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ABSTRACT 

Accessibility is an important consideration in improving networks, modes, and/or land 

use patterns, in any transport setting. In countries like Kenya, many travelers do not have access 

to cars, and transit service is key to access, economic development, and community welfare. This 

paper uses monetized differences in nested logsums to value changes in Nairobi’s residents 

across destination zones and three travel modes. Results show how transit versus land use 

improvement policies affect residents of formal and informal (slum-area) housing differently. 

Welfare changes are compared when assuming independent error terms in before-after cases and 

allowing for perfect correlation in error terms (to recognize the same persons and modes are 

present in both settings). Under both access-improvement scenarios, residents of formal housing 

tend to benefit more than those in Nairobi’s informally developed areas (largely slum 

settlements). 

BACKGROUND 

The ability to reach opportunities is widely referred to as accessibility, which fundamentally differs 

from more traditional transportation performance measures (like speed and flow volumes) that 

emphasize mobility, or ease of movement (Litman, 2003). Accessibility can be monetized, and 

it is embodied in real estate values (which are readily observable [Srour et al. 2002]) as well 

as people’s willingness-to-pay for changes in access (often using Hicksian or income-

compensated demand functions, which are not directly observable [Kockelman et al., 2013; 

Varian, 1992]). 45 
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Network improvements, new modes, and land use changes all impact access. Using accessibility 1 

measures to compare such investments or policy measures, rather than looking solely at travel 2 

times or speeds, is important and valuable. This perspective is particularly useful in the context of 3 

transportation systems in the Global South where most residents rely on walking, non-motorized 4 

transport, and public transit to meet their daily needs.  5 

The academic literature on accessibility began with Hansen’s (1959, p. 74) gravitational-force-6 

based measure as “the potential of opportunities for interaction”. Over time, various other metrics 7 

have been defined and used to predict travel choices (see, e.g., Kockelman [1997] and Cervero and 8 

Kockelman [1997]). Researchers like Handy and Niemeier (1997) and Bhat et al. (2000) have 9 

identified cumulative opportunities, gravity-based, utility-based, and space-time measures as 10 

separate access metric categories. Published applications of accessibility in sub-Saharan Africa are 11 

rare, but they do exist. For example, Campbell et al. (2019) employed both cumulative 12 

opportunities and gravity-based measures to assess accessibility to health care facilities for 13 

walking, matatu minibus, and driving modes. This study found the highest levels of access to health 14 

care facilities could be found proximate to the CBD and poor areas actually have comparatively 15 

better walking access to health facilities than wealthier ones. Medium-low income 16 

(~$37USD/capita/month) areas located in formal tenement apartment building districts achieved 17 

the highest overall accessibility ratings while informal slum settlements achieved the highest 18 

access by walking mode metrics (Campbell et al., 2019). The World Bank (2016) simulated 19 

cumulative-jobs-access measures with Monte Carlo draws and a hill-climbing optimization 20 

procedure. While Nairobi’s current layout outperformed all of their 10,000 random, counterfactual 21 

scenarios, they estimated alternative, coordinated land-use patterns could increase overall 22 

accessibility by 15% for those using cars and by 100% within an hour’s travel time via matatus 23 

(The World Bank, 2016). Avner and Lall (2016) also examined Nairobi’s jobs-housing balance. 24 

However, no published research has yet quantified accessibility differences across Nairobi and 25 

across new land use-transportation settings for Nairobi using utility-based metrics. This paper uses 26 

monetized and nested logsum differences in access to jobs, health care, and education opportunities 27 

via three travel mode alternatives to anticipate what policies or practices may best support 28 

Nairobians in their access needs and aspirations. 29 

Public transit services in Nairobi, the capital of Kenya, are provided almost exclusively by matatus, 30 

or privately-owned and operated 14- and 25-seater vans and buses. Aside from a handful of 31 

commuter rail lines, Nairobi generally lacks formal transit services (Salon and Aligula, 2012). To 32 

fill this gap, an extensive network of matatus provide the region with a semi-formal transit system. 33 

Cervero (2001, p. 1) calls this type of operation “laissez-faire transit [whereby] through the 34 

invisible hand of the marketplace, those who are willing to pay for transport services hook up with 35 

those who are willing to provide them.” Impressively, 99% of Nairobi’s residents indicate matatu 36 

services are available to them, and two-thirds of adult travelers use matatus every day (Salon and 37 

Aligula, 2012). While the matatu system fills a transport need not formally provided in Nairobi, 38 

this informal transit sector generates some negative externalities, like high levels of noise and air 39 

pollution, increased traffic congestion, dangerous driving behaviors, mafia-style management 40 

practices, and a general lack of accountability within the system (Cervero and Golub, 2007; 41 

Kaltheier, 2002). Additionally, the free-market nature of these entrepreneurial operators tends to 42 

lead to “cream-skimming” or concentrating frequent services during peak travel times to maximize 43 

ridership (and therefore fare revenues) while often requiring off-peak riders to wait until their bus 44 

is filled before departing the stop (Cervero and Golub, 2007). Unlike formal transit systems in 45 

democratic nations that may have a mandate to address spatial equity concerns in their service 46 
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provision, matatu operators can choose to serve wherever they want. Due to informal operators’ 1 

profit-maximizing motivations, residents of the informal ‘slum’ settlements that house the city’s 2 

most vulnerable population, with arguably the strongest need for transit access, may not be seen 3 

as a priority by operators.  4 

This study investigates the accessibility differences between those living in informal settlements 5 

and those living in conventional residential units across Nairobi, or informally housed vs formally 6 

housed residents: IHR vs FHR.  Over 1.8 million of Nairobi’s 4M residents live in slums (Kenya 7 

ICT Authority, 2020; The World Bank, 2016). Many of these persons live in Kibura, East Africa’s 8 

second largest slum, with certain areas housing population densities over 100,000 people per 9 

square kilometer (Marras, 2012) – which is four times higher than what one sees on the island of 10 

Manhattan, New York, with its much taller (multi-level) building stock. While many slum dwellers 11 

lack resources to pay for transit fares and rely on walking to access employment and other 12 

opportunities, between 50 and 60 percent of traveling adults below the poverty line in Nairobi 13 

report use public transit regularly (Salon and Aligula, 2012). This work estimates changes in 14 

different Nairobians’ consumer surplus (CS) or welfare under several land use-transportation 15 

scenarios, as described below. 16 

METHODS 17 

There are two basic ways to improve accessibility: 1) improve the transportation system so people 18 

can travel longer distances in less time and/or at lower cost and thereby access more opportunities 19 

of interest, and 2) add more useful land uses/destination opportunities close to where travelers are 20 

located. The scenarios modeled here include a base case (business-as-usual) vs. two distinct access 21 

improvement initiatives: 1) improving Nairobi’s transit system by prioritizing road space for buses 22 

and matatus, and 2) adding jobs, schools, and healthcare facilities closer to people’s homes. The 23 

first improvement scenario is labeled “TI” for transit improvement and the second “LUI” for land 24 

use improvement.  25 

One set of welfare results (labeled Scenarios 1 & 2) assumes random-utility error terms (for mode 26 

and destination choices across Nairobi) are independent between the base case and new access 27 

settings, while with the second set of results (labeled Scenarios 3 & 4) assumes perfect correlation 28 

between unobserved components in the same mode and destination zone options after transit 29 

systems or land uses are modified. Such correlation helps better reflect the unmodeled features 30 

affecting traveler preferences, like past bad experiences onboard a bus, riding or walking with 31 

friends each day to work or school, the presence or absence of a special shop or garden in one’s 32 

preferred destination zones. All access impacts, embodied in the CS changes, are computed and 33 

then compared across the two user groups identified here: the informally housed and formally 34 

housed residents (IHR versus FHR). 35 

 36 

UTILITY-BASED ACCESS MEASURES FOR CONSUMER SURPLUS 37 

CALCULATIONS 38 

This study relies on a destination and mode-choice nested logit model, as illustrated in Figure 1. It 39 

is similar to the one presented by Lemp and Kockelman (2011)..  40 

Scale parameters for mode of 1.39 (𝛍1) and destination of 1.20 (𝛍2) represent the inverse of the 41 

nested-logit model’s inclusive value coefficients.  42 
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 1 
Figure 1: Destination/Mode-choice Nested Logit Model with Nesting Parameters Applied to Nairobi 2 

Case Study Includes 48 Potential Destination Zones and 3 Modes 3 

Based on existing studies, the Income and Household Characteristics and ASC values are 4 

displayed in Table 1 and Table 2, respectively (Campbell et al., 2019; The World Bank, 2016; 5 

Walker et al. 2010). 6 

 7 
Table 1: Income and Household Characteristics by Residence Type in Nairobi 8 

Residence Type Indicator Value Source 

Informal (IHR) 

Avg. Monthly Income 

($USD equivalent) 
$16.85  Campbell et al., 2019 

Avg. HH Size 8.0 The World Bank, 2016 

VOTT ($USD/hour) $0.25  The World Bank, 2016 

Formal (FHR) 

Avg. Monthly Income 

($USD equivalent) 
$110.42 Campbell et al., 2019 

Avg. HH Size 3.4 The World Bank, 2016 

VOTT ($USD/hour) $0.70  The World Bank, 2016 

Table 2: Alternative Specific Constants by Mode for Developing Cities 9 

Alternative Specific 

Constants (ASC's) by mode 

ASC  

(Walker et al, 2010) 

ASC fit to data for 

this analysis 

Walk 0 2.199 

Matatu Minibus -2.22 -2.611 

Auto -1.11 -1.969 

 10 

Destination attractiveness represents a measure of utility based upon a combination of access to 11 

employment, education, healthcare, and proximity to the CBD embodied in the following equation:  12 

𝐴𝑡𝑡𝑟𝑑 = 𝛽𝐸 ∗ 𝐸 + 𝛽𝑆 ∗ 𝑆 + 𝛽𝐻 ∗ 𝐻 + 𝛽𝐷 ∗ 𝐷𝐶𝐵𝐷 + 𝜀𝑖  13 

 14 
where βE, βS, βH, and βD, are the coefficients on employment (jobs), schools, healthcare facilities, and 15 
distance to the CBD. Here, E represents employment density in jobs per square kilometer, S equals 16 
education density [schools/km2], H represents the density of healthcare facilities [facilities/km2] in zone d, 17 
and DCBD represents the network travel distance between zone d’s centroid and the intersection of Kenyatta 18 
Ave. and Moi Ave. at the center of the CBD (1°17'00.1"S 36°49'24.7"E). εi are independent and identically 19 
distributed (iid) Gumbel error terms ( Walker et al., 2010; Zhao et al., 2012; Ma et al., 2015).  20 

  21 

According to the Japan International Coordination Agency (2014), this work uses OLS regression 22 

and multi-criteria optimization with the Nairobi datasets available and described herein to arrive 23 



 

 

 

5 

at the following β parameters: βE = 0.00003, βS = 0.07602, βH = 0.01510, and βD = -0.30430, with 1 

an adjusted R2 value of 0.5109 (N = 48). The  εi error term was omitted for the first set of results 2 

presented below (“Scenario 1: TI iid Gumbel” and “Scenario 2: LUI iid Gumbel”, respectively) 3 

and then incorporated as a random value from the Gumbel distribution with a mode (𝜇’) of 0 and 4 

scale (σ) of 1 (see Figure 2) for the second set of comparative results (“Scenario 3: TI with 5 

Gumbel” and “Scenario 4: LUI with Gumbel”, respectively). The εi term accounts for random 6 

variation in individuals’ preferences and is often assumed to be iid before versus after the policy 7 

or design change, which simplifies welfare calculations.  To reflect the perfect-correlation case, 8 

10,000 vectors of Gumbel error terms were simulated and used here, along with random utility 9 

maximization for evaluation of 10,000 individuals’ CS impacts in each before-after comparison.  10 

𝑓(𝑥) =
1

𝜎
𝑒𝑥𝑝(−𝑧 − 𝑒𝑥𝑝(−𝑧)) , 𝑠. 𝑡.  𝑧 =

𝑥 − 𝜇′

𝜎′
 11 

 12 
Figure 2: Generalized Extreme Value Distribution for εi   13 

Finally, the following the cascade of equations is used to calculate the logsum differences 14 

embodying changes in consumer surplus for individuals in the two residential groups across 15 

different scenarios where a superscript of 0 represents the base scenario (existing conditions) and 16 

a superscript of 1 represents the scenario of interest.  17 

 18 
Equation 2 (Value of Travel Time):  20 

𝑉𝑂𝑇𝑇𝑖 = 𝐻𝑜𝑢𝑟𝑙𝑦𝑊𝑎𝑔𝑒𝑖 ∗ 𝐻𝐻𝑠𝑖𝑧𝑒𝑖 ∗ 0.3 21 
 22 
Equation 3 (Generalized Trip Cost):  23 

𝐺𝐶𝑖,𝑑𝑚 = 𝑉𝑂𝑇𝑇𝑖 ∗ 𝑡𝑑𝑚+𝑂𝐶𝑑𝑚 + 𝐹𝑎𝑟𝑒𝑑𝑚 24 
 25 
Equation 4 (Systematic Utility):  26 

𝑉𝑖,𝑑𝑚 = [𝑙𝑛(𝐴𝑡𝑡𝑟𝑑) − 𝑙𝑛(𝐴𝑡𝑡𝑟𝐵)] + 𝐴𝑆𝐶𝑚 − 𝐺𝐶𝑖,𝑑𝑚 + 𝜀𝑖  27 
 28 

Equation 5 (Inclusive Value/Expected Maximum Utility for an Upper Level Alternative):  29 
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𝛤𝑖,𝑑 =
1

𝜇1
∗ 𝑙𝑛 [𝑒𝑥𝑝 (𝜇1 ∗  𝑉𝑖,𝑑,𝑤𝑎𝑙𝑘) + 𝑒𝑥𝑝(𝜇1 ∗ 𝑉𝑖,𝑑,𝑚𝑎𝑡𝑎𝑡𝑢) +  𝑒𝑥𝑝(𝜇1 ∗ 𝑉𝑖,𝑑,𝑑𝑟𝑖𝑣𝑒)] 1 

 2 
Equation 6 (Consumer Surplus Logsum):  3 

𝐶𝑆𝑖 =
1

𝜇2
𝑙𝑛 (∑ exp (𝜇2 ∗

𝑘𝜖𝐷

𝛤𝑖,𝑘)) 4 

 5 
Equation 7 (Change in Consumer Surplus):  6 

𝛥𝐶𝑆𝑖 =
1

𝜇2
𝑙 𝑛 (∑ exp (𝜇2 ∗

𝑘𝜖𝐷

𝛤𝑖,𝑘
1 )) − 𝑙 𝑛 (∑ exp (𝜇2 ∗

𝑘𝜖𝐷

𝛤𝑖,𝑘
0 )) 7 

 8 
where i denotes user group (IHR vs. FHR), d denotes destination of interest (zones 1-48), m denotes mode 9 
of interest (walk, matatu, or auto), D is the set of destination alternatives, t denotes time (in hours) and OC 10 
stands for out-of-pocket operating expenses (for autos only). 𝛍1 and 𝛍2 represent scaling parameters for 11 
mode and destination nests, respectively and ASC refers to the alternative specific constants for mode 12 
alternatives. Attr refers to attractiveness of each destination, which is the output of a combination of the 13 
three destination opportunity types consolidated in the model: education, employment, and healthcare, as 14 

described in equation 1 above (see Gwilliam, 1997; Kockelman and Lemp, 2011).   15 

DATA SETS 16 

A variety of data are required to compute these measures, namely, a multimodal transportation 17 

network and information about origin and destination zones. The following section details the 18 

methods for data wrangling and geospatially processing a variety of different data sources in order 19 

to produce reliable travel time skims for walking, matatu+walk, and driving between all 48 zones 20 

as well as aggregating data about the contents of the zones themselves in terms of employment, 21 

education, and healthcare.  22 

 23 

CONSTRUCTING THE TRANSPORTATION NETWORK 24 

 26 
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  1 
Figure 3: January 2017 Matatu Routes and Stops Network Dataset in ArcMap 2 

  3 

Figure 4: OpenStreetMap Pedestrian Network generated using OSMnx 4 

The transportation network is manufactured using a combination of python code and ArcMap 5 

processing. Matatu routes and schedules come from a modified semi-formal transit GTFS feed 6 

from January 2017 produced using mobile phones by a collaborative research project involving 7 

MIT, Columbia University, University of Nairobi and a design group called Groupshot (Williams 8 

et al., 2015). ESRI’s Add GTFS to a Network Dataset tool within ArcMap generates a transit 9 

network for analysis purposes (see Figure 3). Since geospatial data about walking paths and 10 

sidewalks is not available in the study area, the walking network is sourced from OpenStreetMap 11 

(see Figure 4). 12 

 13 

ZONE CREATION: ORIGINS & DESTINATIONS 14 

By using Thiessen polygon technique using the Voronoi method (Brassel and Reif, 1979) in the 15 

Kenyan government’s data portal (Kenya ICT Authority, 2020), total 48 transportation analysis 16 

zones (TAZs) are given in Figure 4a. School location data is sourced from a 2010 Nairobi Land 17 

Use survey, shown in Figure 4b (Edwin, 2010). Employment location data is sourced from World 18 

^ Nairobi_CBD

Matatu Stops

Matatu Routes

Nairobi TAZs
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Bank and JICA (Japan International Cooperation Agency (JICA) et al., 2014; The World Bank, 1 

2016), which can be cross-referenced with the commercial and industrial land-use classifications 2 

from the land use survey data (see Figure 4c). Finally, healthcare data is sourced from ESRI 3 

Eastern Africa (2017), which published a dataset representing healthcare institutions by type and 4 

by institution (see Figure 4d). 5 

 6 

 7 
                                 (a)                                                                                       (b) 8 

 9 
                                 (c)                                                                                       (d) 10 

Figure 4 Data sets (a: 48 TAZs in Nairobi, Kenya and Population Density by Square Kilometer; b: 11 
Nairobi Education Land Use; c: Nairobi Employment-related Land Use; d: Nairobi Healthcare 12 

Facilities) 13 

MODELED SCENARIOS 14 

Travel skims were calculated using ArcMap’s Network Analyst functionality for interzonal travel. 15 

Intrazonal travel approximates the TAZs area as a circle and assumes intrazonal trips involve 16 

traversing the equivalent “radius” of this circle at the average system speed of the respective mode 17 

of travel. Thus, intrazonal travel times increase in proportion to the area of the TAZ. These travel 18 

skims and zonal attraction data are input into and excel- and R-based logsum calculation program, 19 

which computes changes in consumer surplus as the difference in logsum calculations between a 20 

base condition (business as usual) and various scenarios for two user types (IHR and FHR). The 21 

scenarios tested in this analysis include the following and are described in more detail individually 22 

in the Results section: 23 

The first two scenarios presented have uncorrelated before-after terms (εi) incorporated in the 24 

utility equation and assume these terms will cancel out when aggregated over a large dataset as 25 

many logsum accessibility analyses in literature and practice do. The latter two scenarios take a 26 
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critical look at this assumption (as recommended by Zhao et al. (2012)) by incorporating the 1 

random error term (εi) into the systematic utility equation at an individual level for every origin-2 

destination pair as random iid pulls from the GEV1 distribution described above.  3 

• Scenario 1 - “Transit Improvement without correlated epsilons” (TI no correlated epsilons): 4 

Transit-dedicated lanes for matatus, which results in 10% faster transit travel times and 5 

20% slower travel times for the driving mode.  6 

• Scenario 2 - “Land Use Improvement without correlated epsilons” (LUI no correlated 7 

epsilons): Building marketplaces (employment), schools and health centers in relatively 8 

underserved areas.  9 

• Scenario 3 - “Transit Improvement with correlated epsilons” (TI w/ correlated epsilons): 10 

Same as “Scenario 1”, but incorporating εi term 11 

• Scenario 4 - “Land Use Improvement with correlated epsilons” (LUI w/ correlated 12 

epsilons): Same as “Scenario 2”, but incorporating εi term 13 

RESULTS 14 

This section presents the results of the welfare analysis calculations described above. First a base 15 

scenario is computed and presented for the TI and LUI scenarios that don’t have correlated epsilons 16 

(Scenarios 1 & 2). Subsequently, maps describing the change in consumer surplus (in $USD) 17 

between the base case and the respective scenarios for IHR and FHR by TAZ are displayed and 18 

discussed. Then an alternative base case incorporating the εi error term for the calculation of 19 

Scenarios 3 & 4 is presented followed by maps describing the change in consumer surplus between 20 

this base case and the respective modeled scenarios.  21 

After all the data are aggregated to the TAZ level, one can pull out the relative attractiveness of 22 

each zone with respect to access to jobs, healthcare, and educational opportunities as well as a 23 

variable representing distance to the CBD. Recalling our attractiveness equation (1) from above, 24 

Table 3 depicts the attractiveness values (in utils) of each TAZ. Opportunities are normalized by 25 

area of each TAZ and presented as density per square kilometer in this calculation. 26 

 27 
Table 3: Zone Attractiveness by TAZ 28 

TAZ 

# 
Zone Name 

Job 

Density 

(Jobs/km2) 

Health Facility 

Density 

(Building/km2) 

Education 

Density 

(School/km2) 

Distance 

to CBD 

(km) 

Zone 

Attractiveness 

(utils) 

1   Huruma 2,687 1.84 3.94 7.74 5.91 

2  Bahati 14,245 2.55 4.25 3.22 7.61 

3  Dandora 12,391 0.7 3.49 7.94 6.04 

4  Githurai 3,664 0.1 0.69 12.82 4.12 

5  Karen 41 0.04 0.23 25.90 0.01 

6  Kawangware 1,526 0.16 2.54 11.64 4.56 

7  Makadara 1,522 1.67 3.34 5.95 6.38 

8 
Eastleigh 

North 
26,509 2.04 4.42 3.72 7.77 

9 
Eastleigh 

South 
11,460 2.56 1.92 3.04 7.42 

10 Embakasi 78 0 0.08 6.11 6.02 

11 Highridge 711 0.34 1.57 3.95 6.81 
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12 Kahawa 680 0.19 0.23 17.00 2.73 

13 Kamukunji 32,126 2.75 2.47 0.95 8.62 

14 Kangemi 670 0.28 0.91 15.05 3.38 

15 Kariobangi 18,154 0.69 0.69 9.03 5.64 

16 
Kariobangi 

South 
10,096 0.69 1.38 8.25 5.73 

17 Kariokor 72,870 5.41 2.32 1.07 9.64 

18 Kasarani 82 0.08 0.2 9.78 4.91 

19 Kayole 4,267 0.67 2.97 7.62 5.89 

20 Kenyatta 3,633 1.34 2.68 4.31 6.87 

21 Kibera 175 0.24 0.58 7.36 5.68 

22 Kileleshwa 643 0.13 3.3 6.91 6.03 

23 Kilimani 5,685 0.24 4.38 7.80 5.98 

Table 3: Zone Attractiveness by TAZ continued. 

TAZ 

# 
Zone Name 

Job 

Density 

(Jobs/km2) 

Health Facility 

Density 

(Building/km2) 

Education 

Density 

(School/km2) 

Distance 

to CBD 

(km) 

Zone 

Attractiveness 

(utils) 

24 Kitisuru 3 0.15 0.08 14.83 3.37 

25 Korogocho 2,904 1.93 9.01 7.66 6.33 

26 Laini Saba 1,136 0.26 0.78 5.85 6.18 

27 Langa’ta 21 0.17 0.04 23.44 0.74 

28 Makongeni 35,521 0 1.07 4.07 7.61 

29 Maringo 18,683 1.96 5.1 4.84 7.29 

30 Mathare 1,106 1.06 1.23 4.04 6.78 

31 Mugumoini 17 0.07 0.48 20.43 1.69 

32 
Mukuru Kwa 

Njenga 
2,847 0.05 0.22 10.91 4.64 

33 Mukuru Nyayo 12,887 1.52 3.32 3.07 7.54 

34 Mutuini 110 0 0.61 16.85 2.79 

35 Nairobi West 162 0.06 0.79 6.76 5.88 

36 Ngara 13,447 0.53 10.61 1.41 8.60 

37 Njiru 7,171 0.17 2.13 9.88 5.21 

38 Parklands 559 0.21 1.38 3.57 6.91 

39 Pumwani 23,661 1.01 3.03 2.41 7.98 

40 Riruta 18 0.05 1.29 14.62 3.52 

41 Roysambu 246 0.05 2.42 11.24 4.64 

42 Ruai 2,894 0.3 0.97 13.46 3.92 

43 Ruaraka 50 0.05 0.22 5.34 6.26 

44 Serangombe 2,239 0.82 6.37 7.44 6.16 

45 Starehe 18,844 2.43 8.11 2.16 8.34 

46 Umoja 1,191 0.73 0.73 7.06 5.82 

47 
Uthiru-

Ruthimitu 
0.3 0.16 0.07 17.00 2.70 

48 
Viwandani & 

Waithaka 
26,309 0.15 0.62 7.20 6.39 
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TOTAL 395,942 38.6 109.26 412.70 271.06 

MEDIAN 2,463 0.27 1.38 7.4 6.0 

MEAN 8,249 0.8 2.3 8.60 5.65 

STD. DEV. 13,400 1.1 2.4 5.80 2.05 

BASE CASE FOR SCENARIOS 1 AND 2 ASSUMING INDEPENDENT ERROR TERMS 1 

Inputting pedestrian, matatu and driving skims, the relative attractiveness values, and then 2 

calibrating the aforementioned parameters using OLS regression and multi-criteria optimization 3 

with Excel’s solver function produces outputs of consumer surplus (in utils) after iterating through 4 

equations 2-6. Figure 5a and Figure 5b illustrate the relative consumer surplus values for the base 5 

case (existing conditions for travel in January 2017), for IHR and FHR individuals, assuming a 6 

zero error term. Zone 1, “Huruma”, is the most middle-of-the-pack zone in terms of the four 7 

independent variables shown above in Table 3 and was therefore selected as the ‘base’ zone for 8 

systematic utility calculation (4) and used as a benchmark for other zones.  9 

 10 

 11 
                                 (a)                                                                                       (b) 12 

Figure 5:– Base Case (a: Informal Slum Dweller Consumer Surplus; b: Resident of Formal Housing 13 
Consumer Surplus) 14 

SCENARIO 1 TRANSIT IMPROVEMENT WITH IID ERROR TERMS 15 

The first scenario aims to increase accessibility by lowering impedance on the roadway for the 16 

mode carrying the majority of travelers in Nairobi. This scenario models a matatu-prioritization 17 

program through which road space and infrastructure is devoted to accommodating faster and more 18 

efficient matatu services. Thus, this scenario models a 10% reduction in travel times for matatu 19 

users. These matatu-only lanes will also come at the expense of other roadway users (drivers) and 20 

thus auto drivers will see their travel times will increase by 20% (during peak commute times) due 21 

to the decreased capacity available for general traffic. These impedance improvements apply to 22 

both inter- and intrazonal travel. Figure 6a and Figure 6b depict the change in consumer surplus 23 

values (in $USD/day) for IHR and FHR users, respectively.  24 

 25 
 26 
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 1 
                                 (a)                                                                                       (b) 2 
Figure 6:– Change in CS (a: Informal Slum Dweller under Transit Improvement Scenario with No Error 3 

Terms; b: Informal Slum Dweller under Transit Improvement Scenario with No Error Terms) 4 

As evidenced by the larger prevalence of darker green colors in Figure 6b, it appears residents of 5 

formal housing benefit more than slum dwellers from Scenario 1’s transit improvements. It also 6 

appears residents of formal housing in TAZ 8, “Eastleigh North”, experience a negative change in 7 

relative accessibility as a result of the addition of matatu-only lanes. 8 

SCENARIO 2 LAND USE IMPROVEMENT WITH IID ERROR TERMS 9 

The second scenario aims to improve accessibility by modeling land use changes in the form of 10 

constructing schools, health centers, and employment opportunities. As such, this scenario goes 11 

about trying to improve accessibility without making any transportation improvements to the 12 

network at all. This scenario seeks to test marginals by adding one standard deviation of health 13 

centers and schools across all TAZs. This amounts to the construction of 962 health centers and 14 

2,158 new schools across Nairobi. Additionally, it is assumed the building of a new health center 15 

comes with 150 new jobs and a new school comes with 50 new jobs in TAZs where these additions 16 

were made.  and  depict the change in consumer surplus values (in $USD/day) for IHR and FHR 17 

users, respectively for Scenario 2.  18 

 19 

 20 
                                 (a)                                                                                       (b) 21 

Figure 7:– Change in CS (a: Informal Slum Dweller under Land Use Improvement Scenario with No 22 
Error Terms; b: Informal Slum Dweller under Land Use Improvement Scenario with No Error Terms) 23 

Compared to Scenario 1, Scenario 2 results display a higher prevalence of lighter greens and reds 24 

on Figure 7a and Figure 7b. This indicates overall changes in consumer surplus are more modest 25 
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than the transit-improvement scenario and are even slightly negative in several zones. One 1 

important distinction to point out, though, is IHR in aggregate tend to reap more accessibility 2 

benefits than FHR in Scenario 2. Overall, it also appears zones peripheral to the CBD tend to 3 

experience more positive changes in CS as a result of the LUI scenario, a trend that does not appear 4 

so much in the TI scenario. 5 

BASE CASE SCENARIOS 3 & 4 WITH CORRELATED ERROR TERMS 6 

The following scenarios incorporate a randomly generated epsilon error term into the equation for 7 

indirect utility (4). This εi term varies by mode and by destination and is approximated as a random 8 

draw from the GEV1 distribution described in the Methods section above. This term helps us 9 

capture unobserved (and unmeasurable) utility associated with the scenarios described above. With 10 

any change in the urban landscape, there will be winners and losers. The Monte Carlo simulation 11 

of this error term should help to provide insight into a distribution of individual winners and losers 12 

who may or may not appear through the conventional accessibility analysis logsum calculations 13 

presented in the previous two scenarios.  14 

Figure 8a and Figure 8b display the base CS values (in utils/day) for IHR and FHR, respectively. 15 

Again, since utils are not easily comparable across individuals, these values should not be 16 

compared with the utils presented in the base case maps for Scenarios 1 and 2. These values simply 17 

provide the base line for the comparisons (change in CS) with the results for Scenarios 3 and 4. 18 

 19 
                                 (a)                                                                                       (b) 20 

Figure 8:– Base Case w/ Gumbel Error Term (a: Resident of Formal Housing Consumer Surplus; b: 21 
Resident of Formal Housing Consumer Surplus) 22 

SCENARIO 3 TRANSIT IMPROVEMENT WITH CORRELATED ERROR TERMS 24 

Scenario 3 mimics Scenario 1 presented above with decreased matatu network travel times and 25 

increased travel times for the driving mode. Figure 9a and Figure 9b depict the change in consumer 26 

surplus experienced based on the mean value of 10,000 random individual’s preferences.  27 
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 1 

 2 
                                 (a)                                                                                       (b) 3 
Figure 9:– Change in CS for (a: Resident of Formal Housing under Transit Improvement Scenario with 4 
Gumbel Error Terms; b: Resident of Formal Housing under Transit Improvement Scenario with Gumbel 5 

Error Terms) 6 

The darkest shade of green in these maps represents a category that only showed up in Zone 5 in 7 

the results for Scenarios 1 and 2, which represents an individual change in consumer surplus that 8 

exceeds $1USD/day (~equal to 4 hours of travel time for IHR and 1.4 hours of travel time for 9 

FHR). Overall, we can see the higher prevalence of darker shades of green in Figure 9a compared 10 

to Figure 9b indicates FHR reap more monetary benefit from this scenario when compared to IHR. 11 

SCENARIO 4 LAND USE IMPROVEMENT WITH CORRELATED ERROR TERMS 12 

Scenario 4 mimics Scenario 2 presented above by constructing various opportunities across 13 

Nairobi’s TAZs. Figure 10a and Figure 10b depict the change in consumer surplus experienced 14 

based on the mean value of 10,000 random individual preference sets.  15 

 16 

 17 
                                 (a)                                                                                       (b) 18 

Figure 10:– Change in CS for (a: Informal Slum Dweller under Land Use Improvement Scenario with 19 
Gumbel Error Terms; b: Resident of Formal Housing under Scenario 4) 20 

Again, compared to Scenario 3, Scenario 4 results display a higher prevalence of lighter greens on 21 

Figure 10a and Figure 10b thereby indicating overall changes in consumer surplus are more modest 22 

for the land use improvement than the transit-improvement scenario. One important distinction to 23 

point out, though, is IHR in nearly any TAZ (with the exception of TAZ #5) would tend to reap 24 

more accessibility benefits than residents of formal housing developments in the land-use 25 

improvement scenario compared to the transit improvement alternative. Results of Scenario 4 do 26 
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not differ substantially from the values presented in Scenario 2 without correlated epsilons. Again, 1 

FHR are more likely to perceive a loss of accessibility; however, the mean value of this distribution 2 

of 10,000 simulations (Figure 10a & Figure 10b) shows no TAZ with a negative ΔCS for IHR or 3 

FHR. 4 

COMPARING SCENARIOS 5 

We can aggregate the values presented in the above figures by multiplying the mean change in CS 6 

experienced by a user in a given zone by the number of residents in that zone: These results are 7 

presented in Table 4. Looking at these results, firstly, the TI scenario vastly outperforms the LUI 8 

scenario with or without correlated epsilons. Secondly, the mean values of the 10,000 sample 9 

Monte Carlo Simulation incorporating the Gumbel error term provide significantly higher values 10 

of ΔCS for both IHR and FHR. Additionally, FHR benefit more than IHR in all scenarios except 11 

for the LUI scenario without correlated epsilons (Scenario 2).  12 

 13 

𝑇𝑜𝑡𝑎𝑙 𝛥𝐶𝑆𝑖,𝑑 = ∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖,𝑑 ∗𝑑𝜖𝐷 𝛥𝐶𝑆𝑖,𝑑     (8) 14 

 15 
Table 4: Aggregated Citywide Change in CS by User Type by Scenario 16 

Scenario Type Total City ΔCS – for IHR Total City ΔCS – for FHR 

1) TI no correlated 

epsilons 
$123,035 $629,980 

2) LUI no 

correlated epsilons 
$36,755 $87,445 

3) TI w/ correlated 

epsilons 
$538,491 $1,656,082 

4) LUI w/ 

correlated epsilons 
$23,935 $90,020 

 17 

DISCUSSION 20 

Overall, the results display four distinct trends: 1) the TI scenario vastly outperforms the LUI 21 

scenario with or without correlated epsilons in aggregate and for 47 out of 48 zones for both IHR 22 

and FHR, 2) the mean values of the 10,000 sample Monte Carlo Simulation incorporating the 23 

Gumbel error term provide significantly higher values of ΔCS for both IHR and FHR, but more 24 

importantly provide more insight into the potential variation of these values at an individualized 25 

level that can be helpful for policy design, 3) peripheral zones tend to benefit more from the LUI 26 

than TI enhancements without correlated epsilons (Scenario 2), but this finding is not apparent 27 

when including the Gumbel error term (Scenario 4), and 4) in aggregate, FHR benefit more than 28 

IHR in all scenarios except for the LUI scenario without correlated epsilons (Scenario 2). These 29 

aggregations do hide some nuances that are important to be aware of. To investigate this, we will 30 

take a deeper dive into two very different TAZs and their respective results. 31 

ZONE 5 KAREN (WEALTHIER ZONE) 32 

Comparing the aggregated results of ΔCS across scenarios overlooks important pieces of data. For 33 

example, $50,328.74 of the $90k in ΔCS for FHR  can be attributed to a single zone – “Karen” 34 

(Zone 5) – displaying a ΔCS/capita value of $3.76/day when $0.05/day was the largest achieved 35 

by any other zone in Scenario 4. Karen is a mostly affluent peripheral community to Nairobi with 36 
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a population of 13,403 FHR and just 238 IHR. This zone receives the lowest zone attractiveness 1 

level of any zone, despite its massive size – 56.9 square kilometers. Karen is the only zone in this 2 

analysis lacking a matatu stop within its borders and thus we see more positive changes in ΔCS in 3 

the LUI than the TI scenarios, which opposes the trend for most every other TAZ. Karen sports 4 

extremely low levels of employment, health care and education density compared to the rest of 5 

Nairobi’s TAZs. Increasing these values by 1 SD in the LUI scenarios imparts huge accessibility 6 

benefits to the TAZ alongside the modeled construction of 60 healthcare facilities, 136 schools, 7 

and the addition of over 15,000 jobs. While the magnitude of these benefits are more pronounced 8 

in aggregate for FHR in Karen, the area’s small share of IHR also benefit significantly according 9 

to the models for both the TI ($2.21/day) and LUI ($0.54/day) scenarios, with most other TAZs 10 

hovering around $0.01 to $0.05/.  11 

Though the results of the scenarios modeled with and without correlated Gumbel error terms 13 

display similar results, the distribution of potential ΔCS values gives more insight into the potential 14 

winners and losers when modeling each scenario. Having an idea of where this variation exists can 15 

be very helpful for impactful policy design that can help to target underserved areas and achieve 16 

more equitable accessibility outcomes. For example, in Zone 5, “Karen” (wealthier zone), the TI 17 

Scenario 3 resulted in an average $0.05/day ΔCS value for FHR, but with an SD of +/-$1.75, 18 

indicating many FHR are likely to experience  some disbenefits from this scenario, presumably 19 

due to the increase in auto-mode impedance as a result of the scenario. Meanwhile, under the LUI 20 

Scenario 4, IHR in Zone 5, “Karen” (wealthier zone) experience the highest expected ΔCS value 21 

of any zone ($0.54/day), but with an SD of $1.30. Nearly 70% of the 10,000 simulated values 22 

occur between -$0.02 and $0.02. As is true in general: the average or expected value can be quite 23 

misleading, thanks to great variation in actual values.  24 

ZONE 6 KAWANGWARE (LOW-INCOME ZONE) 25 

To provide a counter example to Zone 5, the low-income Zone 6 (“Kawangware”) has 111,057 26 

IHR and just 2,069 FHR. Despite being more centrally located (but still several kilometers from 27 

the CBD), this area features below-average access to employment, schools, and health care 28 

opportunities, when compared to the other 48 TAZs. Table 7 below displays the results for Zone 29 

6, “Kawangware” (low income zone). As one can see again, the TI scenarios vastly outperform 30 

the LUI scenarios for both user groups. Zone 6, “Kawangware” (low income zone) is one of many 31 

examples in this study whereby the LUI scenarios benefit IHR more so than FHR. Still, this is only 32 

by a very modest margin – a few hundred dollars’ worth of benefit spread across over 100,000 33 

IHR each day, but it is still a positive finding. More analysis should be done in order to determine 34 

what elements of a TAZ influence it to have a greater ΔCS for IHR versus FHR in order to design 35 

policies and target investments to improve these outcomes. 36 

POTENTIAL POLICY SOLUTIONS 38 

Several places in the developing world have enacted social housing programs and transit 39 

formalization programs aimed at increasing accessibility and engendering economic development 40 

and overall community welfare. Still, political leadership can be reticent to champion projects 41 

offering better services to informal (and usually illegal) slum settlements. In Bogota, Colombia, a 42 

project called Metrovivienda combined speculative land-banking with poverty alleviation 43 

alongside the build out of the Transmilenio BRT System. Starting in 1999, the organization 44 

purchased cheap agricultural land in close proximity to planned BRT terminuses and later on sold 45 

these plots to developers to construct affordable housing units targeted at clandestinos, or informal 46 
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slum dwellers (Hidalgo and Huizenga, 2013). The transit agency also provides free feeder bus 1 

services to these areas and surrounding informal settlements to afford peripheral poor urban 2 

residents of Bogota access to the BRT trunk lines (Ferro, 2018). The solution is not perfect – the 3 

affordable housing units only cater to the top tier of those living in informal settlements and the 4 

3,200 peso ($1.39 USD) round trip bus fare to access the CBD is inhibitory to many peripheral 5 

residents – but it’s a positive start (Cervero, 2005).  6 

Nothing of the sort has gone past a preliminary planning phase in Nairobi to date. The general 7 

public sentiment reflects more regulation, reliability and accountability is better for the transit 8 

system (Behrens et al., 2017; Salon and Aligula, 2012). The government has made significant 9 

strides to better enact and enforce ordinances to bring more structure to the matatu system (Behrens 10 

et al., 2017); this is apparent in that the system was able to be coherently explained in a GTFS feed 11 

and map by a group of researchers (Williams et al., 2015). The greatest impact will likely come 12 

with a multi-pronged accessibility improvement approach implementing land-use improvements 13 

in some places as well as improving the transportation network to improve accessibility from the 14 

transportation side as well. 15 

CONCLUSION 16 

Much data was generated as a result of this study, and many nuanced stories emerge for the two 17 

access improvement policies (transit vs. land use changes). This work highlights the fact that 18 

blanket policies affect everyone differently. Taking the extra effort to simulate and correlate 19 

before-after Gumbel error terms (rather than assuming independence between the two logsum 20 

terms) can help planners and policymakers tailor system design and decision-making more 21 

effectively than presuming the before and after populations (and the unobserved components of 22 

their choice alternatives) are independent.  23 

Overall, this analysis confirms the original hypothesis: informal slum settlements in Nairobi tend 24 

to experience poorer access to basic daily needs - like education, health care and employment – 25 

than those living in formal housing. More importantly, under both access- improvement scenarios, 26 

residents of formal housing tend to benefit more. This benefits gap (between the informally and 27 

formally housed) was more pronounced (with greater CS changes) for the transit improvement 28 

(TI) scenarios, for both the types of residents. The results differ substantially by neighborhood, 29 

however. Some peripheral zones benefit more from land use improvements (LUI) than TI, despite 30 

the overall trend of TI outperforming LUI. Nairobi is a large region, with over 4 million people, 31 

and this data should be leveraged to analyze local conditions on a place by place basis. Policy 32 

decisions should incorporate public feedback from members of each locality in order to design the 33 

best policies to equitably benefit the entire city. One cannot design and operate an equitable, 34 

efficient, and effective transportation system without the input of those using this urban system 35 

day in and day out.  36 
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