the entire network will see 51 



 

 

99.33% of TAZs’ travelers benefit from the CBCP policy, which is the best case of all the 1 
tested tolling scenarios.   2 

In summary, if tolling several links in the network, it is necessary to simulate better toll 3 
values and avoid creating new congestion spots or links. In order to make simulation more 4 
realistic, it is crucial to consider the time of day shift in the travel demand model in a real 5 
network, because some travelers will shift their departure time to avoid the tolling at peak 6 
time. Most of the former researches used a virtual network to simulate which need to be more 7 
practical.  8 
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