
Huang, Kockelman, Garikapati 

SHARED AUTONOMOUS VEHICLE FLEET OPERATIONS FOR FIRST-MILE LAST-MILE 

TRANSIT CONNECTIONS WITH DYNAMIC RIDE-SHARING 

Yantao Huang 

Graduate Research Assistant 

The University of Texas at Austin 

yantao.h@utexas.edu 

Kara M. Kockelman 

(Corresponding Author) 

Dewitt Greer Professor in Engineering 

Department of Civil, Architectural and Environmental Engineering 

The University of Texas at Austin 

kkockelm@mail.utexas.edu 

Tel: 512-471-0210 

Venu Garikapati 

Project Leader, Transportation Data Analytics 

National Renewable Energy Laboratory 

15013 Denver West Parkway, Golden, Colorado 80401 

Tel: 303-275-4784 

venu.garaikapti@nrel.gov 

Computers, Environment, and Urban Systems (92) 101730, 2022
6748 words + 3 tables (750 words) + 4 figures = 7498 words 

ABSTRACT 

Shared automated vehicles (SAVs) have the potential to promote transit ridership by providing efficient 

first-mile last-mile (FMLM) connections through reduced operational costs to fleet providers as well as 

lower out-of-pocket costs to riders. To help plan for a future of integrated mobility, this paper investigates 

the impacts of SAVs serving FMLM connections, as a mode that provides flexibility in access/egress 

decisions and is well coordinated with train station schedules. To achieve this objective, a novel dynamic 

ride-sharing (DRS) algorithm was introduced to match SAVs with riders while coordinating the riders’ 

arrival times at the light-rail station to a known train schedule. Microsimulations of SAVs and travelers 

throughout two central Austin neighborhoods show how larger service areas, higher levels of SAV 

demand, and longer arrival times between successive trains require larger SAV fleet sizes and higher 

SAV utilization rates to deliver shorter traveler wait times. Four-person SAVs appear to perform similar 

to 6-seat SAVs but will cost less to provide. Using a DRS algorithm tightly coordinated with train arrivals 

(every 15 minutes) delivers 87% of travelers to the station in time to catch the next train, while 

uncoordinated SAV assignments result in just 57%  of travelers arriving in time to catch the next train.  

Keywords: Shared automated vehicles, First-mile last-mile service, Dynamic ridesharing, Transit, 

Integrated mobility 
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Shared automated vehicles (SAVs) present an attractive solution for FMLM connections to transit. While 

functioning similar to a ride sharing mode, SAVs offer advantages in the form of: i) Reduced cost to 

operators (as no drivers are needed), and the cost savings are compounded if the SAVs are electric; ii) 

Reduced out-of-pocket cost to riders (as a direct consequence of cost savings to operators); iii) Greater 

control over the fleet as ride hailing companies can govern the movement of the vehicles from a central 

dispatch system; and iv) Greater availability as SAVs will not need downtime. SAVs can ‘pool’ 

passengers to share all or a part of their trips in serving as an access and/or egress mode to train stations, 

which can be big bus depots, ferry stations, airports or other kinds of stations.  Compared with other 

access and egress modes, SAVs offer faster speeds (compared to walking), greater convenience (than 

carrying a bike on a transit system), and can be more cost/energy efficient than existing manually driven 

ride hail vehicles (Chen et al., 2016).  

Recent studies on SAVs have focused on aspects such as planning, operation, technology development, 

and regulation. Implications of SAVs as a door-to-door transport mode (like an autonomous taxi service) 

include lowered service costs (Chen et al., 2016; Johnson & Walker, 2016), higher vehicle occupancies 

when dynamic ride-sharing (DRS) is used (Hörl, 2017; Lokhandwala & Cai, 2018), and personal-vehicle 

replacement thanks to reliable SAV service (Bösch et al., 2016;  International Transport Forum, 2015). 

However, there is no consensus yet on trends in system-wide vehicle-miles traveled (VMT) across 

various SAV studies (see, e.g., Dia & Javanshour, 2017; Fagnant & Kockelman, 2014; Huang et al., 

2019).  

With the rapid maturity of automation technology over the past decade, some studies have extended their 

focus to near-term deployments with an emphasis on geofencing the SAV service area (Fagnant & 

Kockelman, 2018), SAV seat capacity (Vosooghi et al., 2019), stop aggregation and curb management 

(Auld et al., 2016). Researchers from the National Renewable Energy Laboratory (NREL) noted that 

near-term benefits of this emerging technology will be realized by deploying SAVs in geofenced regions, 

or automated mobility districts (AMDs), where shared mobility is enabled by high trip density (Hou et al., 

2018). Further, NREL researchers went on to develop an AMD modeling and simulation toolkit that can 

be utilized as a decision support tool for planning SAV deployments in geofenced regions (Zhu et al., 

2020). Serving first-mile and last-mile (FMLM) trips to access and egress public transit can be a good 

application for SAVs, in addition to door-to-door service. Using SAVs for FMLM connections has 

multipronged benefits including but not limited to: i) increased occupancy of ride hail modes (i.e., SAVs), 

ii) increased transit ridership (and as a result, reduced congestion), as having faster access/egress modes 

might convert some car trips over to transit, and iii) reduced travel energy consumption due to higher 

vehicle occupancy (which can be amplified further if the SAVs are electric).  

Research exploring the integration of public transit and SAVs (e.g., Shen et al., 2018; Wen et al., 2018) is 

sparse compared to the body of literature on utilizing SAVs for door-to-door service. Stiglic et al. (2018) 

showed that integration of manually driven ridesharing vehicles with public transit could increase transit 

ridership if the drivers are willing to pick up and drop off more than one passenger en route (to and from 

train stations). Wen et al. (2018) evaluated the performance of a transit-oriented AV system under varying 

fleet sizes, vehicle capacities, pricing and sharing strategies. Shen et al. (2018) proposed a framework for 

integrating AVs and the public transit system and simulated an up to 35-vehicle SAV fleet serving first-

mile connections for 10% of Singapore’s bus riders who reside in a low-demand area, during the 2-hour 

morning peak period. Their simulations were carried out under an assumed mode split and adopted 

commonly-used DRS rules for representing the SAV service.  A quick scan of the literature identifies two 

key gaps in investigating the use of SAVs for FMLM connections to transit. First, an implicit assumption 

is made in most studies that SAVs would be used for first- as well as last-mile connections to transit. 
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Second, the ridesharing algorithms seek to minimize traveler wait times, or maximize occupancy, but 

largely function in isolation of the connecting train schedules. 

Recognizing the potential benefits of SAVs as an FMLM connection mode, this paper investigates the 

impacts of an SAV FMLM service integrated with a light-rail transit system, by expanding the 

capabilities of the AMD modeling and simulation toolkit developed at NREL (Zhu et al., 2020). A full 

light-rail transit demand set was applied in a 3- by 6-mile area of central Austin, around five stations 

along Austin’s Red Line. Addressing gaps identified in the existing literature, this study allows for 

flexibility in choosing distinct access and egress modes. For example, an individual might choose to use 

SAVs as the first mile (FM) connection, and walking as the last mile (LM) connection. This research 

effort also enhances the traditional dynamic ridesharing (DRS) algorithm to establish coordination 

between a passenger’s expected arrival at the train station and the train schedule.  

The rest of the paper is organized as follows. The next section introduces the dataset used for simulating 

SAV FMLM connections to train stations. The methodology section details the simulation setup and 

explains the DRS mechanism. The results section presents a thorough analysis of the performance metrics 

of interest under scenarios with varying train headways, SAV fleet sizes and seat capacities. The final 

section presents some concluding thoughts and directions for future research.  

DATA SET 

Since SAVs are not expected to foray into the market in the immediate future, travel demand forecasts 

from Austin’s 2030 CAMPO model run were used for this study. Light-rail transit trips were extracted 

and expanded from the whole travel demand set, using a nested logit mode choice model. The mode 

choice model builds on Huang et al. (2020a), which considered walk to/from light-rail transit (walk-

transit-walk) and SAV to/from transit (SAV-transit-SAV) nested under the transit mode, where the transit 

mode itself competes with car and walk modes. In this study, two additional transit modes, namely walk-

transit-SAV and SAV-transit-walk, were added in the transit nest. This study focuses on the simulation of 

light-rail transit and SAVs, so transit demand includes three types of travelers: FM travelers who use 

SAVs as the access mode but walk to their final destinations, LM travelers who walk to train stations but 

use SAVs as the egress mode, and FMLM travelers who use SAVs as their access and egress mode. 

Under a 15-minute train headway, the mode choice model estimated 35.2% FMLM travelers, 27.5% FM 

travelers, and 30.7% LM travelers among the light-rail transit users who utilize SAVs for FM or LM 

connections (while the remaining 6.6% utilized the walk-transit-walk mode, which is not simulated in the 

current study). Different levels of FMLM SAV demand to and from the Red Line train stations were used 

here, with station arrivals (across the 5 central stations) as high as 5,000 person-trips during the 3-hr 

morning peak period. With a focus on SAV fleet operations, this study only simulates light-rail transit 

riders who take SAVs as connecting trips (referred to as transit demand or transit riders), namely FM 

travelers, LM travelers, and FMLM travelers. Other modes are not simulated (e.g., walk-and-ride, car, and 

bus use).  

Figure 1a depicts the light-rail line as well as the geofenced FMLM service area. Walking to the light-rail 

train station (or walking from train station to final destination) is considered a viable option within a 0.5-

mile buffer around the station (based on Nabors et al., 2008), shown with light green shading in Figure 

1a. The geofenced SAV mode was made available to those starting or ending their train-based trips within 

1.5-miles of the Red Line’s stations (shown with dark as well as light green shading in Figure 1a). The 

geofenced regions will be called automated mobility districts or AMDs for the rest of this paper, with the 

northern two stations labeled AMD1 and the second geofenced region (with three stations) labeled 

AMD2. Parking depots for SAVs (shown as dark blue dots) are placed arbitrarily around the train 
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stations. AMD1 has a total of six parking depots while AMD2 has eight. Parking depot locations are used 

for initializing SAVs at the beginning of the simulation, and for repositioning SAVs that are not actively 

serving a request and have no service requests in queue. While placement of the depots is chosen 

arbitrarily for this effort, future efforts may consider optimal placement of these depots . For ease of 

application (and due to the constraint on SAV availability only within the 1.5-mile buffer), trip origins 

and destinations are scattered only within the geofenced regions, as shown in Figure 1b.  

  
a) Service Area b) Trip Ends of Riders 

Figure 1 Central Austin Network 

 

METHODOLOGY 

SUMO (short for Simulation of Urban MObility) is an open-source traffic simulator, capable of 

simulating detailed vehicle movements (i.e., car-following, lane-changing, queuing etc.,), traffic 

operations (signal phasing, turning movements, etc.,) and human behavior (pedestrian movements, 

accessing the curb etc.,). SUMO can generate second-by-second vehicle and passenger trajectories, which 

help in computing performance metrics (like wait times and idle times) for vehicle and traveler 

movements.  

The simulation platform used in this study builds on the AMD modeling and simulation toolkit developed 

by Huang et al. (2020a) and Zhu et al. (2020). Huang et al. (2020a) introduced light-rail transit as a viable 

modal option in the AMD toolkit, and implemented logic to allow transit access/egress connections 

walking or using SAVs (with a caveat that the same access and egress mode should be chosen for a transit 

trip).  This study enhances the capabilities of the AMD toolkit proposed in Huang et al. (2020a) by: i) 

providing flexibility to choose different access and egress modes to train stations (such as walk-transit-
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SAV or SAV-transit-walk), ii) conducting simulation experiments with 100% transit demand in the 

morning peak period, and iii) implementing an enhanced DRS algorithm that is capable of coordinating 

rider’s trip attributes and train schedules. Further, the simulations presented here allow for flexibility in 

selecting SAV fleet size. SAV fleet size can either be fixed (which could lead to unserved demand, owing 

to an inadequate supply of SAVs) or variable (where an adequate number of SAVs are initiated in the 

simulation to serve 100% of the trip requests).  

The simulation starts with importing travel demand and network information into SUMO. FMLM service 

and transit settings (such as SAV fleet size, DRS settings, train headways, and dwell times) are imported 

next. For the baseline scenario where SAV fleet size is not constrained, an adequate number of SAVs are 

initialized in the parking depots within the AMD region (i.e., blue dots in Figure 1a). Since the SAV fleet 

in one AMD is restricted from serving FMLM demand in another AMD, the network is divided into two 

subnetworks to increase computational efficiency for the shortest path search. Once all the necessary 

settings are imported and mode choices are assigned, the itinerary for each rider is determined. A rider’s 

itinerary includes access and egress modes, origin, and destination, as well as identification of the ‘rail’ 

segment of the trip (i.e., origin and destination stops of the rail segment). After initialization, each rider 

and each vehicle follow the logical flow shown in Figure 2.  

An FMLM rider will go through all the events in a trip which involves taking an access/egress mode as 

well as transit. Transfers between modes are simulated using walk mode (for example, walking from 

home to take an SAV, walking to a train platform to board the train, and walking out of a rail station to 

take an SAV). SAVs are initiated and terminated in SAV parking depots, and are expected to be in 

operation for the whole duration of the simulation. The dashed line in Figure 2 shows the stages of riders 

and vehicles when they are considered for rider-vehicle matching. If an SAV is successfully matched to a 

rider, it is dispatched (or re-routed if already on a trip) to pick up the assigned passenger. A vehicle 

visiting list is used by each vehicle to track the next pick-up or drop-off location. As long as a vehicle 

does not reach its capacity, it searches for available passengers at a time resolution of one minute. The 

visiting list keeps updating every minute and it becomes empty when a vehicle drops off the last 

passenger on-board. Once the last passenger is dropped off, the vehicle immediately searches for and 

serves the nearest ride request. Any available SAVs with no active requests are repositioned to the nearest 

parking depot and wait there until the next ride request is received.  
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Figure 2. Simulation Framework 

The riders are ‘sorted’ by the time at which they requested a ride, and the vehicles are ‘sorted’ by the 

magnitude of their travel time from a specific rider. The vehicle list is split into two sub lists, one with all 

“active” SAVs (i.e., the vehicles that have provided service), and another with all “inactive” SAVs (i.e., 

SAVs that have been parked in the depot since the start of the simulation). Both these vehicle lists are 

sorted by the magnitude of each vehicle’s travel time from a rider. For a new ride request, the “active” 

SAVs are first checked for a feasible match. To keep the fleet size to a minimum, a new SAV is initiated 

for picking up a passenger only when an active SAV cannot be matched to a new ride request. For 

scenarios where fleet size is not restricted, the matching rate is always 100% (as an unmatched request 

will be served by introducing a new SAV into the system). If the fleet size is restricted, a portion of the 

demand may be left unserved. The simulation terminates when all riders arrive at their destinations or 

when the time horizon (3-hour simulation + 30 minutes cool down) is reached. 
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By analyzing the second-by-second trajectories (of vehicles as well as passengers) extracted from the 

microsimulation, vehicle, and trip-level performance measures such as vehicle-miles traveled (VMT), 

empty VMT (eVMT), average vehicle occupancy (AVO), and average wait time can be generated. 

 

Dynamic Ridesharing 

This study uses a rule-based vehicle-rider matching algorithm, governed by a maximum pick-up time 

threshold 𝑡1 for a potential rider and an added drop-off time threshold 𝑡2 for all matched riders. Having 

the coupled criteria on pick-up and drop-off thresholds ensures a reasonable travel time for all passengers. 

If either the pick-up or drop-off threshold is compromised, a new passenger is simply not picked up by an 

SAV that is already serving other passengers. Furthermore, en-route rerouting is allowed, which means 

that a vehicle can reroute to pick up a passenger in the middle of a trip (if such a pick-up meets the criteria 

described above). 

The vehicle-rider matching procedure is controlled by constantly evaluating the visiting list of a vehicle. 

For example, Figure 3 shows the visiting list of an SAV with the next stop denoted as (B, 1), which 

indicates a pick-up stop for person B. Similarly, (C, -1) denotes a drop-off stop for person C. The visiting 

list shown in Figure 3 includes three pick-ups and drop-offs, respectively, for three persons. Figure 3 also 

shows the case where another rider D is picked up after picking up B and dropped off after picking up C. 

The procedure to determine the pick-up and drop-off stops is demonstrated as follows. Let 𝑘 be the index 

of the stop in the list, 𝑠 be the index of the stop that the SAV is serving, 𝑚 be the pseudo index of the 

potential riders’ pick-up stop, which is after the 𝑖𝑡ℎ stop (e.g., 𝑚 =   𝑖 + 1/2), 𝑛 be the pseudo index of 

the potential riders’ drop-off stop, which is after the 𝑗𝑡ℎ stop (e.g., 𝑛 =   𝑗 + 1/2), I(k) be the binary 

indicator showing whether a stop k is a drop-off point, and let 𝐿 be the total list length.  

In order to check the matching criteria, t(i,j) indicates the shortest path travel time from stop 𝑖 to stop 𝑗. The 

direct arrival time and the rerouting arrival time at stop 𝑘 are denoted as D(k) and R(k), respectively. 

Whenever a vehicle-rider matching is conducted, the existing values of D and R are known based on the 

previous matching. A successful matching (𝑚, 𝑛) should satisfy the following two conditions: 

(1) The pickup time of the new rider should not exceed 𝑡1 when matching is performed:  

t(s,m) ≤ t1 (1) 

(2) The added drop-off time threshold for all matched riders is always less than 𝑡2: 

R(j) + t(i,m) + C(t(j,n) + t(m,i+1)) − (R(s) + t(s,m) + t(m,n)) ≤ t2 (2) 

I(k)(R(k) − D(k) + t(i,m) + t(m,i+1)) ≤ t2     ∀ k ∈ (m, n), k ∈ Z (3) 

I(k)(R(k) − D(k) + t(i,m) + t(m,i+1) + t(j,n) + t(n,j+1)) ≤ t2     ∀ k ∈ (n, L], k ∈ Z (4) 

C = {
1 m < n
0 m = n

,  m ≤ n (5) 

The potential riders’ drop-off time due to rerouting is constrained by Equation (2). Equation (3) ensures 

that drop-offs happen after potential riders’ pick-up but before potential riders’ drop-off. Similarly, 

Equation (4) checks the drop-offs that will happen after the potential rider’s drop-off, by adding potential 

riders’ rerouting time to both pick-ups and drop-offs of subsequent passengers.  
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Figure 3. SAV Visiting List Example 

A solution pair (𝑚, 𝑛) satisfying the constraints for accepting the potential rider will have the rider’s pick-

up after ith stop and drop-off after jth stop. When a person has been dropped off, the person’s pick-up and 

drop-off stops are removed from the list. For example, if B has been dropped off after person D is picked 

up as shown in Figure 3, the vehicle visiting list becomes: (A, 1), (D, 1), (C, 1), (D, -1), (A, -1), (C, -1). 

For computational efficiency, an SAV always picks up the potential rider before the next stop (either a 

pick-up or a drop-off) in the visiting list (i.e., 𝑖 and 𝑠 are assumed to be zero), but drop-off can take place 

after any stop depending on the matching result. This ignores the case when pick-up of this potential rider 

happens after the SAV’s next stop, by reducing the computational complexity from O(n2) to O(n). 

 

SIMULATION RESULTS 

This section presents the results from two sets of simulation experiments conducted to evaluate the 

performance of SAVs as an FMLM connection to train stations. The first set of scenarios are run under 

varying levels of travel demand, train headways, SAV fleet size and seat capacity. The second set of 

scenario runs focus on the impacts of DRS settings on SAV performance. All the simulations are carried 

out in the five-station, two-AMD region of Austin’s Red line for the three-hour morning peak travel. 

Results for the baseline simulation for each AMD are presented first. This is followed by aggregated 

results for the whole simulation for the two sets of scenarios defined above.  

AMD Performance 

Two fleets of SAVs are used to serve FMLM demand in the AMD region. Each AMD has its own 

dedicated SAV fleet, so if a trip originates in AMD1 and terminates in AMD2, the SAV fleets in AMD1 

and AMD2 cater to the FM and LM connections, respectively, of the same trip. The fleet boundary 

restriction was implemented to see how SAVs would perform in geofenced travel bubbles, and also to 

ensure reasonable travel times for riders within each AMD. This constraint can be relaxed in a 

straightforward manner in future simulations. The baseline scenario considers a train headway of 15 

minutes, with adequate 4-seat SAVs serving each AMD, under a total travel demand of 4,000 riders 

during the 3-hr morning peak (across both AMDs). Mode shares of the 4,000 light-rail transit riders 

followed mode splits mentioned in the data description section, resulting in 1,507 FMLM trips, 1,189 FM 

trips and 1,304 LM trips. Figure 4 shows the boarding and alighting passenger totals at each station for 

southbound and northbound trains. From the figure it can be observed that highest number of boardings 

and alightings occurred at the end of the line in the simulation (i.e., Downtown station in the south, and 

Crestview station in the north). The majority of the travel happened between AMDs, but there are also a 

minor portion of transit trips that originated and terminated within the same AMD (for example, a good 

number of trips took place between Plaza Saltillo and the Downtown station which are both in AMD1).  
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Figure 4. Number of Loaded and Unloaded Riders at Each Station 

Table 1 presents the details on performance of SAV fleets in both the AMDs. As no constraints are placed 

on SAV fleet size, it was found that a total of 240 SAVs are required to keep the average wait time around 

4.5 minutes in AMD1. Of the total transit demand in the 3-hour peak period, 1,208 and 1,316 originated 

and terminated, respectively, in AMD1. An interesting observation in Table 1 is that the proportion of 

shared trips in AMD 1 is ~90% but the proportion of shared vehicle miles is only 31%. This is because a 

trip is tagged as a shared trip even if a portion of the trip occurred with more than one passenger on the 

vehicle. As observed from the shared distance per trip metric, on average, only 23.1% of a trip is served 

as a shared trip. SAV operations in AMD1 resulted in over 5,800 VMT, of which 31% were shared VMT, 

and 25.8% were eVMT.    

Fleet size requirement in AMD2 scaled proportionally with the size of the demand compared to AMD1 

(19% increase in fleet size for a 20% increase in demand). Compared to AMD1, AMD2 sees an 8% 

increase in VMT, but a higher share of shared VMT (and trips), coupled with an increase in AVO. A 

greater proportion of shared trips and shared VMT in AMD2 show an impact on average wait time and 

service duration, both of which are slightly higher in AMD2 than AMD1. From a vehicle utilization 

standpoint, there are complementary effects at play between AMD1 and AMD2. AMD1 observes a higher 

magnitude of shared distance per trip, but also a higher amount of deadheading per trip. While AMD2 

sees a lower magnitude of shared distance per trip compared to AMD1, the deadheading factor is reduced 

in AMD2 in comparison with AMD1.  

Results across the whole area are shown in the last column of Table 1.With almost 90% of total trips 

served as shared rides (albeit with a 30% shared distance per trip), shared VMT came out to be a third of 

total VMT. While vehicle occupancy of the SAVs is reasonable, a greater demand density can drive 

vehicle utilization higher (as seen in comparisons between AMD 1 and AMD2). The application of SAVs 

to serve FMLM connections to train stations shows a strong utilization of SAV fleets, compared to door-

to-door service, which often shows a low proportion of shared VMT (Fagnant & Kockelman, 2018).  
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Table 1. Performance of SAV Fleet 

 Metric AMD1 AMD2 Whole Area 

Fleet Size 240 286 526 

VMT 5836 6355 12191 

eVMT 25.8% 25.0% 25.4% 

Shared Vehicle-Miles 31.0% 31.9% 31.4% 

AVO 1.48 1.52 1.50 

Shared Trips 89.8% 90.7% 90.3% 

FM trips 1208 1488 2696 

LM trips 1316 1495 2811 

Average Wait Time 4.48 4.77 4.61 

Average Ride Distance 2.58 2.46 2.52 

Average Service Duration 14.0 15.9 15.0 

Deadheading distance per trip (mile) 0.60 0.53 0.56 

Shared distance per trip (mile) 0.72 0.68 0.70 

Deadheading distance per trip (%) 27.8% 27.6% 22.3% 

Shared distance per trip (%) 23.1% 21.6% 27.7% 

 

Scenario Exercises 

This section presents the results of scenario exercises carried out with varying levels of travel demand, 

train frequency, SAV fleet size and vehicle capacity. In each of the scenarios, all factors except the one 

being investigated were held at the baseline levels.  

Vehicle Size: This set of scenarios explores the impact of seat capacity on SAV fleet performance. 

Vehicles with seat capacities of 2, 4, and 6 passengers were simulated along with a 1-seat AV case for 

comparison. Table 2 shows seat capacity is inversely proportional to SAV fleet size. VMT consumption 

(as well as eVMT) is highest in the 1-seat SAV scenario, as trips cannot be pooled in one-person SAVs. 

However, SAVs with two or more seats provided a service duration that was about twice as long as 1-seat 

service albeit with reduced fleet size and VMT consumption. It was also interesting to see that with no 

sharing (i.e, one-person SAVs) small-sized SAVs were supposed to pick passengers up faster, but riders 

under a small-sized SAV FMLM service experienced a longer waiting time. As the DRS settings (for 

maximum pick-up time and maximum delayed drop-off time) are held constant across all vehicle 

scenarios, one possible explanation for longer wait times is that larger fleet size in the 1-seat SAV 

scenario might lead to excessive curb congestion around the station area. All of these findings are 

important factors to consider when right sizing SAVs, as size reduction can have intended (i.e., lesser 

service duration) as well as unintended consequences, such as increased VMT, and increased wait times. 

It can also be observed that reduction in fleet size and corresponding increase in vehicle utilization 

(depicted by AVO) flattens out with the four-seater SAV scenario. The incremental benefits of having 

six-seater SAVs are minimal, if any, in the context of this simulation.   

Travel Demand: Scenarios were run with light-rail transit travel demand of 3,000, 4,000, and 5,000 trips 

across the three-hour morning peak period. As expected, a larger transit demand leads to greater SAV 

fleet size requirements. Increased transit demand (or more generally, greater trip density) improves 

utilization of the SAVs, indicated by increases in shared VMT and AVO. However, sharing rides slightly 
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increases riders’ wait time and service duration, with trip distance staying more or less stable across all 

scenarios.  

Table 2. System Performance Under Various Settings 

Scenarios 

Fleet size VMT 

AVO 

Average 

Wait 

Time 

(min) 

Average 

Ride 

Distance 

(mile) 

Average 

Service 

Duration 

(min) 
Total 

AMD 

1 

AMD 

2 
Total empty Shared 

Vehicle 

Size 

(seats 

per 

SAV) 

1 992 437 555 16,996 51.3% 0.0% 1.00 5.1 1.52 7.4 

2 532 230 302 13,365 25.0% 23.4% 1.31 4.8 2.40 14.0 

4* 526 240 286 12,191 25.4% 31.4% 1.50 4.6 2.52 15.0 

6 498 217 281 12,187 25.2% 31.7% 1.50 4.5 2.52 15.3 

Demand 

(riders in 

3-hour 

AM 

peak) 

3000 421 170 251 9,347 25.6% 30.9% 1.49 4.5 2.56 14.3 

4000* 526 240 286 12,191 25.4% 31.4% 1.50 4.6 2.52 15.0 

5000 598 271 327 15,067 24.4% 32.4% 1.52 4.6 2.54 14.8 

Train 

Headway 

(min) 

5 459 190 269 11,944 24.4% 32.2% 1.51 4.4 2.50 14.2 

10 496 214 282 12,128 24.1% 32.2% 1.50 4.5 2.55 14.4 

15* 526 240 286 12,191 25.4% 31.4% 1.50 4.6 2.52 15.0 

20 565 240 325 12,315 26.5% 31.3% 1.51 4.7 2.51 14.6 

25 594 260 334 12,566 28.1% 31.1% 1.53 5.0 2.53 15.1 

Fleet 

Size 

Scale to 

Baseline 

Scenario 

100%* 12,191 25.4% 31.4% 1.50 4.6 2.52 15.0 

90% 12,206 25.1% 32.0% 1.52 4.6 2.54 14.5 

80% 12,211 24.9% 31.7% 1.50 4.5 2.53 14.4 

70% 12,185 25.1% 31.8% 1.51 4.5 2.54 14.5 

60% 12,194 24.3% 32.9% 1.53 4.6 2.57 14.7 

50% 11,592 21.7% 36.8% 1.59 5.5 2.63 15.9 

Note: Scenario marked with asterisk is the baseline scenario. 

Train Headway: FMLM service differs from traditional door-to-door pick up and drop off service, as 

FMLM demand comes in spurts (governed by train schedules) whereas door-to-door trip demand is more 

dispersed. Therefore, a larger train headway resulted in a larger fleet size requirement. It is interesting to 

see a higher eVMT share in scenarios with larger train headways. Although a larger train headway led to 

more shared rides at the station, it also reduced the chance for FM trips to be shared. Such a combined 

effect was imposed on both FM and LM trips, leading to a slight increase in AVO, but also more eVMT.   

Fleet Size Reduction: The scenarios presented so far did not place any restrictions on fleet size. However, 

fleet size restrictions are inevitable at times due to budget constraints, among other factors. Therefore, 
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consecutive scenarios with a 10% cumulative decrease in fleet size from the baseline are run all the way 

up to a reduction of 50% in fleet size.  Surprisingly, the system performance was more or less stable until 

a 60% reduction in fleet size; in fact AVO increased with a reduction in fleet size. When the fleet is 

reduced to half of the original size, average wait time increases by a minute.  

Improved DRS for Train schedules 

This section presents the impacts of DRS settings on the performance of the SAV fleets. Four scenarios 

(including the baseline) were tested with various combinations of the parameters in vehicle-rider 

matching criteria. An additional scenario was run where the DRS worked in conjunction with the train 

schedule. The baseline scenario (scenario 3) considers a maximum pick-up threshold of 5 minutes (when 

multiple riders are matched on a trip), and the maximum delayed drop-off time to be no more than 10 

minutes for each passenger. Three other scenarios were tested, with pick-up time thresholds ranging from 

1 minute to 10 minutes, and the maximum delayed drop-off time to be twice the pick-up time. It should 

be noted here that this set of scenarios do not constrain the SAV fleet size.  

Results shown in Table 3 indicate that the tighter the constraint on FMLM service parameters, the greater 

the fleet size requirement. As expected, the most stringent pick-up constraint (of 1-minute) resulted in 

extremely low shared vehicle-miles (of 4.4%), and an AVO of 1.08. In this case, the riders’ distance was 

nearly the direct travel distance, which was 1.6 miles and the whole journey could be completed in under 

8 minutes. Conversely, the scenario with most relaxed constraints on FMLM service parameters (10-

minute pick up time threshold, and 20-minute delayed pick-up or drop-off threshold) sees a high AVO, 

and a greater proportion (47.1%) of shared vehicle miles. Trip level metrics (average wait time, ride 

distance, and service duration) increase with a higher percentage of shared VMT across scenarios. This is 

understandable, as with higher levels of sharing, SAVs may reroute to other stops, leading to greater 

distances and durations across the board. Generally, scenarios with larger fleet sizes see higher VMT and 

lower eVMT, compared to scenarios with smaller fleet sizes (i.e., more relaxed service parameters). 

However, the total VMT increased a little in scenario 4 compared to the baseline scenario, which is 

possible because a tighter constraint will have more deadheading VMT, but a more relaxed constraint will 

lead to more shared VMT, which consists of more added detours.  

Table 3. System Performance under DRS Variations 

Scenarios 1 2 3* 4 With Coordination 

Max Pick-up Time t1 (min) 1 2 5 10 5 

Max Delayed Drop-off Time t2 (min) 2 4 10 20 by train schedule 

Fleet Size 822 661 526 408 514 

AMD1 Fleet Size 357 309 240 184 236 

AMD2 Fleet Size 465 352 286 224 278 

Total VMT 15,243 13,235 12,191 12,873 15,107 

eVMT 47.8% 40.9% 25.4% 17.2% 16.1% 

Shared Vehicle-miles 4.4% 12.9% 31.4% 47.1% 60.4% 

AVO 1.08 1.23 1.50 1.79 2.29 

Shared Trips 30.7% 62.4% 90.3% 93.7% 83.0% 

Average Wait Time (min) 3.9 4.5 4.6 5.6 6.8 

Average Ride Distance (mile) 1.6 1.8 2.5 3.5 5.5 

Average Service Duration (min) 7.9 8.8 15.0 19.0 27.9 
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Note: Scenario marked with an asterisk is the baseline scenario. 

As the SAVs exclusively serve Red Line travel demand in this study, having a close coordination between 

DRS and train schedules can help improve SAV utilization, as well as rider experience. To accomplish 

this, the DRS algorithm has been modified to account for riders’ arrival time constraints at the train 

station. The modified DRS algorithm assumes that riders would rather spend additional time in an SAV, 

than arrive early at the train station and wait for the train. As a result, the matching procedure allows 

vehicles to make extra stops, as long as all the riders on-board will arrive at their respective train stations 

on time.  

The performance of SAV fleets under the enhanced DRS algorithm is shown in the last column in Table 

3. Keeping the pick-up time constraint same as the baseline, but having a tighter coordination between the 

DRS algorithm and the train schedule resulted in the highest proportion of shared miles (60.4%) coupled 

with the highest AVO (2.29), and lowest proportion of eVMT (16.1%) across all scenarios. This is 

understandable, as under this scenario, the algorithm will keep a rider on board for a longer duration if 

his/her train arrival is still minutes away. The increased vehicle utilization comes at the cost of longer 

wait time (48% increase from the baseline) and trip duration (86% increase from the baseline). This 

analysis provides an interesting insight on the possible gains in vehicle efficiency if SAV routing is 

coordinated with train schedules (at the cost of increased wait and ride times).  

Although riders’ wait time (for the SAV) increased in the coordinated train schedule scenario, they did 

not necessarily arrive late for their train. Figure 5a shows the distribution of wait times at the train station 

and Figure 5b shows the time difference between riders’ arrival at the train stop and the scheduled train 

arrival. From Figure 5a, it can be observed that the modified algorithm helped increase the number of 

riders who arrived within 2 minutes before train departure, but the general distribution remained the same. 

In Figure 5b, positive values indicate earlier arrivals at the station, while negative values indicate a late 

arrival (i.e., after the train has departed). With a DRS mechanism that only considers pick-up time and 

drop-off time (i.e., the baseline scenario), the arrival time presents in the shape of a normal distribution 

with the train’s arrival time as the mean. However, with the modified DRS algorithm which coordinates 

with the train schedule, the number of riders arriving ahead of the train’s arrival increased and the number 

of riders arriving after the train has departed decreased greatly. With the enhanced DRS algorithm, the 

proportion of riders that can catch their scheduled train increased to 87.2% (from 57.5% in the baseline).  
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a) Wait Time Distribution 

 
b) Distribution of Time Gaps between Scheduled Train Arrival and Riders’ Arrival 

Figure 5. Performance of Coordinated DRS Algorithm 

 

CONCLUSION 

Utilizing SAVs for FMLM connections to transit presents multifold benefits, including reduced costs to 

the operator and the passenger as well as reduced congestion on the roadways (owing to shift from car 

modes to SAV-to-transit modes). This paper investigates the impacts of SAVs serving as FMLM 

connections to/from five train stations (partitioned into two geofenced regions labeled as automated 

mobility districts or AMDs) along Austin’s Red line. The contributions of this paper are three-fold. First, 

instead of forcing FM and LM to be the same mode to access light-rail transit, the simulations conducted 

in this paper allow for flexible FM and LM access (e.g., SAV-transit-walk). Second, unlike many SAV 
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studies which simulated only a portion of the observed demand, this study simulates the full extent of 

central Austin’s morning peak light-rail transit demand in 2030. Finally, this paper proposes an enhanced 

DRS algorithm that closely couples SAV operations with train schedules. Such an integrated algorithm is 

shown to increase vehicle utilization, and on-time arrivals at the train station. Detailed simulations were 

carried out in two AMDs, and the performance of the SAV fleet was analyzed in light of varying levels of 

travel demand, train frequency, SAV vehicle size, fleet size, and DRS settings.  

Results indicated that about 90% of the trips in both AMDs were served as shared trips. However, with 

only 30% of each trip (on an average) served as a shared trip, shared VMT constituted only a third of total 

SAV VMT across the study region. Results specific to SAV deployments in AMD 1 and AMD2 

demonstrated that a greater demand density can lead to a higher vehicle utilization rate (as evidenced by a 

higher vehicle occupancy, and lower eVMT percentage in the AMD with higher demand). From the 

scenario runs pertaining to 1-, 2-, 4-, and 6-seat SAVs, it was observed that SAV seat capacity is inversely 

proportional to the SAV fleet size requirement, and that vehicle utilization increases with seat capacity. 

However, for the application context presented in this paper, results showed that increases in vehicle 

utilization rates flattened out with the 4-seater SAV scenario. An interesting insight from the scenarios 

pertaining to vehicle seat capacity is that reduction in seat capacity (particularly with 1-seater SAVs) can 

lead to unintended consequences, such as increased curb congestion.  

A higher level of transit demand resulted in a larger SAV fleet size and more VMT, with greater 

utilization of the SAV fleet. However, better SAV utilization comes at the expense of increased wait time 

and service duration for riders. A less frequent train service (i.e., larger headway) resulted in a larger fleet 

size with a greater vehicle utilization rate.  Furthermore, the scenario exercises with fixed fleet size 

restrictions revealed that baseline system performance can be achieved even when the fleet size is reduced 

to 60%. This finding shows that the proposed vehicle-rider matching algorithm guarantees a stable system 

performance even under a reduced fleet size. DRS settings are also closely related to system performance. 

Stringent matching criteria led to a larger fleet size, and underutilization of the SAV fleet. Relaxing the 

matching criteria resulted in greater vehicle utilization, but at the expense of increased wait times and 

service durations for the riders. With a DRS algorithm that is tightly coupled with train schedules, it was 

observed that over 87.2% of the riders could catch their desired train, compared to 57.5% under the 

baseline DRS algorithm (i.e., no transit coordination). This signifies the importance of integrated transit 

planning for efficient FMLM connectivity.   

While this study successfully demonstrates the efficacy of SAVs serving as FMLM connections to transit, 

it has some limitations. Although congestion has been observed around rail stations, realistic levels of 

congestion could not be reflected in the simulation due to lack of representation of other road modes such 

as private cars and buses. Also, this study focuses exclusively on SAVs being utilized as an FMLM mode 

but does not consider other forms of SAV services (fixed route-flexible schedule, and direct door-to-door 

services). Future research efforts may focus on addressing these gaps as well as optimizing parking depot 

locations for SAV initialization and relocation. Further research is also needed in regard to optimizing the 

size of geofenced regions (AMDs) for efficient FMLM services. The coordination between train 

schedules and SAVs can be extended to account for passengers’ pick-ups, in addition to drop-offs at the 

train station. Finally, while this study looked solely on the mobility related impacts of SAV FMLM 

operations, future research should extend the focus to energy impacts of SAVs and electrified SAVs for 

FMLM connections to transit.  
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