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 2 

ABSTRACT  1 

Smartphone cameras and computer vision (CV) hold significant promise in assisting public 2 

agencies with enforcing traffic laws and enhancing road safety. This paper documents automated 3 

enforcement applications for speeding, illegal parking, red-light violations, and reckless driving 4 

around the world using stationary and non-stationary cameras. While fixed-camera surveillance 5 

enables effective enforcement in specific locations, violations continue to occur away from said 6 

locations. In this research, CV algorithms are developed with open-source methods to estimate 7 

vehicle speeds and identify license plates from mobile phone recordings, allowing for the 8 

identification of speed violators from any location. The algorithms successfully identified 47% of 9 

license plate characters in the UFPR-ALPR dataset and accurately estimated vehicle speeds in the 10 

VS13 public dataset. Improvements are possible by fine-tuning the plate-detection and super-11 

resolution models, or by gathering larger datasets for applicable areas (like known speeds and 12 

plates). Notably, existing open-source vehicle identification models were not sufficiently accurate 13 

for current US vehicle fleets and require updated data to enhance performance. Overall, this paper 14 

serves as a foundational exploration, emphasizing the need for further research to transform the 15 

potential of smartphone-based CV technologies into practical tools for vital information on traffic 16 

violations, to improve roadway safety. 17 

 18 
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 21 

BACKGROUND 22 

Speeding is a major contributor to the amount, severity, and cost of crashes, with previous evidence 23 

showing that a 5% cut in average speed can result in a 30% reduction in fatal road crashes (WHO 24 

2017). Speeding was a factor in 29% of all US traffic deaths in 2021, killing (on average) 33 people 25 

per day (National Safety Council 2022; Macias et al. 2023). Excessive speeding can be controlled, 26 

and thus lives saved, through the use of speed limit laws, active enforcement, road design 27 

strategies, speed limiters/governors, speed enforcement cameras, and intelligent speed adaptation 28 

(Hirst et al. 2005; Sadeghi et al. 2016). While active enforcement serves to discourage speeding, 29 

policing can also result in making the road more dangerous in the event of a police chase, though 30 

the majority of accidents occur without police involvement (Rivara and Mack, 2004; Today, 2015). 31 

Comparatively, the use of automated enforcement is a safe and cost-effective approach. According 32 

to Li et al. (2018), over the lifetime of an average NYC resident, the existing 140-speed cameras 33 

increase Quality-Adjusted Life Years (QALYs) by 0.00044 units (95% credible interval (CrI) 34 

0.00027 to 0.00073) and reduce costs by US $70 (95% CrI US $21 to US $131) compared with no 35 

speed cameras. Automated speed enforcement (ASE) around the world currently relies on radar 36 

devices for detecting speeding vehicles and still camera shots for reading license plates to record 37 

traffic violations and issue warnings and fines to vehicle owners (GHSA, n.d.).  38 
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Crash counts were found to fall significantly after ASE implementation in the United States, 1 

Canada, Australia, Hong Kong, Finland, and many more nations (Wilson et al., 2010; Miller et al., 2 

2016). Commonly, ASE is implemented through the use of single-camera systems or multi-camera 3 

systems. Single-camera systems are more common, but they face issues when drivers who are 4 

aware of the camera’s location slow down before reaching the camera, only to speed up again after 5 

passing the camera, a so-called “kangaroo effect” (Elvik 1997). To avoid this issue, multi-camera 6 

systems, like some found in the UK and Australia, are designed with two or more cameras to 7 

operate over long, stop-free stretches of highway and then compute each vehicle’s average speed 8 

between the cameras (Delaney et al. 2005; Owen et al. 2016; Bates et al. 2016).  However, such 9 

systems run into issues where a vehicle's exact or momentary speed is unknown, so speeders go 10 

undetected if their average speed is below the camera’s limit. 11 

Though ASE has been proven to reduce injury and save lives, speed cameras are still largely 12 

unpopular. Many methods have been proposed to reframe how cameras are advertised to the public 13 

to make such surveillance and enforcement methods more acceptable, but some people remain 14 

skeptical of their use or are worried about privacy protections (Feldstein 2019; Ralph et al. 2022a 15 

& 2022b). US police ticketing frequency has fallen over time in many locations due to fewer 16 

officers, implementation of automated enforcement, and increases in highway speed limits (Tuttle, 17 

2015; Logan, 2021). Another technology to restrict speed is speed limiters or governors, which are 18 

widely used to impose maximum speed limitations on heavy trucks in various countries. For 19 

example, Canada's speed governors limit trucks to 65 mph, while Australia’s trucks are restricted 20 

to 65 mph or less - depending on the region (Canada 2013; Buchs 2022). The USA also plans to 21 

require speed governors for trucks, with a proposed limit of 70 or 75 mph (Gallagher, 2022). 22 

Automated Enforcement Around the World 23 

Automated vehicle identification for traffic law enforcement is useful in many settings, including 24 

the automatic collection of tolls and fees, identification of vehicles of interest (illegally parked 25 

vehicles, stolen vehicles, loud vehicles, and high emitters/dirty vehicles), and enforcement of other 26 

transportation-related laws (i.e., speed limits or red-light compliance). Automated parking 27 

enforcement using license plate recognition systems, in contrast to crash reduction, offers more 28 

efficient identification of parking violations than time-consuming manual checks of parked 29 

vehicles for valid parking permits. For instance, in Montgomery, a Texas county,  a single police 30 

officer scanned 48,101 plates using such a system, resulting in 255 traffic citations, 26 suspended 31 

licenses, and other violations in 96 hours of use over 27 days (Wood, 2021). Automated cameras 32 

and CV techniques using license plate recognition systems are being used for parking enforcement 33 

in various locations worldwide, including Amsterdam, Melbourne, Texas, and California. These 34 

systems can be installed on enforcement officers’ vehicles or at parking lot entrances and exits to 35 

scan and identify vehicles violating parking regulations. Once a vehicle is found in violation, the 36 

system can alert parking enforcement officers or automatically issue citations. These technologies 37 

can potentially increase compliance with parking regulations while reducing the need for manual 38 

patrols (Van Den Berg, 2014; Dinh and Kim, 2016; Wood, 2021; Kadah, 2022). Overall, 39 
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automated parking enforcement using license plate recognition systems is a promising solution for 1 

efficient and effective parking enforcement, with potential benefits in reducing manual patrols and 2 

increasing compliance with parking regulations (Parking Network, 2021; Mulloy, 2023). 3 

Furthermore, excessive noise and emissions are significant contributors to health problems such 4 

as sleep disturbance and cardiovascular and psychophysiological issues. Vehicles, particularly 5 

motorcycles, are a major source of these problems (Perna et al. 2021; Timperley 2022). To address 6 

this issue, some cities like Paris and New York have implemented automated noise enforcement 7 

using noise radars to detect excess noise and cameras to capture the license plate of the offending 8 

vehicle, allowing fines to be issued to the vehicle owner (Esteban 2019; The Official Website of 9 

the City of New York 2022). In addition, various tools can be used to identify high-emission 10 

vehicles, including remote sensing devices that detect pollutants in the exhaust using infrared and 11 

ultraviolet technology, on-board diagnostics that monitor engine performance and emissions 12 

control systems, and video analytics that analyze factors like vehicle speed (Huang et al. 2018; 13 

Oluwaseyi and Sunday 2020; Valido et al. 2022). 14 

Many nations now subscribe to Vision Zero, which aims for zero road deaths (and near-zero 15 

debilitating injuries) (Tingvall et al. 1999; Marusin et al. 2018). Avoiding excessive speed and 16 

other illegal driving maneuvers (like left turns on red, wrong-way travel, and rapid lane changes 17 

in congested traffic) is one of the best ways to lower severe crash counts. It could save trillions of 18 

dollars a year around the globe (with US crashes alone costing nearly $1 trillion annually, or 19 

roughly $3,000 per capita per year (Liu and Subramanian 2009)). In Asia, at least eight countries 20 

predominantly rely heavily on automated enforcement to enforce speed limits, with another ten 21 

Asian nations using a mix of automatic and manual enforcement (UN.ESCAP, 2020). For example, 22 

in Hong Kong, speed cameras are used in conjunction with manual policing. While the cameras 23 

themselves are more effective in catching and reprimanding reckless driving, the threat of verbal 24 

reprimand adds an “embarrassment factor,” which can be a deterrent to some reckless drivers. 25 

However, with both manual and automatic enforcement, an aforementioned “kangaroo effect” is 26 

seen when drivers know the location of cameras or police beforehand (Chen et al. 2020). 27 

As of February 2023, 22 U.S. states, Washington D.C., and at least 35 Texas communities with 28 

preexisting contracts (The Texas Tribune 2019, KVUE 2022) (Figure 1a) use red-light cameras, 29 

and 18 states and Washington D.C. use speed cameras (Figure 1b). 30 

 31 
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Figure 1a: Red Light Camera Use in US States        Figure 1b: Speed Camera Use in US States   1 

Figure 1. Automated Enforcement Laws across the US States (IIHS 2023) 2 

In contrast, seven US states have outlawed red-light cameras, and seven have outlawed (agency-3 

owned and operated) speed cameras (Figure 1b). Fortunately, privately owned cameras can record 4 

images and video in all public settings in the US, including public rights of way (typically 5 

roadways). Those images can be used to support traffic law enforcement and crime reduction. 6 

For Example, video evidence from devices such as red-light cameras, traffic and toll booth 7 

cameras, and patrol car cameras can be submitted as evidence in court (Global Justice Information 8 

Sharing Initiative, 2016). However, law enforcement cannot currently issue a ticket to people 9 

based on someone recording a speeding violation on their mobile camera or any other personal 10 

camera, as traffic violations typically require a credible witness like a law enforcement officer. 11 

This requirement does not exist for other violations, though. Video evidence of someone engaging 12 

in criminal activities, such as causing destruction to private property or breaking into a car,  can 13 

be submitted to law enforcement, potentially leading to an arrest, regardless of the presence of a 14 

police officer (Montiero, 2021; Lucido & Manzella, P.C, 2023). When presenting video evidence 15 

in a courtroom, several factors determine its admissibility. These factors include the relevance of 16 

the video to the case, two-party consent laws for audio, the video’s authenticity and lack of editing, 17 

and the completeness of the recording to prevent the introduction of potentially misleading 18 

evidence. In addition to these considerations, perception factors, such as lighting conditions, 19 

camera angles, and obstructions, can affect the video's accuracy and reliability. Judges often 20 

consider these perception factors when evaluating the admissibility and probative value of video 21 

evidence (Axon, 2022; Stechschulte, 2020). 22 

Additionally, it is essential to note that privacy concerns can arise in cases involving video 23 

evidence. In the case of ASE, the publication of license plate information may raise questions 24 

about privacy rights, but since license plates are openly displayed on vehicles, it is difficult to 25 

establish any expectation of privacy concerning their disclosure. This is especially true when the 26 

vehicle owner is doing something that draws particular attention to their vehicle, such as driving 27 

recklessly. First Amendment Coalition, 2013 states that the publication of information about 28 

another will amount to an invasion of privacy only if the person has a reasonable expectation of 29 

privacy in that information if the information is published in such a way as to create a false and 30 

offensive impression about that person, or if it is presented in such a way as to imply that the 31 

person with whom the license plate is associated is endorsing a product. 32 

In California, one can report reckless driving to the local state police agency's non-emergency 33 

number, and the enforcement agency may choose to issue a warning letter to the driver (Scott, 34 

2023). However, the driver would only receive a citation if an officer witnessed the incident. In 35 

Colorado, there are dedicated phone lines for reporting reckless driving, where you can call *277 36 

to make a report, while in Tennessee, you can call *847 to report a reckless driver (Jarger et al., 37 

2023; Steelhorse Law, n.d.). Additionally, there are websites where you can report various traffic 38 

violations, such as smoking vehicles, vehicle idling (in New York and Dallas), and aggressive 39 
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driving (in Nashville) (City of New York, n.d.; North Central Texas Council of Governments, n.d.; 1 

hub Nashville, n.d.).  2 

 The following section describes the existing computer vision (CV) techniques for vehicle 3 

detection, identification, and speed inference and explains why the present work is necessary. 4 

VEHICLE IDENTIFICATION AND SPEED INFERENCE 5 

Object detection is a well-studied CV topic (Padilla et al. 2020; Ren and Wang 2022) and includes 6 

vehicle detection. Detection algorithms can be classified as one-stage (You Only Look Once 7 

(YOLO) and Single Shot Detector (SSD)) or two-stage detectors (Region with Convolutional 8 

Neural Network (R-CNN) and faster R-CNN). Two-stage detectors use two neural networks: one 9 

to find regions of interest (in each image or frame) and another to classify those regions, so they 10 

take more time to deliver higher accuracy (Kim et al. 2020). YOLO is a popular method for object 11 

detection due to its efficient performance (Mao et al. 2020; Akhtar et al. 2022). It has also been 12 

used to detect various traffic violations, such as riding a bike without a helmet, not wearing a seat 13 

belt, and red light signal jump (Ravish et al. 2021). The latest version of the YOLO algorithm, 14 

version 7 at the time of writing, appears to outperform two-stage detectors in terms of both time 15 

and accuracy (Wang et al., 2022). This paper uses both YOLOv7 and Faster R-CNN frameworks.  16 

Vehicle or object-tracking algorithms use deep learning (a series of neural networks) to predict 17 

object positions across video frames using spatial and temporal features. Tracking tools generate 18 

bounding boxes to improve object detection and identification. DeepSORT (Wojke et al. 2017) is 19 

a popular tracking algorithm that extends the Simple Online and Realtime Tracking (SORT) 20 

(Bewley et al. 2016) technique by using two association matrices (for object velocity and 21 

appearance) to create downstream-frame boxes via Kalman filters. This paper uses DeepSort and 22 

its further improvement, called StrongSort (Du et al., 2023), for faster and more accurate vehicle 23 

tracking. 24 

License Plate Detection and Recognition  25 

Automatic License Plate Recognition (ALPR) algorithms are the most common way to identify 26 

unique vehicles. It is a three-step process: first, the license plate is localized, then character 27 

segmentation is done, and recognition techniques are applied to extract the text. License plate 28 

localization is done in two ways: traditional, handcrafted, feature-based (Du et al. 2013) and deep 29 

learning-based methods (Laroca et al. 2019) with object detection techniques like YOLO (Zhu et 30 

al. 2022; Akhtar et al. 2022). Current techniques use separate YOLO models to extract vehicles 31 

and license plates. Text recognition on these license plates is accomplished through segmentation 32 

(a two-step process involving segmentation and a recognition model) or segmentation-free 33 

methods (a one-step process). There are several optical character recognition (OCR) techniques 34 

available (EasyOCR, 2021; Kuang et al., 2021; Pytesseract. 2022), which can pre-process images 35 

(de-skewing, smoothing edges, and converting images to black and white) to boost the chances 36 

of recognition (Karandish, 2019). ALPR improvements are hindered mainly by poor image quality 37 

and low-resolution cameras.  Much research has gone into improving image quality (Dong et al. 38 
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2016, Hamdi et al. 2021), and general adversarial networks (GANs) have proven successful in 1 

super-resolution reconstruction. GANs also have the potential to be leveraged to perform image-2 

denoising pre-processing (Hamdi et al. 2021). Some publications present the entire pipeline used 3 

for ALPR on fixed camera videos (Silva and Jung, 2020; Zhang et al., 2021), including drone-4 

recorded videos (Kaimkhani et al., 2022).  However, no work appears to have been published on 5 

the inference of ALPR from mobile phone video recordings.  6 

Recognizing Vehicle Make and Model 7 

Many agencies and businesses rely on humans to identify vehicle make and model as well as 8 

obscured or hard-to-read license plate information from videos. Make and model help agents 9 

identify vehicles whose plates are covered or damaged (Lee et al. 2019; Hu et al. 2022).  10 

Identifying the make and model is challenging due to the similarity between different vehicles, as 11 

shown in Figure 2 (Hsieh et al. 2014b). To address this, algorithms reflect vehicle dimensions, 12 

shapes, and vehicle logos (Yang et al. 2013) - with special detail typically visible on a vehicle’s 13 

front view and sometimes also its rearview (Saravi and Edirisinghe 2013; Hsieh et al. 2014b; Baran 14 

et al. 2015). To estimate vehicle models, these methods use support vector machines (SVMs) 15 

(Hearst et al. 1998) or measure the closest distances between feature vectors. Researchers are also 16 

using compact CNNs to identify make and model more efficiently (Dehghan et al. 2017; Lee et al. 17 

2019). 18 

  19 

Figure 2. Similar Vehicle Models: Toyota Highlander 2023 and GMC Terrain 2022 (Edmunds. 20 

(n.d.).) 21 

Speed Estimation 22 

Various CV techniques are proposed to estimate vehicle speed (Llorca et al. 2021). These 23 

techniques generally have three high-level components, as shown in Figure 3. They start by taking 24 

video recordings and external environmental parameters like scale factor. Then, detection and 25 

tracking algorithms are used to calculate the distance traveled by the vehicles in the 2D domain. 26 

Finally, the automobile's speed is calculated with an estimated distance in the real world 27 

(calculated with a scale factor) and the time difference between the frames. 28 

There are a few prominent methods implemented in the existing literature. Real-world distance 29 

estimation is difficult as it is usually computed with assumptions, such as all roads being flat. 30 

Methods for distance calculation include – homography-based (Kim et al. 2018), augmented 31 

intrusion line-based, pattern- or region- (Dahl and Javadi, 2019) based, or based on prior 32 
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knowledge about the actual dimensions of some of the objects, such as the size of the vehicles 1 

(Moazzam et al. 2019). These restrictions are reduced when using stereovision (Jiang et al. 2019). 2 

 3 
 4 

Figure 3. High-level components of vision-based speed estimation (Source: Llorca et al. 2021) 5 

In almost all the methods, calibration is an essential part of estimating the speed of the vehicles. 6 

Calibration helps to calculate the intrinsic camera parameters (sensor size and resolution, focal 7 

length) and extrinsic camera parameters (location with respect to the road surface). A common 8 

method for camera calibration is done using vanishing points (Orghidan et al., 2012). Vanishing 9 

points (VPs) can be estimated by various algorithms, which can be separated into two groups. The 10 

first group, known as geometry-based methods, leverages the fact that the VPs occur at the 11 

intersections of straight lines. Geometry-based methods estimate the VPs by associating lines to 12 

VPs (Feng et al., 2010; Wu et al., 2021), line clustering (Barinova et al., 2010; Bazin et al., 2012), 13 

or searching within a Gaussian sphere (Collins and Weiss, 1990; Straforini et al., 1993). The 14 

second group of methods focuses on learning to infer VPs from large-scale datasets containing VP 15 

annotations. Borji (2016) used a convolutional network to infer VPs. Zhai et al. (2016) extracted 16 

global image context with a deep convolutional network to constrain the location of possible VPs. 17 

Chang et al. (2018) trained models on one million Google street-view images. 18 

Based on the estimated VPs, the camera’s parameters can be inferred. When assuming the camera 19 

is free of skew and the principal point is at the center of the frame, deriving the intrinsic camera 20 

parameters becomes straightforward with the position of VPs. By considering the camera 21 

positions, the extrinsic parameters could also be calculated. These estimated camera parameters 22 

enable the creation of a transformation between the camera's coordinate system and the world 23 

coordinate system. 24 
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In this work, we aim to develop an integrated framework that combines the aforementioned 1 

techniques to identify speeding vehicles with mobile devices, which differs from previous works 2 

developed with fixed cameras.  3 

METHODOLOGY 4 

This section describes the computer methods used in this study to infer speed and identify vehicles 5 

for community support of policing dangerous driving and related behaviors. A deep learning 6 

framework is proposed for the aforementioned unified objective, incorporating object detection, 7 

object tracking, character recognition, vanishing point techniques, and perspective transformation 8 

to infer information from videos recorded via a mobile device. The research assumes that the 9 

mobile phone is held steady while recording the video, as inclination angles and phone movements 10 

were not considered, and most of the existing research focused on fixed cameras. Although this 11 

assumption may not always be realistic, this paper aims to demonstrate the feasibility of using a 12 

CV to infer a vehicle's speed and license plate from a mobile recorded video. Moreover, it enables 13 

mobile phone users to identify speeding vehicles at places where no fixed cameras are installed, 14 

such as roads in neighborhoods. The architecture of the vehicle speed inference and recognition 15 

system is depicted as shown in Figure 4. It is described as follows - 16 

After performing object detection and tracking using the object detection framework (e.g.,  17 

MaskRCNN and YOLOv7) and tracking algorithms such as DeepSort and StrongSort, each 18 

cropped image of the tracked vehicle is sent to the license plate detection model (Anpr-Org 19 

(2023)), which is the YOLOv7 model finetuned on the license plate dataset taken from college-20 

dbbrk/anpr-x1a2o project in Roboflow (Dwyer 2022). Once the bounding box of the license plate 21 

is detected, the cropped vehicle image is passed to a super resolution model (Wang, X. et al. 2018) 22 

to  enhance the image; this image is then passed to the EasyOCR model for text recognition. In 23 

addition, the cropped image of the vehicle is also sent to the vehicle make and model recognition 24 

model (Pells, n.d.), which is trained on Stanford cars and the Vehicle Make and Model Recognition 25 

dataset (VMMRdb) which contains cars in US metro areas. The generated outputs for each frame, 26 

including the bounding boxes, name and classification confidence of both vehicles, license plate, 27 

OCR output, car make, and vehicle ID, are stored in a text file for further analysis. 28 

This paper employs the speed estimation pipeline proposed by Dubská et al. (2014) to accurately 29 

determine the 3D bounding boxes of vehicles and subsequently estimate their speeds. The 30 

algorithm initially obtains the contours of each vehicle using the MaskRCNN framework. A 31 

pretrained ResNet-50 network is used as the feature extractor for the framework to extract the 32 

masks of vehicles from video frames. While assuming the mobile phone is stationary during video 33 

recording, the camera’s perspective remains unknown. Consequently, estimating the vanishing 34 

points (VPs) from the video is necessary. This paper adopts two different modes to obtain the VPs. 35 

The first relies on the users to provide the estimated locations of VPs. The users are instructed to 36 

infer the approximate locations of VPs by themselves. Generally, the first VP can be located by 37 

finding the intersection of the left and right sides of the road in the video, and the second VP can 38 

be approximately located by extending the edges of the vehicles. The second mode employs an 39 
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automatic estimation of VPs. It utilizes the VP detection algorithm proposed by Lu et al. (2017). 1 

They used two lines to get the first vanishing point V1, then uniformly takes a sample of the second 2 

vanishing point V2 on the circle of V1 on the equivalent sphere. Although this is not a deep 3 

learningbased method, it has a fast inference speed that potentially allows for real-time mobile 4 

applications. In our experiment, we estimate the VP only once using the first frame.  5 

The estimated VPs enable the estimation of 3D bounding boxes of vehicles. Specifically, the 6 

algorithm finds tangent lines of the vehicle blobs (a group of pixels in a frame of a video that 7 

represents a vehicle) that coincide with the vanishing points (Dubská et al., 2014). Starting from 8 

each VP, the algorithm finds two lines tangent to the vehicle blob; the 3D bounding boxes of 9 

vehicles are decided by all these lines and the intersections between these lines following Dubská 10 

et al. (2014). Meanwhile, these VPs also enable the construction of the perspective transformation. 11 

From each of the estimated VPs (V1 and V2), two lines are extended to intersect with the points 12 

inside the frame. Four intersection points of these extended lines can construct a rectangle in world 13 

coordinates (these lines were selected to avoid including one of the VPs in the rectangle). 14 

Assuming the vehicles are moving towards one of the VPs, the perspective transformation 𝑓 could 15 

be constructed to rectify this rectangle so only the vehicles' vertical (or horizontal) movement is 16 

preserved.  17 

Having obtained the coordinates of the 3D bounding boxes of the vehicles, the vehicle speed was 18 

then estimated from the movement of the bounding boxes. Denote the two points at both ends of 19 

the 3D bounding box as 𝐴 = [𝑎𝑥, 𝑎𝑦]
𝑇
and 𝐵 = [𝑏𝑥 , 𝑏𝑦]

𝑇
, respectively. These two points move to 20 

𝐴′ = [𝑎𝑥
′ , 𝑎𝑦

′ ]
𝑇
 and  𝐵′ = [𝑏𝑥

′ , 𝑏𝑦
′ ]

𝑇
at the next frame. The relative movement of vehicles between 21 

frames is then derived by 𝜆 =
∥𝑓(𝐴)−𝑓(𝐴′)∥

∥𝑓(𝐴)−𝑓(𝐵)∥
. To determine the distance vehicles have moved 22 

during a single frame, the actual distance is calculated by multiplying  by the median size of real-23 

world vehicles. The median size is used to show the proof of concept of this approach, which 24 

will be replaced with a length specific to each vehicle in the future. This paper specifies the real-25 

world cars’ length to be 4.5m (Michael., 2020; Meyer, S., 2023). The speed is then the distance 26 

multiplied by frame per second (FPS).  27 
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 1 
Figure 4. Software workflow of the Vehicle Speed Estimation and Identification System 2 

RESULTS 3 

The paper presents an integrated model for both speed inference and vehicle identification. 4 

However, due to time constraints, experiments were conducted using different object detection 5 

models (Mask R-CNN and YOLOv7) and tracking models (DeepSort and StrongSort). As these 6 

models yielded similar levels of accuracy, the paper reports the results of license plate detection 7 

and vehicle make identification obtained using YOLOv7 and StrongSort as the baseline. 8 

Additionally, Mask-RCNN and DeepSort were used for speed inference. The results for license 9 

plate and vehicle make recognition are presented here. Only the vehicle make is considered in 10 

these experiments because the model identification test on sample data has too much variation. 11 

Since no work has been done before on inferring vehicle features like speed, license plate, and 12 

make and model from mobile-recorded videos, this paper discusses the performance of existing 13 

algorithms and how they have been improved. 14 
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The results presented in this study were obtained using the UFPR-ALPR dataset's test images, 1 

constituting 40% of the entire dataset. The UFPR-ALPR dataset consists of 4,500 fully annotated 2 

images (including over 30,000 license plate characters) from 150 vehicles captured in real-world 3 

scenarios in Brazil where both the camera and the vehicle were moving. The images were captured 4 

using three different cameras, namely, GoPro Hero4 Silver, Huawei P9 Lite, and iPhone 7 Plus 5 

(Laroca et al., 2019). When using pre-trained weights, the license plate detection model detected 6 

78.5% of license plates with a predicted and true box intersection greater than 70%. The OCR 7 

results presented in Table 1 were obtained as part of the first author's Adv Computer Vision course 8 

project. It was observed that applying super-resolution with pre-trained OCR gave better results 9 

than using just OCR. The super-resolution technique has improved the results, as demonstrated in 10 

Figure 5. In the figure, the 'Input image' output from EasyOCR is 'EE', while the prediction for the 11 

Real-ESRGAN output image is 'IU B6t5o62', with both predictions having a confidence score of 12 

less than 0.5. Nevertheless, as seen in the second image in Figure 4, processed by EasyOCR, some 13 

characters are identified correctly.  14 

Table 1. OCR model results 15 

Model # Correct OCR Accuracy 

OCR 252/1800 14.2% 

Super Resolution + OCR 407/1800 22.6% 

Super Resolution + Fine-tuned OCR 847/1800 47.0% 

However, even after applying super-resolution, the EasyOCR pre-trained model could only 16 

correctly identify 22.6% of the license plates. The main reason for the low character recognition 17 

accuracy in license plate recognition is the lack of clarity in the extracted license plate image, 18 

coupled with the use of an OCR model that is not specifically trained to recognize license plate 19 

information but instead designed to recognize regular text. So, the OCR model was fine-tuned on 20 

a small subset of UFPR license plates and synthetic data, improving accuracy. The model was then 21 

able to identify 47.0% of the license plates.  22 

  23 

Figure 5. License plate image improvement using Super-Resolution 24 

 25 

 26 
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Table 2. Cell Phone Resolution Examples (Source: GSMArena.com)      1 

Phone Type Camera Resolution Video Resolution 

iPhone 14 Pro 48 megapixels (MP) 

1080 pixels width at 30 

frames per second 
Full HD (high-density) 

Samsung M33 50 MP 
2160p@30fps  

Ultra HD 

Oneplus Nord2 50 MP 
1080p@30fps 

Full HD 

The license plate and vehicle make/model algorithms were tested on 2-3 videos collected using 2 

each smartphone type from Table 2. Analyzing algorithm outputs for speeds under 40 mph, the 3 

ALPR algorithm excelled when vehicles in the nearest lane were observed, with performance 4 

decreasing as distance increased. In Figure 6, the ALPR predicts the license plate of the closest 5 

lane vehicle at 30-40 mph, with a detection confidence of 0.96. The text 'TEXAS' is predicted with 6 

a confidence score of 0.61, while the number is predicted as 'RL* 23**' with a confidence score 7 

of 0.28. The vehicle is identified as a Mini Cooper 2009. 8 

The ALPR model did not provide estimates for speeds between 40 and 60 mph due to low-quality 9 

plate images (Figure 7). Although the model detected a vehicle's license plate, no text prediction 10 

was possible. The predicted make and model, the GMC Terrain SUV, differed from the actual 11 

Toyota Sienna. The vehicle make and model algorithm accurately identified makes but struggled 12 

with model types. Make estimates were occasionally inconsistent, as shown in Figures 6 and 7.  13 

 14 

Figure 6. Processed output: Vehicle at 30-40 mph on I35 frontage road in Austin 15 



 14 

 1 

Figure 7.  Processed output: Vehicle at 50-60 mph on IH-35 in Austin, Texas 2 

Speed estimation on public datasets 3 

This paper’s speed estimation algorithm was first tested on a public dataset called VS13 4 

(Djukanović et al. 2022). It contains video recordings of 13 different car models (i.e., the Citroen 5 

C4 Picasso, Kia Sportage, Mazda 3 Skyactive, Mercedes AMG 550, Mercedes GLA 200D, Nissan 6 

Qashqai, Opel Insignia, Peugeot 208, Peugeot 3008, Peugeot 307, Renault Captur, Renault Scenic, 7 

and VW Passat B7) at different speeds. Each video is captured in full HD, 10 seconds long, and 8 

24 frames per second. The ground-truth speeds of vehicles are provided in this dataset, which 9 

ranges from 30 to 105 kilometers per hour. Since these videos were captured from similar 10 

perspectives, the Mazda was arbitrarily selected to assess the performance of the speed estimation 11 

algorithm. The 13 vehicles’ speeds were estimated between the 100th to 160th video frames for 12 

user-estimated VP and 100th to 130th frames for algorithm-estimated VP. The median speed 13 

estimates are used for error calculations, as shown in Table 3.  14 

Table 3. CV- and user-estimated speeds versus ground-truth speeds, with associated errors.   15 

(1) CV-

estimate

d Speed 

(km/h)  

(2) User-

estimated 

Speed (user-

input VPs) 

(km/h) 

Actual 

(Ground-truth) 

Speed (km/h) 

 Errors in 

Estimated 

Speeds 

(Estimated 

minus Actual)  

(km/h) 

% Relative 

Error 

(Automatically 

Estimated 

VPs/User-input 

VPs) 

29.30  28.04  30  -0.70 & -1.96 -2.3 & -6.5 

39.28  42.30  40  -0.72 & 2.30  -1.8 & 5.8 

50.11  56.16  50  0.11 & 6.16 0.22 & 12.3 

73.87  81.47  60  13.87 & 21.47 23.1 & 35.8 

22.07  77.97  70  -47.93 & 7.97 -68.5 & 11.4 

81.47  85.32  81  -0.47 & 4.32 -0.58 & 5.3 

86.33  100.30  90  -3.67 & -10.30 -4.1 & -11.4 

Table 3 showcases the estimated speed of vehicles using both automatically estimated VPs and 16 

user-input VPs. It can be observed that automatically estimated VPs give better predictions on 17 
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speed except for one case. The absolute errors are smaller than 5 kilometers per hour on five out 1 

of seven cases that have been tested. The user-input VPs can also provide an accurate estimation 2 

of speeds, despite the fact that the errors are slightly larger compared to using the automatically 3 

estimated VPs on several cases. However, the VPs specified by users would still be valuable as 4 

they can serve as the backup solutions for speed inference once the VP estimation algorithm 5 

cannot provide reliable results. 6 

CONCLUSIONS  7 

This study demonstrates the potential and challenges of smartphone-based computer vision 8 

technologies in the context of traffic management and safety. The performance of speed estimation 9 

is generally satisfactory, with errors typically staying within 5% and 5 km/h in five out of seven 10 

test cases. The exploration into improving license plate text recognition unveiled the benefits of 11 

using a super-resolution OCR model, although initial accuracy remained suboptimal. Fine-tuning 12 

the OCR model resulted in a significant performance improvement, and the potential for further 13 

enhancement by fine-tuning the super-resolution model specifically for license plate recognition 14 

was also identified. The need for extensive finetuning on current make and model data and real-15 

time testing on annotated images was highlighted to improve the make and model identification 16 

system. The lowest error rates were observed when filming lower-speed vehicles in landscape view 17 

with a three-camera phone. Overall, it's clear that existing open-source models alone are 18 

insufficient to tackle the complexities of the problem at hand. However, a customized system, 19 

designed explicitly for this use case and incorporating various open-source techniques, has notably 20 

improved accuracy. This research not only highlights the potential of smartphone-based computer 21 

vision technologies for addressing speeding-related accidents and traffic violation verification, but 22 

also emphasizes the need for further exploration and development in this field. As we look to the 23 

future, it is evident that these technologies can play a pivotal role in enhancing road safety and 24 

traffic management, and additional research will be key to realizing these goals. 25 

Limitations and Future Work 26 

Directions for future research include extending the analysis to more complex scenarios such as 27 

nighttime videos (in lighted and unlighted settings) when speed and plate inference will probably 28 

prove more difficult and with moving cameras (as is common with hand-held devices and/or when 29 

inside nearby vehicles). In addition, integrating models capable of identifying a vehicle's make, 30 

model, year, and/or color will prove useful in cases where license plates are obstructed or missing, 31 

increasing the likelihood of successful enforcement. Mobile camera properties, like aperture size 32 

and shutter speed, can be experimented with to improve video recordings without motion blur. 33 

Furthermore, for better speed estimation, using the specific length of each vehicle (by make/model) 34 

instead of an average or median vehicle length will be useful (especially for very long or unusually 35 

short vehicles). Another extension is developing a mobile smartphone application for regular or 36 

automated submission of flagged video segments with precise position/location details (during 37 

actual recording rather than user-estimated values). Of course, recording videos while driving 38 
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poses a safety risk to everyone, so app designs should help ensure drivers do not use the app while 1 

driving.  2 

Thanks to inexpensive cameras and well-trained CV algorithms, the public at large can soon begin 3 

submitting evidence of dangerous driving (and other) behaviors to enforcement agencies. 4 

Warnings or tickets would be issued after formal review by deputized officers only when there is 5 

clear and compelling evidence. Data storage security is also key, similar to existing expectations 6 

of law enforcement agencies. Those who receive tickets have the right to challenge the process, 7 

mainly if the images appear fuzzy or unclear, ensuring the protection of due process. Due process 8 

is a fundamental concept in American law that refers to the idea that individuals are entitled to fair 9 

treatment and legal protections when facing government actions that may adversely affect their 10 

life, liberty, or property. The concept is enshrined in the Fifth and Fourteenth Amendments of the 11 

United States Constitution (Chemerinsky 2019). 12 
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