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ABSTRACT 

Sharing vehicles and rides is set to become the norm with public use of fully automated self-

driving vehicles in the near future, assuming pandemic-related health concerns fade away. 

Dynamic ride-sharing (DRS) or pooling of trips can significantly improve system 

performance by lowering unoccupied miles (empty VMT) and increasing average vehicle 

occupancy (AVO). With several cities looking to promote efficient curb space use, especially 

with the use of pickup and drop-off locations (PUDOs), this study explores the advantages 

of PUDOs in improving DRS and eliminating negative externalities that arise from queues 

forming at these PUDOs. A scenario analysis varying PUDO spacing and trip-demand 

density is undertaken for the case of Bloomington, Illinois using the agent-based simulator 

POLARIS. Results reveal that both PUDO spacing and tip-demand density help increase AVO 

(by up to 0.25, on average) and decrease empty VMT (by up to 4%). A quarter-mile PUDO 

spacing is recommended in downtown regions to keep walking trips short because longer 

walking trips may adversely impact demand. It is also important to prepare for higher trip-

densities forming queues at PUDOs that may in turn add congestion without dedicated 

infrastructure. 

Keywords: Shared autonomous vehicles, stop aggregation, dynamic ride-sharing, trip densities. 

BACKGROUND 

Transportation Network Companies (TNCs) like Uber (around the world), Lyft (in the U.S.), DiDi 

(in China) and Ola (in India, U.K. and Australia) have popularized shared mobility by providing 

cost-effective rides around the world. Pooled or shared rides that are matched real-time and en 

route further reduce operator costs by increasing average vehicle occupancy (by passengers). TNC 

services are helping lower personal vehicle registrations per capita across the US (Ward et al., 

2019), and more dramatic reductions are expected (Fagnant and Kockelman, 2015; Quarles et al., 

2019; Kim et al., 2020). Fully-automated or “autonomous” vehicles (AVs) are expected to lower 

TNC travel costs (Chen et al., 2016; Loeb and Kockelman, 2019; Becker et al., 2020). 
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Consequently, operating costs are expected to be comparable to the bundled cost of owning and 

operating a personal vehicle and will lead to larger mode splits toward shared vehicles. Huang et 

al. (2019) estimate an increase in VMT of about 40% from demand shifts once SAVs are available, 

after accounting for induced mode use. High reliance on shared AVs (SAVs) may have some 

negative effects. Without ride-pooling or dynamic ride-sharing (DRS) among strangers, SAV use 

is likely to increase congestion from added, unoccupied travel or empty vehicle-miles traveled 

(eVMT). Another negative consequence is curbside congestion from many SAV pickups and drop-

offs on busy downtown blocks. 

Research on the use of single-occupant SAVs from across the world shows added eVMT in the 

range of 10-30% (Spieser et al., 2014; Fagnant et al., 2015; Bischoff and Maciejewski, 2016; 

Simoni et al., 2019; Gurumurthy et al., 2020). DRS is a proven strategy to manage rising VMT 

given that users are willing to share their ride (Agatz et al., 2011). Bilali et al. (2019) argue that 

detour time is important when it comes to a fleet’s shareability. However, Lavieri and Bhat (2019) 

show from their stated preference survey that the detour time or added delay is the primary 

detriment to willingness to share a ride. Fortunately, Hyland and Mahmassani’s (2020) 

optimization of SAV operations with DRS illustrate how even slight flexibility in detours and 

delays can prove very useful at the network level. Various survey results suggest that travelers will 

be more willing to share rides in the future (Krueger et al., 2016; Gurumurthy and Kockelman, 

2020; Stoiber et al., 2019).  

Simulation studies have quantified the usefulness of DRS under different settings. Case studies in 

Austin, Texas have shown that a decrease in VMT can be observed with DRS when the trip 

densities are high (Fagnant and Kockelman, 2018), but tolling may be critical while also 

considering travel alternatives available to road users (Gurumurthy et al., 2019). Dense settings 

such as New York City (Alonso-Mora et al., 2017) and Chengdu, China (Tu et al., 2019) especially 

benefit from DRS. Alonso-Mora et al. (2017) used the NYC taxi dataset to show that optimized 

DRS can serve these trips with one-sixth the fleet size and low response times. Similarly, Tu et 

al.’s (2019) DRS algorithm improved shareability from 7% to nearly 90% along with time savings 

of at least 10%. Diversifying the fleet to include more seats is another option that could work like 

a deviation from fixed-route transit. Martinez and Viegas (2017) achieved a 30% reduction in 

VMT by using a mixture of 4-, 8- and 16- seater SAVs in their simulation for Lisbon, Portugal. 

VMT savings largely stemmed from high average vehicle occupancy (AVO) for the fleet (greater 

than 4.0 with the 16-seater vehicles). Assuming that travelers do share their rides, fleet efficiency 

in catering to diverse demand and land use profiles is still a concern. Yan et al.’s (2020) 

Minneapolis-Saint Paul simulations show that an increase in trip density improves DRS, similar 

to Fagnant and Kockelman’s (2018) results that lowered VMT thanks to higher demand for DRS. 

A structured approach to resolving the effect of trip density is absent in literature so far and is one 

of the objectives of this paper.  

Curbside congestion has not been a significant problem in the past. Regulated road access modes 

at large hubs such as railway stations and airports ensured that there was controlled use of curb 

space. More recently, the disruption caused by TNCs was most noticeable at airport curbsides 

around the world and many airports have now moved to using dedicated locations for TNCs. Dense 

cities like New York City and Washington, DC are facing this issue already with TNC vehicles 

crowding busy street curbsides, leading to unaccounted negative externalities from traffic hold up. 

Curbside congestion may be alleviated by dedicating specific streets or areas as pickup-and-drop-
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off (PUDO) zones. Washington, DC piloted the implementation of PUDO zones† for TNCs as 

early as 2017 and has since expanded its pilot program. Boston recently followed suit in 2020. 

Although these programs have been implemented, the network-wide benefits have not yet been 

quantified and there is little information on how they have affected TNC operation. The 

International Transport Forum conducted several microsimulations on the interaction of curb space 

and curb use‡, revealing insights into how cities must take over curb space after careful evaluation 

to make streets safer, and curbs more useful. Increased demand for SAVs in the future coupled 

with issues like eVMT and curbside congestion warrants a thorough study of the use of PUDO 

zones, and their influence on SAV operations. 

In this study, an agent-based model called POLARIS (Auld et al., 2016) is used to study SAV 

operations and network benefits from the use of PUDO zones to aggregate trip requests. A case 

study of Bloomington, Illinois is conducted by varying trip demand, PUDO spacing and fleet 

characteristics across several simulations. The next section discusses the methodology followed 

for the simulations, the algorithm behind deciding PUDO spacing, and an overview of fleet 

characteristics that are deemed essential to SAV operation. Results are tabulated and discussed 

next, and the paper concludes with inferences gleaned from this study.   

MODELING IN POLARIS 

A large-scale agent-based modeling suite called POLARIS (Auld et al., 2016) is used in this study. 

POLARIS relies on transportation demand and supply models to synthesize and simulate person 

and freight travel across large regions such as the Chicago Metropolitan Area. Demand models 

include the population synthesizer that is sourced from ADAPTS (Auld and Mohammadian, 2009, 

2012), and several mode and destination choice models. A time-dependent dynamic traffic 

assignment router (Verbas et al., 2018) is used to equilibrate traffic across the network to obtain a 

dynamic user equilibrium.  

SAV Operations 

An existing module for SAVs (Gurumurthy et al., 2020) was extended in this paper to include 

DRS and stop-based aggregation of incoming requests. The module provides functionality for 

simulating an on-demand service that operates similar to present-day TNCs. To facilitate 

computation, a zone-based assignment algorithm is adopted similar to Bischoff and Maciejewski 

(2016). POLARIS maintains a running list of idle (zero occupants and stationary) and in-use 

(moving or serving a request) vehicles by traffic analysis zones (TAZs). Requests are assigned 

based on the originating zone to an SAV in that zone or in a set of neighboring zones that are 

constructed as a function of maximum allowable response time. Repositioning is also modeled 

based on these zone lists with a linear program to minimize unoccupied travel (de Souza et al., 

2020). 

The DRS algorithm implemented here is a heuristic to facilitate better use of empty seats in SAVs 

while limiting the delay experienced by each traveler in the SAV. The heuristic attempts to match 

incoming requests to available vehicles that are either idling or performing a pickup, drop-off, or 

repositioning trip in the direction of the incoming request’s destination. This directionality is 

quantified as the angle between the lines joining the current and proposed trips based on available 

 

† https://ddot.dc.gov/release/mayor-bowser-and-ddot-announce-pick-updrop-zone-pilot-program-expansion 

‡ https://www.itf-oecd.org/shared-use-city-managing-curb-0 

https://ddot.dc.gov/release/mayor-bowser-and-ddot-announce-pick-updrop-zone-pilot-program-expansion
https://www.itf-oecd.org/shared-use-city-managing-curb-0
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coordinates. This angle is a succinct proxy for the extent of detours that may be allowed while 

maximizing pooled trips, and a threshold is provided as an input to the model. Additionally, each 

traveler’s approximate delay (based on the estimated initial routing time without detours) is 

measured throughout their trip to avoid new travelers from being added to the SAV when any 

traveler experiences a delay beyond the predefined absolute delay or the predefined percentage 

delay while en route. Both absolute and percentage delays are important since short trips are 

sensitive to percentage delays while longer trips are sensitive to absolute delays. 

Stop-Based Pickups and Dropoffs (PUDOs) 

PUDO locations have been implemented here as a subset of locations used by all modes of travel 

in POLARIS. This simplification (as compared to designating specific streets or curb spaces for 

TNC pickups and drop-offs) should not affect aggregate or regional fleet analysis. PUDO zones 

are sampled using a hierarchical clustering algorithm for all possible origins and destinations in 

the software R. Hierarchical clustering creates a dendogram (i.e., a tree structure) of clusters with 

each location belonging to its own cluster downstream (at the base of the tree’s root system). 

Moving upwards, locations are clustered based on proximity. With this type of agglomerative 

clustering, a predefined stop spacing 𝑑𝑠 is used to obtain the required set of stops that are no more 

than 𝑑𝑠 miles apart.   

DATASET AND SCENARIOS 

In this paper, SAVs are simulated in the Bloomington region of the U.S. state of Illinois, to 

understand the effectiveness of aggregating SAV trips spatially by PUDO zones in boosting DRS. 

Bloomington is a small region, encompassing 74 square miles and home to about 120,000 

residents. Its network has just 4,000 links and 2,500 nodes, but the POLARIS activity-based model 

of tours and travel demand is quite behaviorally flexible and realistic, enabling certain behavioral 

choices that other SAV simulations lack like destination choice. The in-house population 

synthesizer also helps translate econometric models to agent-based input data. Trip demand across 

the Bloomington region can be conveniently scaled up or down in POLARIS. Yan et al.’s (2020)  

Minneapolis-Saint Paul region (and Twin Cities only) simulations using MATSim as the base code 

suggest that a large increase in trip density is needed to observe about 15% more shared trips. With 

this motivation, Bloomington’s 100% demand scenario was scaled up by factors of 5 and 25 (500% 

and 2500%) in order to better detect the impact of SAV-trip-request density on DRS operations 

and AVOs (AVOs). 

Previous studies have established that DRS is also proportional to fleet size and availability (i.e., 

number of people having access to one SAV), and is also a function of response time and maximum 

allowable delay (Gurumurthy et al., 2019; Yan et al., 2020). In order to separate these effects from 

that of using PUDOs, all permutations of fleet size, response time and allowable delay are used as 

separate scenarios. Additionally, the direct effect of having to walk longer distances to a PUDO 

zone is also tested. Table 1 highlights all possible values chosen for these variables. 

Table 1 Input Values Simulated as Separate Future Scenarios 

Variable Values 

Person-Trip Demand Levels Simulated 1x, 5x, 25x all person-trips 

Fleet Size About 70 trips/day per SAV 

Response Time Threshold 10 minutes 
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Allowable Absolute Delay 10 min (maximum) 

Allowable Percentage Delay 15% of direct travel time 

Pickup/Dropoff Location Spacings 0 mi, 0.25 mi & 0.5 mi 

 

Figure 1 shows the Bloomington region with all locations available as origins and destinations, 

and the two sets of stops used in this analysis.  

 

Figure 1 Pickup and Dropoff Location Locations Chosen across Bloomington, Illinois in the 

0.25- and 0.5-mile PUDO Spacing Scenarios 

RESULTS 

About 15 scenarios were simulated in this study in an attempt to isolate fleet operation effects that 

are of interest. The base case for Bloomington comprised of three simulations with varying trip 

densities without offering DRS. Base case results highlight the small share of trips for SAVs and 

transit at about 7% and 4%, respectively, in car-centric Bloomington. Fleet size was scaled up 

proportional to the demand simulated to retain constant mode splits, and each SAV, on average, 

made 65 trips per day, traveling about 430 mi per SAV per day. The heuristic employed minimized 

response times to about 5 min, with a linear decreasing trend as trip density increased 

exponentially. %eVMT also fell by 2.5 and then 5 percentage points in the 5x and 25x demand-

density scenarios (relative to the starting eVMT value of 34%). 

Employing DRS increased SAV mode shares by 1% and marginally lowered system VMT. There 

was a 2% reduction in SAV VMT without DRS and with current Bloomington person-trip 

densities. Promise was shown at higher trip densities with a reduction of about 8%. All scenarios 

apart from the base case mentioned above maintained the SAV availability (SAV vehicles 

proportional to SAV trips) with each SAV serving about 70 trips per SAV per day. Figure 2 shows 

the mode shares observed across all scenarios for Bloomington when DRS was used. Ideally, the 

impact of walking to a PUDO zone is likely to affect traveler’s willingness to choose SAVs, but 

this was not factored into the mode choice. Compared to the base case without DRS, percent eVMT 

dropped significantly, by about 15%, thanks to bundling rides together, and the greater availability 

of SAVs to serve requests. Overall response times rose marginally when using DRS, likely owing 

to having to detour from an existing trip. But those response times fall with increasing trip density.  
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Figure 2 Trip Modal Shares across Scenarios Simulated for Bloomington 

Figure 3 shows the comparison of AVO and percent eVMT as a function of trip density and 

assumed PUDO zone spacing. Even with trip density as currently observed, a large AVO of 2.0 is 

attained, and this increases with increases in trip density. The choice of PUDO spacing also has a 

similar effect on AVO. It is important to keep in mind that travelers may be unwilling to walk the 

extra mile, so the AVO increase estimated here is reliant on travelers’ willingness to walk to a 

PUDO location, as well as to share a ride. Greater eVMT reductions are observed as trip density 

increases, since the probability of finding a traveler increases throughout the region. This decrease 

is further aided by the use of PUDO locations. Although the magnitude of difference is 1 or 2 

percent points, the 1.3M trips served under 25x trip density see considerable benefit in congestion 

mitigation. SAVs are able to serve more trips with a smaller impact on congestion with DRS and 

the use of PUDO zones.  
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Figure 3 Effect of demand and stops on percent eVMT and AVO 

Increased trip densities of 5x and 25x the current density improve certain fleet metrics but can add 

congestion on links with these PUDOs. Although queues forming because of aggregating pickup 

trips is not modeled into POLARIS yet, this queue-forming behavior can be seen from average trip 

clustering in the different times of day. Figure 4 compares the 15-min queues forming at PUDOs 

in the 5x and 25x trip density scenarios when PUDO spacing was 0.25 mi. Passenger queues 

roughly translating to the 2.0 AVO implies that at least 50% of queue length in SAVs would be 

arriving at the PUDOs in a given 15-min time period. Infrastructure to sustain about 10 SAVs 

arriving every minute at PUDO zones does not currently exist but MPOs need to be planning for 

such situations in a future of SAVs. These queues may outweigh congestion savings from eVMT 

reduction. PUDO spacing greater than 0.5 mi may create bottlenecks. Careful PUDO location 

planning will be required for current demand and dedicated infrastructure will be a necessity going 

forward. 
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Figure 4 Queues forming in the AM (6 – 10am), MD (10am – 4pm), and PM (4pm – 8pm) for 

5x and 25x Density and 0.25 mi Spacing 

CONCLUSIONS 

The use of DRS in SAVs is important to lower their negative impacts on the network. This study 

focused on how trip density and PUDO zone spacing impact DRS and fleet operation. About 15 
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scenario simulations reveal that the use of PUDO zones do contribute to improving trip matching, 

and, thereby, AVO. The magnitude of improvement in AVO is low but this is also associated with 

SAV VMT savings that can result in considerable time savings. Further, regions with higher trip 

densities stand to benefit more, over and above the positive effect of increasing trip demand. 

System VMT savings purely from using PUDO zones are less than 1%, which lowers the benefits 

of an increased AVO marginally. Larger mode shares of SAVs may operate more freely in the 

network and enjoy greater benefits but this effect was purposefully isolated to focus on PUDO 

zones.   

The use of PUDO zones is shown to be useful in aiding DRS for different regions. However, some 

limitations of this study are important to resolve for better quantification of results. First, the 

PUDO zones are identified based on physical location without reflecting the distribution of trip 

origins and destinations, since they are highly correlated with spacing decisions. Future work can 

try to incorporate the use of sophisticated algorithms like those used by Wan et al. (2015) to 

identify PUDO hotspots. Walking time is not yet endogenous to mode choice in this model, which 

may lower SAV demand. There also needs to be a limit on the number of vehicles that 

simultaneously use a PUDO zone, due to physical space restrictions in the real world. PUDOs 

without dedicated infrastructure may not be able to serve more than 5 trips in a 15-min interval 

without adversely impacting surrounding travel times. 
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