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Abstract 

Fleets of electric vehicles will likely shift electricity demand, and the effect of upstream charging 

emissions will come from generation sources that are dispatched in response. This study proposes 

a multi-stage charging and discharging problem to translate low-cost energy transactions into 

vehicle dispatch decisions. A day-ahead charging optimization problem minimizes electricity 

prices and marginal emissions damages, with energy transactions becoming targets in an 

optimization-based dispatch strategy for an on-demand shared autonomous electric vehicle 

(SAEV) fleet. The framework was tested for Austin, Texas, using an agent-based simulator. Fleets 

can schedule charging to lower daily power costs (averaging 15.5% per SAEV, or $0.79) while 

reducing health damages from generation-related pollution (2.8% per SAEV, or $0.43). Fleet 

managers can increase profits ($8 per SAEV per day) by adopting a multi-stage charging and 

discharging strategy that can serve more passengers per day than price-agnostic dispatch strategies. 

 

Keywords: Fleet Charging; Fleet Management, Emissions, Simulation Optimization, 
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1. Introduction 

To meet Paris Agreement climate goals, year-2050 transport-related CO2 emissions must be 70% 

to 80% below 2015 levels (Jaramillo et al., 2021). Disruptive technologies that usher in low-

carbon, high-accessibility transportation, like shared autonomous electric vehicles (SAEVs), could 

decrease such emissions. Electrified mobility will play a key role in the decarbonization of 

transportation and power sectors, which account for 52% of US greenhouse gas (GHG) emissions 

(US EPA, 2020). Emissions reduction will depend on feedstock sources dispatched to meet 

charging demand (Holland et al., 2022). Electric vehicle (EV) adoption also enables co-benefits to 

the power system in the form of deferred utility-scale energy storage, less renewable energy 

curtailment, and possibly mobile power sourcing. Under extreme events, local and regional power 

grids may rely on EVs to discharge electricity via vehicle-to-grid (V2G) equipment or simply delay 

charging. At scale, EVs could lower power sector emissions by displacing coal and natural gas 

power plants while providing grid resilience and reliability benefits. 

Local utilities may implement managed charging strategies to incentivize or directly 

control EV charging (Dean and Kockelman, 2022b). The objective is to avoid increasing the peak 
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load, which determines generation and transmission capacity investments. By shifting demand 

away from the peak or injecting power back into the grid during this time, total power-system costs 

can fall for all customers (Anwar et al., 2022). Managed charging may come via predetermined 

time-of-use (TOU) price signals (TOU tariffs) or (often highly variable) wholesale electricity 

prices. Fleet managers may have one or many power providers (depending on market rules and 

geofence coverage), each with different retail prices. If permitted, fleets may decide to buy 

electricity from a renewable developer at a negotiated rate (via a power purchase agreement) and 

receive verifiable renewable energy credits (RECs) for each megawatt-hour (MWh) of energy 

generated. Cruise is the first SAEV company known to the authors to purchase enough RECs to 

offset the energy demand from its fleet vehicles (Grant, 2021). 

California’s Low Carbon Fuel Standard (LCFS) is another policy lever that may reduce the 

cost of fleet charging, based on station capacity and charger utilization (CARB, 2021). If the credit 

calculation used real-time carbon intensity of charging sessions instead of an average annual grid 

estimate, fleet managers may have further incentive to align charging with intermittent renewable 

generation. On the other hand, fleets could face carbon taxes on their charging emissions. The 

social cost of carbon (SCC) will continue to increase over time because the incremental damage 

of more GHGs in the atmosphere rises with more emissions already present. Higher SCC values 

will motivate aligning charging with renewables. As a result of varying retail prices, carbon cost 

estimates, and EV policy incentives, the effect of charging costs on fleet operations warrants 

further investigation. 

 Of the SAEV agent-based simulation studies, fleet size varies with land use, trip density, 

and demand for this mode. One study simulating a fleet of 15,000 vehicles in the Austin metro 

(5,300 square miles with a population of 1.8 million) observed a median daily vehicle-miles 

traveled (VMT) of 215 mi per vehicle (Dean et al., 2022). The electricity demand from regional 

passenger service serving 6.3% of daily person-trips could reach 806 MWh, about the same daily 

electricity consumption from 27,400 US homes. Fleet vehicles will likely charge using direct 

current fast charging (DCFC) equipment to minimize downtime, which may amplify the region’s 

peak demand. Unmanaged high-power fleet charging may require expensive upgrades to 

distribution system infrastructure up to revised resource adequacy planning at the generation and 

transmission system level (Anwar et al., 2022). 

 As the transportation and power sectors converge with vehicle electrification and the use 

of vehicles as mobile energy sources, there will be a greater emphasis on minimizing charging 

impacts. Electric utilities may use TOU prices or wholesale-indexed electricity prices to align the 

cost of producing power with energy consumption. Mobility companies may also wish to reduce 

their emissions impact because of regulatory requirements (e.g., Clean Miles Standard) or 

shareholder pressure (CARB, 2019). In this study, a fleet of on-demand SAEVs uses a multi-stage 

charging and discharging framework to minimize electricity purchasing costs and the emissions 

damages from electricity production. The framework includes a day-ahead charging and 

discharging optimization problem for a virtual fleet battery to determine the amount of electricity 

to buy or sell per hour. The energy transactions become targets in a within-day idle vehicle dispatch 

problem alongside cleaning and maintenance requirements. The optimization problems are tested 

within an agent-based travel demand simulator, POLARIS, with a synthetic trip dataset from the 

Austin, TX, region. Before the decision epoch for within-day idle vehicle dispatch, the day-ahead 

charging and discharging problem is called to update the virtual fleet battery’s state of charge 

(SOC). As a rolling horizon problem, the next 24 hours of energy transactions are updated 
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throughout the day to improve low-cost decision-making and ensure sufficiently high SOC for 

multi-day service. 

 The rest of the study is organized as follows. Section 2 summarizes the literature that 

contributes to the development of this multi-stage charging and discharging framework and the 

specific contributions of this study. Section 3 introduces the multi-stage charging and discharging 

strategy that is central to fleet management. Section 4 presents relevant details on the simulation 

environment for readers unfamiliar with POLARIS. Section 5 provides details on travel demand, 

electricity prices, emission damages, and other simulation assumptions used in the case study. 

Section 6 presents the results, while Section 7 discusses this study’s results and limitations and 

provides a direction for future work. Section 8 concludes the study with an overview of the 

methods and applications for future fleet operators and policymakers. 

 

2. Background 

Many studies examine the likelihood of motorists using SAEVs for urban travel and the expected 

environmental benefits of electrifying ride-hail fleets. Previous fleet operations research includes 

economic evaluations, charging station provisioning for different battery ranges and fleet sizes, 

various dispatch strategies, and their impacts from a transportation perspective (e.g., average wait 

times, mode share, unoccupied travel). Meanwhile, the body of research examining EV-grid 

interactions is extensive. Work focusing on SAEVs and the electric grid includes joint charging 

station and power distribution system planning (Estandia et al., 2021), managing energy system 

operations at charging stations (with or without batteries or on-site solar arrays) (Melendez et al., 

2020) and studying the effect of electricity prices on charging decisions (Zhang and Chen, 2020). 

Vehicle charging decisions and charging station selection vary widely (see Gurumurthy et 

al. (2022) for a synthesis), and are a microcosm of differences within transportation simulation. 

Advanced vehicle-dispatch problems that study rider assignment, rebalancing, and charging 

SAEVs through optimization-based methods, or reinforcement learning, improve fleet 

performance over prior heuristics (Al-Kanj et al., 2020; Dandl et al., 2020; Dean et al., 2022; Kim 

et al., 2022; Kullman et al., 2021; Yi and Smart, 2021). For example, Al-Kanj et al. (2020) 

increased fleet revenues by 17% and the percentage of trips met from 74 to 95% with their 

lookahead reinforcement learning policy, relative to a myopic strategy. Kim et al. (2022) found 

that incorporating demand prediction into idle vehicle relocation reduced fleet investment and 

operating costs by 38%. Kullman et al. (2021) used a deep reinforcement learning method to 

increase fleet profit 18%  (versus Alonso-Mora et al.'s (2017) earlier strategy), and Dean et al. 

(2022) lowered average wait times by 39% and increased average daily trips per vehicle by 28%. 

Yi and Smart (2021) increased trips met by 11% and reduced unoccupied travel by 43%. Fleet 

managers are unlikely to ignore the benefits of optimization-based dispatch methods relative to 

early heuristic-based studies (like those used in Chen et al., 2016; Farhan and Chen, 2018; Loeb 

et al., 2018; Loeb and Kockelman, 2019; and Vosooghi et al., 2020). As battery costs decline, 

operating costs will rise, as a fraction of fleet ownership costs, and motivate further analysis of 

cost-saving control strategies. 

Luke et al. (2021) developed a novel joint fleet size, charging station, and operating cost 

(electricity and generalized maintenance) minimization problem. To prevent a quadratic rise in the 

number of decision variables coming from disaggregate travel demand, they grouped the 46.8 mi2 
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City of San Francisco into 25 cells. Although the study used arc flows to model time-varying travel 

times between origin-destination pairs, the congestion from 154,770 SAEVs was not captured. 

Compared to scaling up the number of chargers at existing charging stations, the proposed 

framework reduced peak charging costs by 10% by spreading charging demand among more 

charging stations. In addition to lowering station-level demand charge costs (in terms of peak 

power rate fees, priced at $/kW), there was 10% less empty VMT due to charging. 

Iacobucci et al. (2021) expanded a prior model-predictive control strategy that considered 

repositioning and charging with dynamic electricity prices (Iacobucci et al., 2019) by adding 

bidirectional charging. Due to computational limits, the authors separated charging, repositioning, 

and vehicle assignment into different decision epochs and aggregated variables like SOC to reduce 

the problem size. They studied this control strategy for a fleet of up to 10,000 vehicles with demand 

from a Manhattan taxi trip dataset. Their control strategy cut charging costs in half and reduced 

emissions by 16-21%. Trip ends were aggregated to 200 nodes over a 22.8 mi2 service area and 

travel time estimates for a five-day trip simulation came from a two-hour weekday morning peak. 

Similar to other studies, they assumed the additional generation needed for a peak load of 200 MW 

would come from the same generation sources, which may not be the case. Depending on the time 

of day, the additional power comes from available, unused capacity or additional peaker power 

plants that are generally less efficient. 

Zhang and Chen (2020) used the agent-based simulation tool from Chen et al. (2016) to 

simulate 10% of the Seattle region’s weekday travel demand with SAEVs. Their study focused on 

electricity rates (TOU and wholesale) to find the ideal number of vehicles to charge at each time 

step. Although electricity costs per vehicle-mile fell by 10-34%, the average percent unoccupied 

travel increased by 1.4-1.9%. They found that fleet electricity cost savings were higher under 

volatile wholesale electricity prices, which supports the findings from Iacobucci et al. (2021). The 

simulation used hourly travel time estimates to reflect network congestion with a gridded Cartesian 

coordinate (2-D) system for this region. Additionally, the authors used a low battery heuristic as 

the reference charging case, which can amplify the perceived benefits. 

Li et al. (2022) evaluated the emission benefits of San Francisco Bay Area SAEVs 

compared to internal combustion engine vehicles (ICEVs) under various charging strategies 

through an economic dispatch grid and capacity expansion model. Data on daily travel demand 

came from ride-hailing datasets, scaled up for wider SAEV adoption (long-term). In 2030, 46% of 

California’s electricity may come from solar generation (Li et al., 2022) and would incentivize 

daytime charging. If SAEV fleet owners pay wholesale power prices, charging can be scheduled 

in hours with lower electricity prices, corresponding to hours with lower emissions due to zero-

cost fuel from intermittent renewable sources. In general, fleet managers that pursue low-carbon 

charging strategies can also save on purchasing costs, which is amplified when carbon taxes are 

applied.  

Liao et al. (2021) performed an economic and environmental analysis over a 30-year span 

to compare total costs of providing SAEV service in Ann Arbor, Michigan, with 100-mile and 

250-mile range SAEVs. In their study, the cumulative costs with electric powertrains are 3.4% 

(250-mile range SAEVs) to 8.4% (100-mile range SAEVs) higher than gas-powered SAVs, even 

with lower fuel and maintenance costs. Although the higher battery capacity increased SAEV 

energy consumption (by 5.2%) and GHGs (by 5.1%), smaller fleet sizes and less deadheading 

made for a better choice between all-electric range types. And, if 250-mile SAEVs could sell 

electricity via V2G, their overall costs could be 20% lower than SAVs. Liao et al. (2021) estimated 
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that V2G could save 60 tonnes of GHG emissions annually per vehicle but did not consider time-

varying electricity prices or marginal (power plant) emissions. 

Melendez et al. (2020) evaluated the optimal operations of a forward-looking charging hub 

for SAEV service where fleet managers had access to on-site solar generation, battery storage, 

bidirectional charging capability, and sold unoccupied charging windows to private EVs. Their 

study combined a power system optimal power flow model and a reformulated idle vehicle 

problem from Iacobucci et al. (2021). Melendez et al. (2020) found SAEV fleet owners have a 

limited potential in earning non-transportation revenues with V2G, provided sufficient 

transportation demand and fluctuations in wholesale power (but numbers are not provided). 

In summary, a few studies have evaluated charging and SAEV dispatch strategies to lower 

electricity costs (Iacobucci et al., 2021; Luke et al., 2021; Melendez et al., 2020; Zhang and Chen, 

2020) relative to a price-agnostic (vehicle-dispatch) strategy. Their price-agnostic benchmarks are 

often charging heuristics (e.g., charge when the SOC falls below 60% or 20%) or based on real-

world EV charging sessions or idle time (Li et al., 2022; Liao et al., 2021). As a result, their relative 

cost savings are probably biased high. 

Of the three studies in Table 1 that include an emissions analysis, only Iacobucci et al. 

(2021) captured the cost of carbon within the cost-minimizing charging strategy. However, 

focusing only on carbon dioxide (CO2) ignores the health and climate damages from other 

emissions, such as nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5) 

(Bridges et al., 2015). All Table 1 studies aggregated trip ends to select nodes or zones for their 

simulations, or relied on real-world ride-hail trip data (Li et al., 2022) or synthetic SAEV trip data 

(Liao et al., 2022) in their optimization frameworks. The advantage of simulations with more 

realistic trip ends and networks is a more accurate portrayal of empty travel distances and traveler 

wait times. Moreover, the endogenous and dynamic traffic assignment (DTA) methods used in this 

study leads to vehicle-level energy consumption values that vary by route and congestion (Dean 

et al., 2022). Table 1’stwo node-to-node simulation studies also supplied charging stations at each 

node (Iacobucci et al., 2021; Melendez et al., 2020), resulting in no empty mileage due to charging, 

which is too optimistic. 



6 

Table 1 Summary of Selected SAEV Literature with Focus on Feature Differences.  
Author(s), 

year 

Model Type Electricity Prices Sensitivity 

Analysis a 

Charging 

Strategies b 

Emissions 

Analysis c 

Traffic Flow Model & Region Scale 

Luke et al., 

(2021) 
• Analytical • Retail (TOU) 

• Peak power rate fee 

• Battery Capacity • Strategy-specific • N/A • Zone-to-zone (arc routing) with hourly 

travel time matrices 

• San Francisco, CA (28 zones) 

Iacobucci 

et al., 

(2021) 

• Analytical & 

Traffic 

Simulation 

• Wholesale (regional 

& seasonal) 

• Fleet Size • Strategy-specific 

• Nighttime 

• On-demand 

 

• CO2 

(internalized) 

• Node-to-node network loading with 

constant travel time matrix 

• Manhattan, NY (200 nodes) 

Zhang and 

Chen 

(2020) 

• Analytical & 

Traffic 

Simulation 

• Wholesale 

• Retail (TOU) 

• Peak power rate fee 

• Battery Capacity 

• Charging Speed 

• Strategy-specific 

• Low-battery check 

• Fill-the-charger 

 

• N/A • 2-D Cartesian coordinate grid loading 

with hourly travel time matrices 

• Seattle, WA metro (193,600 zones) 

Li et al., 

(2022) 
• Analytical & 

Power System 

Simulation 

• N/A • Carbon tax 

• Occupancy Rate 

• Fleet Size 

• Nighttime 

• Daytime Workplace 

• Daytime Public 

• Inverse to Netload 

• Inverse to Ride Requests 

• Uniform 

• CO2 (post) • Lyft & Uber passenger-trip data 

(unspecified region) 

Liao et al., 

(2022) 
• Analytical • N/A • ±10% of 

Modeling Inputs 

(e.g., Electricity 

Price & Battery 

Capacity) 

• V2G 50% • CO2 (post) • Travel demand from prior SAV 

simulation with node-to-node routing 

with constant travel time matrices 

• Ann Arbor, MI (43.8 sq-mi area, 

unspecified # of nodes) 

Melendez 

et al., 

(2020) 

• Analytical • Wholesale (day-

ahead & real-time) 

• Fleet Size 

• Charger Cords  

• Strategy-specific • N/A • Node-to-node with hourly travel time 

matrices (to the nearest 15 min) 

• Tampa Bay, FL (12 nodes) 

Present 

Study 
• Analytical & 

Agent-Based 

Traffic 

Simulation 

• Wholesale 

• Retail (TOU) 

• Peak power rate fee 

• Battery Capacity 

• Charging Speed 

• Strategy-specific 

• Price-agnostic 

• CO2, SO2, 

NOx, & 

PM2.5 

(internalized) 

• Endogenous traffic & DTA model for 

door-to-door service routing 

• Austin, TX metro (39,573 locations) 

a 30-year Costs include cost of owning, maintaining, and replacing fleets. 
b Nighttime strategy means that SAEVs charge between 12 AM and 5 AM &, when the SOC is below 60%, during the daytime. On-demand strategy charges after 

each trip (if the vehicle remains idle/unneeded). Low-battery check requires charging when SOC falls below 20%. Fill-the-charger strategy keeps cords occupied 

throughout the day to reduce capital costs of charging infrastructure. V2G 50% means that bidirectional charging is available 50% of time the SAEV is parked 

(idle). Please refer to Li et al. (2022) for study-specific charging strategies. 
c N/A: Not applicable, internalized means the strategy captured costs of CO2 within the policy, post means an emissions analysis was done after obtaining results.
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2.1 Contributions 

Yi and Smart (2021) and Dean et al. (2022) proposed two optimization frameworks for charging 

and repositioning idle vehicles and compared numerical results to heuristic methods and disjoint 

vehicle decision-making processes. Both studies found benefits of adopting an optimization-based 

strategy that capture trade-offs between charging and repositioning vehicles at the same decision 

epoch. Moreover, both suggested that their approaches could distribute charging over many 

periods, specifically off-peak periods, but that future research on off-peak charging was warranted. 

Iacobucci et al. (2021) proposed a framework to minimize energy transactions and convey 

temporally aggregated optimal solutions to a short-time scale idle vehicle dispatch strategy. Zhang 

and Chen (2020) recognized that not all SAEV fleets pay wholesale prices, depending on their 

operating markets, so their case study included a retail TOU price profile. However, both studies 

did not use a joint charging and repositioning optimization-based problem to lower wait times, 

increase trips served, and reduce empty travel (Yi and Smart, 2021; Dean et al., 2022).  

Simulation advances now allow for further disaggregation of traveler positions and 

network details to provide more realistic travel routing and congestion feedback, as pursued in this 

study. Given that Iacobucci et al. (2021) included only CO2 costs in energy purchase decisions and 

Li et al. (2022) used a fixed carbon cost for an eight-year analysis period, there is a need to (1) 

recognize the costs of other power plant emissions and (2) anticipate how higher carbon costs may 

impact optimal SAEV fleet operations. This study reformulates Iacobucci et al.’s (2021) day-ahead 

energy transaction problem, Dean et al.’s (2022) optimization-based repositioning and charging, 

and Gurumurthy et al.’s (2022) SAEV-maintenance and cleaning requirements. This new multi-

stage charging and discharging framework strengthens the argument for smart charging strategies 

while improving on the literature’s estimates of cost savings. 

This study is the first to capture the health and climate damages of distinct fleet charging 

and discharging strategies. The pursuit of low charging costs depends on the electricity (retail) 

prices available to future fleet operators or exhibited in a day's wholesale market. Including a peak 

power rate (or demand charge in power systems) and different levels of carbon costs can indicate 

how rate design and regulations influence charging behavior and emissions. Model recognition of 

vehicle-maintenance and cleaning requirements (which increase empty travel and the number of 

unmet trip requests) add further realism to results. As prior studies have shown, with transportation 

modeling limitations, SAEV fleets could reduce charging costs by at least 10% and emissions by 

at least 16% (Gurumurthy et al., 2022). This case study evaluates a multi-stage charging and 

discharging framework with 60 electricity price and carbon costs scenarios for a fleet of 90-kWh 

vehicles in the 6-county Austin, Texas region. A sensitivity analysis highlights how battery 

capacity and charging speed affects operational costs, queue times at charging stations, and the 

number of charging trips in a day. Results also reveal the benefits of reducing unbundled REC 

purchases. Although this study focuses on SAEVs, the methods and magnitude of findings may be 

transferable to other fleet vehicles, like autonomous delivery vans (for parcels, groceries, and take-

out food). 

 Fleets can schedule charging to minimize charging emissions and avoid adding to the peak 

demand for electricity (often met with fossil-fuel peaker power plants). This study focuses on a 

day-ahead fleet charging and discharging problem that minimizes purchasing and societal 

electricity costs. Hourly electricity transactions (e.g., kWh of electricity bought or sold) become 

targets for an optimization-based idle-vehicle dispatch strategy. Trade-offs between charging and 

other decisions (e.g., vehicle assignment, repositioning, maintenance, and cleaning) depend on the 
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expected cost savings, which are a function of exogenous factors (like electricity pricing and 

carbon taxes). However, powering large SAEV fleets (at scale) can change wholesale electricity 

production costs by turning on additional power plants or causing transmission congestion, 

resulting in a need for grid-level models where electricity pricing is endogenous. Instead of adding 

SAEV charging profiles to grid dispatch models (Li et al., 2022), marginal emissions are used 

(Holland et al., 2022). The framework tests different retail and wholesale electricity price profiles 

and SCC values to reveal insights for fleet managers in different regulatory environments.  

 

3. Modeling Framework 

A multi-stage charging and discharging strategy should reduce direct and indirect costs while 

meeting passenger demand. The first step is to define a day-ahead charging optimization problem 

to minimize these operational costs. The first problem finds the optimal bulk energy transactions 

for each hour of the upcoming 24-hour period. Since charging restricts vehicle supply, the manager 

may wish to reposition vehicles given foresight into demand patterns. The manager can solve a 

within-day dispatch strategy in a shorter time step interval that balances competing vehicle and 

fleet priorities (e.g., (dis)charging, maintenance/cleaning, passenger service, and repositioning). 

Fig. 1 presents an overview of the inputs and outputs of this multi-stage process. 

 Different electricity price structures (e.g., flat, TOU, and wholesale) and emission rates can 

influence the day-ahead (dis)charging plan. The day-ahead charging and discharging problem 

solves the amount of electricity to buy or sell per hour for the next 24 hours. This problem is solved 

immediately before the within-day dispatch problem at each decision epoch (e.g., every 15 

minutes) to address the mismatch between predicted and realized energy consumption that can 

arise from different distances traveled and inaccurate energy consumption prediction. The 

resulting buy-sell decision vector is then used in the within-day dispatch problem. The feedback 

between energy transactions and within-day idle vehicle dispatch is not limited to projecting 

energy demand for the remaining hours in the 24-hour simulation day but a rolling 24-hour period. 

As the day progresses, finding optimal solutions to the next 24-hour period can help to ensure that 

multi-day service is attainable by considering the fleet’s SOC for day two while completing 

operations in day one. The remaining subsections explain the day-ahead charging and discharging 

problem, the feedback loop through a rolling horizon approach, and the within-day optimization-

based idle vehicle dispatch problem. 

 

3.1 Day-Ahead Charging and Discharging Problem 

This study adapts the charging optimization problem from Iacobucci et al. (2021), which uses a 

virtual fleet battery to decide when and how much energy to charge (or discharge through V2G) 

at each decision time step. The nomenclature for this first problem is defined in Table 2 and 

explained below.  
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Fig. 1. Multi-stage charging & discharging framework. 

 

The objective function (Eq. 1) minimizes charging costs (internal and external) while 

ensuring the fleet average SOC at the end of the day is not severely low such that it may harm 

multi-day fleet operations. The decision variables 𝐸𝑏(𝑡) and 𝐸𝑠(𝑡) are the amount of energy (in 

kWh) to buy or sell, respectively, at time step 𝑡. The electricity price 𝑝𝑏(𝑡) is set by the utility or 

the wholesale market. Due to minimum capacity requirements, a third-party aggregator will likely 

work with the fleet manager to sell stored electricity at a price 𝑝𝑠(𝑡). Since V2G can impact battery 

longevity (Wang et al., 2016), a degradation cost 𝛾𝑐𝑦𝑐𝑙𝑒 (in $/kWh) is added to any revenue gained 

from selling electricity. The total health and environmental effects of charging emissions, 𝑝𝑑𝑎𝑚(𝑡), 

includes damages from CO2, NOx, PM2.5, and SO2. The damages from the criteria air pollutants 

are calculated using a statistical life value and the climate change effects of  CO2 are assessed using 

a SCC value (Azevedo et al., 2020). Additional details on health and climate damages can be found 

in Section 5.3. A peak power rate fee 𝑝𝑑 is applied to the peak demand 𝑃𝑏
𝑚𝑎𝑥, which is not location-

specific in this study. Finally, the last term penalizes fleets with a low fleet average SOC at the 

end of the day. The absolute value difference in SOC between �̃�, which is the target for day’s end 

fleet SOC, and the forecast of the virtual fleet battery SOC, 
𝑄(𝑇+1)

𝑉𝐵
, is multiplied by a large constant 

𝑀 to penalize a deviation from the target. 
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Table 2 Variables Needed for Day-Ahead Fleet-Battery Charging Optimization. 
Type Name Description 

Set 𝑡 Charging time step (𝑡 ∈ [1, 𝑇]) 
Decision 

Variables 

𝐸𝑏(𝑡) Aggregate energy to buy (charge) at time step 𝑡 (kWh) 

𝐸𝑠(𝑡) Aggregate energy to sell (discharge) at time step 𝑡 (kWh) 

Endogenous 

Variables 

𝑄(𝑡) Aggregate energy stored in fleet at time step 𝑡 (kWh) 

𝐸𝑏
𝑚𝑎𝑥(𝑡) Maximum allowable energy to buy at time step 𝑡 (kWh) 

𝐸𝑠
𝑚𝑎𝑥(𝑡) Maximum allowable energy to sell at time step 𝑡(kWh) 

𝑃𝑏
𝑚𝑎𝑥 Peak power demand from buying energy (kW) 

𝑞∗̃ Minimum forward average SOC target 

Parameters 𝑑𝑖(𝑡) Aggregate trip distance during time step 𝑡 of trip type 𝑖 ∈ [𝑝, 𝑑, 𝑟, 𝑐, 𝑚] (mi) 

𝑝𝑏(𝑡) Cost to buy energy at time step 𝑡 ($/kWh) 

𝑝𝑠(𝑡) Cost to sell energy at time step 𝑡 ($/kWh); assumed to be 25% less than 𝑝𝑏(𝑡) 

𝑝𝑑 Peak power rate fee ($/kW) 

𝑝𝑑𝑎𝑚(𝑡) Emission damages at time step 𝑡 ($/kWh), considering NOx, SO2, PM2.5, and CO2 

𝛾𝑐𝑦𝑐𝑙𝑒  Price of discharging energy ($/kWh) 

𝜔 Energy efficiency of vehicles (kWh/mi) 

𝜂 Roundtrip efficiency of a cycle 

𝑉 Number of vehicles 

𝐵 Battery capacity of each homogenous vehicle (kWh) 

�̃� End of day SOC target (fleet average) 

�̃� Ideal forward average minimum SOC target 

𝐻 Number of hours for forward average SOC estimation (scaled down at the end of day) 

𝑀 Sufficiently large number to increase SOC at day’s end 

𝑞𝑚𝑖𝑛 Minimum average SOC of vehicles 

𝑞𝑚𝑎𝑥 Maximum average SOC of vehicles 

 

The virtual battery 𝑄(𝑡) is the aggregate energy stored in vehicle battery packs at time step 

𝑡. The charging and discharging decisions at time step 𝑡 impact the energy stored in the virtual 

battery at the next time step 𝑡 + 1, as well as the estimated energy consumption from vehicle 

actions (Eq. 2). Electricity consumption is estimated as the linear combination of distances from 

passenger pickup, drop-off, repositioning, charging, and maintenance trips (𝑝, 𝑑, 𝑟, 𝑐, and 𝑚, 

respectively) times a uniform energy efficiency measure (in kWh/mi). Prior simulation run data is 

used to adjust hourly mileage estimates and the battery efficiency parameter.  

min ∑ (𝐸𝑏(𝑡)(𝑝𝑏(𝑡) + 𝑝𝑑𝑎𝑚(𝑡)) − 𝐸𝑠(𝑡)(𝑝𝑠(𝑡) − 𝛾𝑐𝑦𝑐𝑙𝑒))𝑇
𝑡=1 + 𝑃𝑏

𝑚𝑎𝑥𝑝𝑑 + |�̃� −
𝑄(𝑇+1)

𝑉𝐵
|𝑀      (1) 

s.t.𝑄(𝑡 + 1) = 𝑄(𝑡) + 𝐸𝑏(𝑡) −
𝐸𝑠(𝑡)

𝜂
− 𝜔 (𝑑𝑝(𝑡) + 𝑑𝑑(𝑡) + 𝑑𝑟(𝑡) + 𝑑𝑐(𝑡) + 𝑑𝑚(𝑡)) , ∀𝑡 ∈ 𝑇  (2) 

      𝑞𝑚𝑖𝑛 ≤
𝑄(𝑡)

𝑉𝐵
≤ 𝑞𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇                                (3) 

      𝑞∗̃ ≤
∑  

𝑄(𝑡)

𝑉𝐵
𝐻
ℎ=1

𝐻
, ∀𝑡 ∈ 𝑇                                       (4) 

      0 ≤ 𝐸𝑏(𝑡) ≤ 𝐸𝑏
𝑚𝑎𝑥(𝑡), ∀𝑡 ∈ 𝑇                              (5) 

      0 ≤ 𝐸𝑠(𝑡) ≤ 𝐸𝑠
𝑚𝑎𝑥(𝑡), ∀𝑡 ∈ 𝑇                             (6) 

      
𝐸𝑏(𝑡)

∆𝑡
≤ 𝑃𝑏

𝑚𝑎𝑥 , ∀𝑡 ∈ 𝑇                            (7) 

      𝑄(∙), 𝐸𝑏(∙), 𝐸𝑠(∙) ∈ ℝ+                                       (8) 

Eq. 3 imposes constraints on the SOC level for physical and logistical reasons. The fleet 

average SOC is the ratio of aggregate energy stored 𝑄(𝑡) to the total battery capacity. If the fleet 

is composed of vehicles with the same designed battery capacity, then the denominator is simply 

fleet size 𝑉 times the rated battery capacity 𝐵. 
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Equation 4 adds a forward average minimum SOC level constraint, which is computed 

before calling the solver. This constraint requires the fleet average SOC over 𝐻 hours be 

sufficiently high to prevent severe fleet average depth of discharge, which can negatively affect 

supply and may lead to unreliable passenger service during special event days. The forward 

average SOC target, 𝑞∗̃, is the minimum between the smallest allowable fleet average SOC value, 

�̃�, and the predicted recovery in SOC from max charging: 

(∑ 𝑄(𝑡)+𝐸𝑏
𝑚𝑎𝑥(𝑡)−𝜔(𝑑𝑝(𝑡)+𝑑𝑑(𝑡)+𝑑𝑟(𝑡)+𝑑𝑐(𝑡)+𝑑𝑚(𝑡))𝐻

ℎ=1 )

𝐻𝑉𝐵
. Charging and discharging are limited to the 

number of available chargers and their maximum power draw (Eq. 5 and Eq. 6). This relays fleet 

charging station design configuration (in kW) as the maximum energy transferable by the fleet, 

assuming all cords are occupied. Equation 7 finds the peak power draw from the fleet to calculate 

the peak power rate fee if one exists. Lastly, there are non-negativity constraints for the virtual 

battery and these charging decisions (Eq. 8). 

Once the day-ahead charging optimization problem is solved, the charging and discharging 

decisions are recorded and used as targets for a discrete time step optimization-based dispatch 

problem.  

 

3.2 Rolling Horizon Day-Ahead Charging and Discharging 

The electricity consumption forecast in the day-ahead problem is imperfect and should adapt to 

real-time performance. The day-ahead problem is solved before the idle vehicle dispatch problem 

to account for changes in the current fleet average SOC. This rolling horizon approach not only 

connects the two optimization problems but ensures that the fleet prepares for the next day’s 

service. In practice, a fleet manager starts with day-ahead wholesale prices. As the day progresses, 

the fleet manager could update this price vector with new within-day prices, which may improve 

cost savings. 

 

3.3 Optimization-based Idle Vehicle Dispatch Framework 

3.3.1 Benchmark Comparison of an Optimization-based Idle Vehicle Dispatch 

Multi-stage charging and discharging results are compared to an optimization-based repositioning 

and charging strategy from Dean et al. (2022). This strategy from the literature (called price-

agnostic here) uses a linear program (LP) with a three-pronged objective function to minimize 

travel time from dispatch decisions, increase the SOC of idle vehicles, and avoid zonal supply 

deficits. Previously ignored and no longer a side issue due to heightened attention on public transit 

cleaning procedures, cleaning and maintenance heuristics are added to the benchmark for a suitable 

comparison. Gurumurthy et al. (2022) found that the share of unoccupied miles due to these 

additional trips could be as high as 9-13%. In addition to an increase in empty travel, served 

demand decreased by 2.5% in their Chicago case study. The benchmark optimization-based model 

is modified below in Equations 9 – 14 to match similar notation (Table 3) used in the proposed 

model. 

𝑚𝑖𝑛 ∑ 𝑡𝑖𝑗(𝑟𝑖𝑗 + 𝑐𝑖𝑗)𝑖∈𝐼,𝑗∈𝑍 − 𝛼 ∑ 𝑐𝑖𝑗(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖)𝑖∈𝐼,𝑗∈𝑍 + 𝛽 ∑ 𝛿𝑗𝑗∈𝑍           (9) 

s.t. 0 ≤  ∑ (𝑟𝑖𝑗 + 𝑐𝑖𝑗)𝑗∈𝐽 ≤ 1, 𝑖 ∈ 𝐼                   (10) 

      ∑ 𝑐𝑖𝑗𝑖∈𝐼 ≤ 𝐶𝑗 , 𝑗 ∈ 𝐽                    (11) 
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      ∑ (𝑟𝑖𝑗𝑣𝑖 + 𝑐𝑖𝑗)𝑖∈𝐼 − ∑ (𝑐𝑗𝑖 +  𝑟𝑗𝑖𝑖∈𝐼𝑗
)𝑣𝑖 + 𝛿𝑗 ≥ 𝑓𝑗 − 𝑠𝑗 , 𝑗 ∈ 𝐽         (12) 

      𝑟𝑖𝑗, 𝑐𝑖𝑗 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽               (13) 

      0 ≤ 𝛿𝑗, 𝑗 ∈ 𝐽                (14) 

 The strategy here will opportunistically charge vehicles when zonal supply deficits, 𝛿𝑗, are 

minimized and the travel time, 𝑡𝑖𝑗, for a charging trip, 𝑐𝑖𝑗, is less than or equal to 

𝛼(𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑖). This study scaled up the weights from the demand priority scenario in Dean 

et al. (2022) to create a representative comparison for a fleet that serves more trips and has 

additional downtime requirements (e.g., maintenance and cleaning): 𝛼 = 370 and 𝛽 = 2700. 

 The heuristic cleaning policy from Gurumurthy et al. (2022) sends a vehicle that has 

completed 15 consecutive passenger trips to the nearest maintenance depot for a 10-minute 

thorough sanitization procedure. This heuristic applies to both the benchmark and proposed 

framework. The maintenance policy includes a pre-assigned maintenance hour (uniformly 

distributed) and a heuristic to override the assignment hour when the destination is close to a depot. 

If a SAEV becomes idle after completing a movement action (i.e., finished repositioning/ 

charging/discharging/cleaning/dropping off a passenger), the vehicle will check whether the 

current simulation time step is within the assigned maintenance hour. If true, the SAEV finds the 

nearest maintenance station. When a new rider gets added to a vehicle, the operator calculates the 

distance from the drop-off location to the nearest depot. If the final destination is within x miles 

(such as 2 miles), (1) the assigned maintenance hour gets revised to the simulation's current hour, 

and (2) the SAEV becomes unavailable for future passenger assignments. As a result, the vehicle 

goes in for maintenance. 

 

3.3.2 Proposed Cost-Sensitive Optimization-based Idle Vehicle Dispatch 

An extension to the existing joint optimization-based problem that only considered repositioning 

and charging (Dean et al., 2022) is proposed here. First, day-ahead (dis)charging decisions that 

minimize total electricity costs replace price-agnostic charging decisions. Second, the dispatch 

problem now includes routine maintenance trips. This new control strategy may improve SAEV 

forecasts, especially when the fleet is responsive to electricity and carbon prices. 

This problem finds optimal charging, repositioning, and maintenance decisions from the 

same set of idle SAEVs at each decision epoch. Although a sequential or decomposed sub-problem 

approach could solve for within-day actions, this study uses a joint problem to weigh fleet benefits 

from different combinations of dispatch decisions (with (dis)charging targets from the rolling 

horizon day-ahead problem). The control strategy minimizes zonal supply deficits based on current 

and projected supply and demand. Table 3 defines the variables needed for this problem. 

The supply of available vehicles 𝑠𝑗 in zone 𝑗 only counts idle vehicles or vehicles en route 

with a final destination in zone 𝑗. To avoid counting vehicles with a low SOC, all vehicles must 

have a SOC greater than 𝑆𝑂𝐶𝑚𝑖𝑛. In this study, historical demand 𝑓𝑗 of the previous hour is used 

as the expected demand since the contribution is not in SAV demand prediction. As a result, this 

study does not imply perfect knowledge of future demand. Like Dean et al. (2022), 𝛿𝑗 represents 

the supply deficit. The objective function (Eq. 15) minimizes the expected cost of dispatching 

vehicles, the penalty from supply deficits, a penalty for not adhering to the day-ahead (dis)charging 

decisions, and a penalty for performing a maintenance trip when the cost is higher than a reward. 
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Table 3 Variables Needed for Within-Day Joint Optimization-Based Vehicle-Dispatch Strategy. 

Type Name Description 

Sets 𝐼 Set of vehicles 𝑖 ∈ 𝐼 

𝐼𝑗 Set of vehicles at zone j, 𝐼𝑗 ⊆ 𝐼 

𝐽 Set of zones 𝑗 ∈ 𝐽 

Decision 

Variables 
𝑟𝑖𝑗  Vehicle i repositions to zone j (binary) 

𝑚𝑖𝑗 Vehicle i goes to a service depot in zone j (binary) 

𝑑𝑖𝑗  Vehicle i goes to discharge at a charging station in zone j (binary) 

𝑐𝑖𝑗  Vehicle i goes to charge at a charging station in zone j (binary) 

Endogenous 

Variables 

𝑠𝑗 Supply of vehicles in zone j 

𝛿𝑗 Slack variable for zone j to guarantee a non-negative supply deficit 

𝑞𝑖 Current SOC of vehicle i 

𝑅𝑏 Largest possible remainder of energy bought (equal to “budget”) 

𝑅𝑠 Largest possible remainder of energy sold (equal to “budget”) 

𝑣𝑖 Vehicle i has enough SOC to leave zone j (binary) 

𝑒𝑖
𝑏 Energy to charge vehicle i 

𝑒𝑖
𝑠 Energy to discharge from vehicle i 

Exogenous 

Variables 

𝑓𝑗 Expected demand in zone j 

𝑥𝑖𝑗  Travel distance estimate between zones for vehicle i 

𝐸𝑏
∗(𝑡) Maximum allowable energy to buy at time step 𝑡 (kWh) 

𝐸𝑠
∗(𝑡) Maximum allowable energy to sell at time step 𝑡 (kWh) 

Parameters 𝑝𝑏̅̅ ̅ Average price of electricity ($/kWh) 

𝜔 Energy efficiency of vehicles (kWh/mi) 

𝛼 Reward for maintenance trip ($, valued to a max travel distance cost: 𝜔𝑝𝑏𝑥𝑖𝑗  ) 

𝑝𝑗 Penalty for supply deficit in zone j, assumed to be constant ($) 

𝐷𝑗  Number of maintenance depots in zone j 

𝑀 Penalty for deviating from day-ahead energy transactions ($/kWh) 

𝐵 Battery capacity of each homogenous vehicle (kWh) 

𝑞𝑚𝑖𝑛 Minimum average state of charge of vehicles 

𝑞𝑚𝑎𝑥 Maximum average state of charge of vehicles 

𝑛 Number of optimization time steps in the day-ahead time step 𝑡 (e.g., n = 4 if the 

control strategy time step is every 15 minutes) 

𝑃𝑐 (Dis)charge rate of each vehicle (kW) 

𝑇 Control strategy time step duration (hr) 

𝑞𝑉2𝐺
𝑚𝑖𝑛 Minimum SOC required for a vehicle to discharge energy 

𝑆𝑂𝐶𝑚𝑖𝑛 Minimum SOC 

 

The first term prioritizes dispatching vehicles to nearby zones to reduce energy 

consumption. The decision variables 𝑟𝑖𝑗, 𝑚𝑖𝑗, 𝑑𝑖𝑗, and 𝑐𝑖𝑗 are the number of vehicles that should 

be dispatched from vehicle 𝑖’s current zone to destination zone 𝑗 for the specific trip type. The first 

letter denotes the trip type (r = repositioning, m = maintenance, d = discharging, and c = charging). 

The second term rewards vehicle dispatch actions to minimize zonal supply deficits up to the 

opportunity cost for that origin zone 𝑝𝑗. Although written as a zone-specific parameter, a constant 

value is used. The third term rewards adherence to (dis)charging values found from the rolling 

horizon day-ahead solution. If fleet managers have contracts to provide electricity to the grid and 

cannot meet their obligation, the penalty may offset the manager’s costs of purchasing electricity 

at market price. The fourth term incentivizes low-cost maintenance trips, provided that the 

traveling cost is less than 𝛼. Regarding the reward for low-cost maintenance trips (i.e., fourth term 

in Equation 15), a maintenance trip for vehicle 𝑖 to zone 𝑗 would have a non-positive cost so long 
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as 𝛼 > 0 and 𝑥𝑖𝑗𝜔𝑝𝑏̅̅ ̅ ≤ 𝛼. This comparison can be made since vehicles make at most one 

operation and can select only one destination zone.  

𝑚𝑖𝑛 ∑ 𝑥𝑖𝑗𝜔𝑝𝑏̅̅ ̅(𝑟𝑖𝑗 + 𝑚𝑖𝑗 + 𝑑𝑖𝑗 + 𝑐𝑖𝑗)𝑖∈𝐼,𝑗∈𝐽 + 𝑝𝑗 ∑ 𝛿𝑗𝑗∈𝐽 + 𝑀(𝑅𝑏 + 𝑅𝑠) − 𝛼𝑚𝑖𝑗                      (15) 

s.t. 0 ≤  ∑ (𝑟𝑖𝑗 + 𝑚𝑖𝑗 + 𝑑𝑖𝑗 + 𝑐𝑖𝑗)𝑗∈𝐽 ≤ 1, 𝑖 ∈ 𝐼                 (16) 

      0 ≤
𝐸𝑏

∗(𝑡)

𝑛
− ∑ 𝑒𝑖

𝑏𝑐𝑖𝑗𝑖∈𝐼 ≤ 𝑅𝑏 ,                  (17) 

      0 ≤
𝐸𝑠

∗(𝑡)

𝑛
− ∑ 𝑒𝑖

𝑠𝑑𝑖𝑗 ≤ 𝑅𝑠𝑖∈𝐼 ,                         (18) 

      ∑ (𝑟𝑖𝑗𝑣𝑖 + 𝑚𝑖𝑗 + 𝑑𝑖𝑗 + 𝑐𝑖𝑗)𝑖∈𝐼 −  ∑ (𝑟𝑗𝑖 + 𝑚𝑗𝑖 + 𝑑𝑗𝑖 + 𝑐𝑗𝑖𝑖∈𝐼𝑗
)𝑣𝑖 + 𝛿𝑗 ≥ 𝑓𝑗 − 𝑠𝑗, 𝑗 ∈ 𝐽        (19) 

      ∑ 𝑚𝑖𝑗𝑖∈𝐼 ≤ 𝐷𝑗 ,   𝑗 ∈ 𝐽                                  (20) 

      𝑟𝑖𝑗, 𝑚𝑖𝑗 , 𝑑𝑖𝑗 , 𝑐𝑖𝑗 ∈ {0,1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽            (21) 

      0 ≤ 𝛿𝑗   𝑗 ∈ 𝐽                (22) 

 Equation 16 is an exclusivity rule that allows up to one dispatch action for vehicle 𝑖, since 

the decision variables are binary. Equations 17 and 18 calculate the remaining energy from within-

day actions and the scheduled day-ahead blocks of energy. The constraints assume that the day-

ahead energy transaction targets (i.e., buying and selling) are used uniformly across the number of 

within-day decision epochs: 
𝐸𝑏

∗(𝑡)

𝑛
,

𝐸𝑠
∗(𝑡)

𝑛
. The minimum amount of electricity that a vehicle assigned 

to charging will need at the decision epoch, 𝑒𝑖
𝑏𝑐𝑖𝑗, is calculated from a maximum function: 𝑒𝑖

𝑏𝑐𝑖𝑗 =

𝑚𝑎𝑥(0, 𝑚𝑖𝑛(𝐵(𝑞𝑚𝑎𝑥 − 𝑞𝑖), 𝑃𝑐𝑇)). The non-negative amount of electricity is either the amount 

from charging at maximum power draw (𝑃𝑐𝑇) or the maximum SOC recoup (𝐵(𝑞𝑚𝑎𝑥 − 𝑞𝑖)). Since 

this constraint uses the current SOC of the vehicle 𝑞𝑖 and not the predicted SOC once at the charger, 

this problem underestimates the electricity required. Similarly, Equation 18 sums up across all 

vehicles the amount of discharged energy and the estimation for each vehicle, 𝑒𝑖
𝑠𝑑𝑖𝑗, is calculated 

from a separate maximum function: 𝑒𝑖
𝑠𝑑𝑖𝑗 = {

0, 𝑞𝑖 < 𝑞𝑉2𝐺
𝑚𝑖𝑛

𝑚𝑎𝑥(0, 𝑚𝑖𝑛(𝐵(𝑞𝑖 − 𝑞𝑚𝑖𝑛), 𝑃𝑐𝑇)),   𝑞𝑖 ≥ 𝑞𝑉2𝐺
𝑚𝑖𝑛. 

A vehicle can only discharge power if the SOC is greater than or equal to a minimum threshold, 

𝑞𝑖 ≥ 𝑞𝑉2𝐺
𝑚𝑖𝑛. Before solving the problem, all vehicles with a SOC below 𝑞𝑉2𝐺

𝑚𝑖𝑛 are eliminated from 

the choice set of discharging. The minimum amount of discharged energy is non-negative and is 

either the amount from discharging at maximum speed during the decision epoch duration (𝑃𝑐𝑇) 

or the maximum SOC discharge potential (𝐵(𝑞𝑖 − 𝑞𝑚𝑖𝑛)). 

 Equation 19 is a zonal supply and demand relationship. The lefthand side of the inequality 

constraint adjusts supply from the decision variables directly: the supply of dispatched vehicles to 

or from zone 𝑗 and the slack variable 𝛿𝑗. The binary constant 𝑣𝑖 adjusts zonal supply to prevent 

vehicles with a low SOC from counting towards supply. Thus, 𝑟𝑖𝑗 is eliminated for vehicles with 

𝑣𝑖 = 0. The righthand side of the inequality constraint, 𝑓𝑗 − 𝑠𝑗, is expected future demand minus 

the existing supply of available vehicles (i.e., a supply deficit minimization expression). Equation 

20 ensures that the number of vehicles sent to a depot for maintenance does not exceed the current 

availability at that zone: ∑ 𝑚𝑖𝑗𝑖∈𝐼 ≤ 𝐷𝑗 ,   𝑗 ∈ 𝐽. Equation 21 ensures that all vehicle dispatch 

decision variables are binary, and Equation 22 is a non-negativity condition for the slack variable.  

 The modifications made in this study to the idle vehicle dispatch problem from Dean et al. 

(2022) include adding two new decision variables (discharging and maintenance), setting an upper 
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bound on maintenance trips based on depot bays (Eq. 20), and introducing limits on charging and 

discharging based on exogenous targets (Eq. 17 and Eq. 18). If the (dis)charging limits were based 

on charging infrastructure, the problem would closely resemble the prior study. Since Equations 

17 and 18 may not guarantee integer solutions if the problem was formulated as a Linear 

Programming problem, the problem requires the binary decision variables be integer (Eq. 21). 

Unlike in Iacobucci et al. (2021) where charging, trip assignment, and repositioning occur at 

different decision epochs, the joint problem resolves dispatch decisions at the same decision epoch. 

This study assumes a temporal resolution of 15 minutes for the joint problem while the day-ahead 

charge scheduling problem provides hourly values. 

As in Dean et al. (2022), variable elimination can reduce the computational burden of the 

problem. All vehicles that have traveled to a depot location for maintenance are eliminated as 

choices in the maintenance vehicle choice set. Maintenance is also limited to vehicles with a 

battery capacity less than 𝐵 − 𝑃𝑐𝑇𝑚, where 𝑇𝑚 is the duration of a maintenance session. Since 

vehicles can safely charge during maintenance sessions, it is reasonable that a fleet would want to 

maximize downtime productivity and not send vehicles with sufficiently high battery levels. 

Additionally, to prevent a large mismatch between buying electricity at low-cost periods and 

charging during maintenance, the fleet cannot dispatch vehicles to depots when the day-ahead 

solution decided not to purchase electricity. 

 

4. Simulation Environment  

The proposed framework is analyzed in POLARIS, which is an activity-based, agent-based 

modeling framework capable of simulating large-scale transportation simulations on high-

performance supercomputers and is written in C++ (Auld et al., 2016). The simulation creates a 

synthetic population through an iterative proportional fitting process to control for person-level 

attributes (e.g., gender, age, race) and household-level attributes (size, income, number of 

workers), and these synthesized distributions at the census block group level are mapped to the 

regions’ traffic analysis zones. Calibrated activity duration and start time, mode, and destination 

choice models forecast an agent’s activities. A time-dependent dynamic traffic assignment model 

routes vehicles on a road network with background freight and interstate personal vehicle traffic 

(Verbas et al., 2018). 

The simulation records link-level trajectories for all vehicle trips in the region at discrete 

simulation time steps (6 seconds in this study). SAEVs inherit features of vehicles, like battery 

capacity, SOC, occupancy, origin and destination locations, and ownership information. While 

SAEVs perform vehicle-level actions, like dropping off a passenger or entering and existing a 

maintenance depot, the fleet operator deals with strategy-level actions. Assigning passenger 

requests to vehicles and other dispatch decisions (e.g., repositioning, charging, discharging, 

maintenance, and cleaning trips) are all strategy-level actions. 

 All new requests for an SAEV come with the requested passenger’s pickup and drop-off 

location. The assignment of vehicles to passengers uses a zone-based heuristic (Gurumurthy et al., 

2020) to check vehicle availability starting within the pickup zone and searching outwards by the 

fastest travel time between zones (if needed). The checks ensure the closest SAEV has sufficient 

range to serve the additional trip and the pickup time does not exceed the service maximum wait 

time of 15 minutes. If the closest SAEV is occupied, checks ensure that the new passenger does 
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not delay the total travel time of the riders already in the vehicle beyond the service’s advertised 

maximum delays (e.g., 10 minutes and 15%). If multiple SAEVs are available within the pickup 

zone, the SAEV idle the longest is dispatched to the new passenger. If there are no vehicles within 

a 15-minute zonal travel time window, the next simulation time step attempts to solve this unmet 

trip request. If the request was not matched within the maximum wait window, the total number 

of vehicles considered for the trip gets recorded alongside the unmet trip’s request (e.g., location, 

request time, person ID). 

 

5. Case Study  

To compare the advantages of including multi-stage charge scheduling under different electricity 

price schemes and carbon prices, the study simulates SAEV service within the 6-county Austin 

region (5,300 square miles). Travel demand, electricity price, and emission estimates are described 

in this section. 

 

5.1 Travel Demand Data 

The mode choice model was calibrated to the 2017-2018 household travel survey (provided by the 

region’s metropolitan planning organization) and adjusted to reflect future travelers’ expected 

utilization of on-demand SAEVs. Fare components include a $0.50/mile fee and a $0.25/minute 

fee. The value of travel time savings parameter of 20% reduces the in-vehicle travel time disutility 

of traveling in a shared vehicle since passengers can now make better use of their time. The 

alternative specific constants for this mode were scaled up by 50%, and a vehicle ownership 

reduction model from Menon et al. (2019) is adapted to approximate future vehicle ownership 

levels. Similar demand estimations were performed in Dean et al. (2022). SAEV trip demand for 

a typical weekday’s travel demand was generated according to these adjustments to increase 

adoption levels to 7.1% of the region’s person-trips. Once the demand for this mode was populated, 

the same trip data was used for subsequent scenarios. Fixed demand allows for a fairer comparison 

between dispatch strategies when considering electricity price inputs and SCC values. Although 

the same demand is used, the fleet operator is not aware of future demand patterns and is reacting 

to the prior hour’s demand, which can increase costs (Kim et al., 2022). 

 

5.2 Electricity Data 

The electricity bill for an Austin-based fleet may include a monthly peak power rate fee 

($12.25/kW), connection fee ($500/month), and volumetric-based fees (Austin Energy, 2022). For 

simplicity, the study assumes Austin Energy either uses a flat rate of $0.07/kWh or a new TOU 

rate with two tiers: peak 2:00 PM to 7:00 PM at $0.23/kWh and off-peak at $0.035/kWh. Historical 

wholesale prices in the Austin load zone of the Texas electricity grid (i.e., ERCOT) were obtained 

for every Wednesday in 2019. Like Zhang and Chen (2020), four wholesale price profiles were 

selected: no peak (hourly price variance is less than 25), spike (maximum price exceeds 

$100/MWh), peak (daily maximum deviates more from the daily average than the daily minimum), 

and off-peak (opposite of peak). This classification scheme resulted in a share of 21%, 44%, 31%, 

and 4%, respectively. For spike and peak pricing types, a random date was selected, while the 

average price type was chosen for the others. Fig. 2 plots the historical price curves in grey with 
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green color used to show the randomly sampled or average price profile used in the case study. 

The lavender line and shading represent the mean price and 95% confidence interval. The monthly 

peak power rate fee was rescaled to a 24-hour period to equal $0.0395/kW (Luke et al., 2021).  

 

 

Fig. 2. Sampled wholesale electricity prices in the Austin load zone of the Texas electricity grid 

in 2019 on Wednesdays by price profile. 

Note: The green line is the randomly sampled (or average, in the case of the no peak day and off-peak day) curve 

used in the case study. The lavender line is the mean with a 95% confidence interval shading.  

 

5.3 Emissions Cost Data 

Hourly marginal health and environmental damages from 2018 were obtained from Azevedo et al. 

(2020). A caveat in applying marginal emissions is that the original data used to compile estimates 

includes power generation sources with at least 25 MW of generating capacity and does not 

consider nuclear or intermittent renewables, biasing the estimates up. It also implies that future 

marginal generators are the same as 2018 sources. The hourly health damages include a SCC value 

of $40/metric ton of CO2 (in 2010 USD) and a value of statistical life of $8.8 million (in 2010 

USD) for health damages from SO2, NOx, and PM2.5. To estimate monetary damages from 

marginal pollution, Azevedo et al. (2020) used reduced-form air quality models to estimate the 

additional premature mortality cases and multiply them by a statistical value of life. Fig. 3 plots 

the values used in this study in 2021 USD, assuming $40/metric ton of CO2 (in 2010 USD). 

Interestingly, marginal costs in Texas are lower between the peak hours of 4 PM and 8PM than 

off-peak hours of 1 AM and 4 AM, which may not be reflective in other regions (Graff Zivin et 

al., 2014; Holland et al., 2022). The 24-hour average marginal emissions (priced in $/MWh) are 

highest for CO2 ($27.30/MWh), followed by SO2 ($19.44/MWh), direct PM2.5 ($5.84/MWh) and 

NOx ($3.47/MWh). Marginal emission damages for each criteria air pollutant are used to estimate 

the damages from premature deaths, and the climate effects of CO2 are captured through the SCC. 

Since SAEVs and at-scale EV adoption may alter the demand for electricity, it is important to 

understand the impact of turning on or ramping up power output. This effect is modeled via 
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marginal emission factors. Readers interested in a comparative analysis of models and methods to 

calculate power grid emission factors can refer to Ryan et al. (2016). 

 

 

Fig. 3. Hourly health and environmental damages ($/MWh) of the Texas power grid. 

 

5.4 Fleet and Charging Station Assumptions 

Fleet vehicles have a battery capacity of 90 kWh to reduce the frequency of charging trips and are 

assumed to access fleet-owned bidirectional 120 kW charging stations to reduce downtime. As 

with other battery-electric vehicles, the fleet imposes SOC lower (15%) and upper bounds (95%) 

to avoid enhanced degradation. Thus, the effective battery capacity is 72 kWh (or roughly 240 

miles). Although 120 kW is faster than most fast-charging equipment (e.g., 50 kW), it follows 

automaker trends of increasing vehicle and power draw capabilities. The power draw follows a 

uniform rate at maximum power, biasing charging times down from more realistic models where 

kW varies with SOC. Discharging is assumed to follow a uniform power injection rate of 10 kW. 

Daily energy consumption values from SAEVs are predicted using macroscopic routing outputs 

from a microscopic (i.e., link-level) machine-learning model (Moawad et al., 2021). On average, 

every 14.7 square miles in this 6-county region has a fleet-owned charging station, with a ratio of 

5.7 cords to every station (Dean et al., 2022). Fig. 4 maps the EV charging stations (EVCS) in 

white and the maintenance depots in green. 
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Fig. 4. Fleet-owned charging stations and maintenance depot locations in the 6-County Austin, 

TX service area. 

 

5.5 Scenarios 

We studied 60 scenarios for day-ahead charging and discharging that are distinguished by their 

electricity price ($/kWh), peak power rate fee (binary, $/kW), and SCC value ($40/tonne of CO2 

to $200/tonne of CO2 by steps of 40, all in 2010 USD). To ensure fair comparisons in electricity 

purchasing and health damage costs, fleet average SOC starts at 90%, and buying decisions at the 

end of the day are stopped when the fleet average SOC returns to 90%. Table 4 lists the assumed 

input values used in the multi-stage charging and discharging strategy. Additionally, vehicles may 

charge from a low SOC or absolute range check, whichever is first (15%, 30 mi). The parameter 

used to reward low-cost maintenance trips, 𝛼, is set to 2 mi. The penalty for failing to adhere to 

rolling horizon energy values is the average electricity price over the day (for charging) and a 25% 

reduction on this value for discharging. 
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Table 4 Parameter Assumptions in the Multi-Stage Charging and Discharging Strategy. 
Variable Description Input Value Source or Justification 

𝑝𝑑 Daily peak power rate fee (if present) $0.0395/kW Based on Luke et al. (2021) 

𝛾𝑐𝑦𝑐𝑙𝑒  Cycling cost of discharging energy  $0.025/kWh Iacobucci et al. (2021) 

𝜔 Energy efficiency of vehicles 0.279 

kWh/mi 

Simulation data using Moawad et al. 

(2021) energy consumption model 

𝜂 Roundtrip efficiency of a cycle 0.95 Müller et al. (2022) 

𝑉 Number of vehicles 15,000 Dean et al. (2022) using a ratio of 1 

SAEV per 125 residents 

𝐵 Battery capacity of each vehicle 90 kWh Dean et al. (2022) 

�̃� End of day SOC target 90% Set to starting target 

�̃� Ideal forward average minimum SOC target 60% Engineering judgment 

𝐻 Number of hours for forward average SOC 

estimation (scaled down at the end of day) 

5 Engineering judgment 

𝑀 Sufficiently large number to increase SOC 

at the end of the day 

2,500,000 Engineering judgment 

𝑞𝑚𝑖𝑛 Minimum average SOC of vehicles 20% Gurumurthy et al. (2022) 

𝑞𝑚𝑎𝑥 Maximum average SOC of vehicles 100% Technical requirement 

𝑝𝑗 Penalty for supply deficit $2,200 Dean et al. (2022) 

𝑛 Number of decision epochs per hour 

(within-day) 

4 (every 15 

min) 

Dean et al. (2022) 

𝑞𝑉2𝐺
𝑚𝑖𝑛 Minimum SOC for a vehicle to discharge 

energy 

40% Engineering judgment 

 

6. Results 

The results are organized into the following sections: mobility performance, energy consumption 

profiles, and electricity and emission costs. 

 

6.1 Mobility Impacts of Multi-Stage Charging and Discharging 

The rolling horizon day-ahead charging and discharging strategy determines the amount of 

electricity to buy or sell per hour. The new within-day problem then finds the lowest operating 

costs for vehicle assignment by considering optimal (dis)charging energy targets and maintenance 

requirements. The pursuit of lower electricity costs, however, should not come at the expense of 

lost passenger revenue, particularly since failing to provide a vehicle to a passenger within their 

acceptable wait time (e.g., 15 min) may lead the passenger to stop using the service. 

The price-agnostic approach brings in a daily revenue of nearly $684 per vehicle compared 

to $705 with the multi-stage strategy (Table 5). Trip revenue was calculated with the same SAEV 

fare structure that was used in the creation of the fixed demand data (see Section 5.1). Fleet 

managers can increase passenger revenue by an average of 3.1% across electricity price types, 

assuming typical weekday travel demand. The increase in passenger travel comes from meeting 

more trips (Table 6) by charging vehicles in advance of demand. Instead of opportunistically 

charging low SOC vehicles when supply deficits are low, as in the price-agnostic strategy, the 

multi-stage (dis)charging strategy prepares for drops in fleet average SOC due to historical travel 

demand. Using Becker et al.’s (2020) Austin vehicle production costs, the average daily profit per 

vehicle (excluding amortized charging supply equipment costs) with multi-stage charging was 

$464–$475 versus $456–$467 with price-agnostic, depending on the SCC. Even with higher 
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passenger revenue, higher SAEV utilization increases other costs, namely cleaning, tolls, 

depreciation, vehicle wear, and battery degradation. Fig. 5 displays the relative change in revenues 

and costs across the twelve electricity and power pricing scenarios using an SCC value of 

$40/tonne CO2. The black dots show the relative increase in daily per SAEV profit by pricing 

scenario. 

 

 

Fig. 5. Change in revenue & costs with Multi-Stage versus Price-Agnostic by electricity and peak 

power rate fee scenario. 

 

The median number of daily person-trips per SAEV increased to 29 from 28 with the multi-

stage strategy, which explains why a higher percentage of vehicles meet the 15 consecutive trip 

threshold for cleaning (85% versus 79%) (Table 6). The average SAEV travels an additional 19 

miles/day due to more passenger and cleaning trips. While both dispatch strategies find the least-

cost vehicle-to-zone choices for charging trips, the price-agnostic strategy does not have a penalty 

term to improve adherence with price-sensitive (dis)charging decisions. Thus, the portion of 

unoccupied VMT due to charging with day-ahead is higher (Fig. 6). 
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Fig. 6. Share of unoccupied VMT by type for Price-Agnostic and Multi-Stage frameworks.
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TABLE 5  Daily Per SAEV Passenger Revenue and  Electricity Purchasing Cost Comparison by Control Strategy and Electricity Price. 

Electricity Price  

(Peak Power  

Rate Fee) 

Avg Daily Passenger Revenue (per SAEV)  

across all non-zero SCC prices 

Avg Daily Electricity Purchase Costs (per SAEV) 

 across all non-zero SCC prices 

Price-Agnostic ($) Multi-Stage ($) % Increase 
$ Revenue 

Increase 
Price-Agnostic ($) Multi-Stage ($) % Decrease 

$ Electricity 

Savings 

Flat $683.8/veh/d $705.5/veh/d 3.1% $21.76/veh/d $6.46/veh/d $6.13/veh/d 5.0% $0.32/veh/d 

Flat (✓) $683.8 $705.4 3.1% $21.58 $6.76 $6.53 3.5% $0.24 

TOU $683.8 $704.3 2.9% $20.54 $6.13 $5.88 4.0% $0.24 

TOU (✓) $683.8 $704.9 3.0% $21.13 $6.43 $5.45 15.3% $0.99 

No Peak $683.8 $705.6 3.1% $21.84 $1.77 $1.61 9.2% $0.16 

No Peak (✓) $683.8 $702.7 2.7% $18.95 $2.08 $1.99 4.1% $0.08 

Peak $683.8 $704.8 3.0% $21.06 $2.87 $2.24 22.1% $0.64 

Peak (✓) $683.8 $705.2 3.0% $21.37 $3.18 $2.55 19.6% $0.62 

Spike $683.8 $706.8 3.3% $22.99 $7.79 $5.31 31.9% $2.49 

Spike (✓) $683.8 $705.8 3.1% $22.01 $8.10 $4.48 44.7% $3.62 

Off-peak $683.8 $705.4 3.1% $21.56 $1.37 $1.10 19.6% $0.27 

Off-peak (✓) $683.8 $705.2 3.0% $21.39 $1.67 $1.50 10.3% $0.17 

Note: “✓” = A peak power rate fee ($/kW) is added. “SCC” = social cost of carbon. Results are in 2021 USD. 
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TABLE 6  Daily Mobility Performance Comparison by Control Strategy and Electricity Price. 
Electricity Price  

(Peak Power 

Rate Fee) 

Avg Daily Trips 

per SAEV  
% Trips Met by 

Fleet 
Avg Daily VMT 

per SAEV 
Fleet Average  

% eVMT 

Median  

Wait Time 

(min) 

Avg Daily 

Charging Trips 

per SAEV 

Avg Daily 

Cleaning Trips 

per SAEV 

Price-Agnostic 27.17 97.00% 277.7  34.1% 4.7  3.22 0.79 

Flat 27.92 99.68% 295.6 36.3% 4.8 2.04 0.84 

Flat (✓) 27.85 99.43% 296.6 36.7% 4.9 2.19 0.84 

TOU 27.91 99.64% 296.5 36.5% 4.9 2.02 0.85 

TOU (✓) 27.65 98.72% 296.5 37.3% 5.0 2.15 0.84 

No Peak 27.93 99.72% 296.6 36.5% 4.8 2.04 0.84 

No Peak (✓) 27.93 99.70% 297.8 36.8% 4.8 2.22 0.85 

Peak 27.85 99.44% 295.5 36.4% 5.0 2.08 0.83 

Peak (✓) 27.98 99.90% 297.6 36.7% 4.7 2.32 0.86 

Spike 27.97 99.87% 297.6 36.8% 4.8 2.11 0.84 

Spike (✓) 28.01 99.98% 297.2 36.8% 4.6 2.47 0.86 

Off-peak 27.91 99.63% 295.4 36.3% 4.8 2.04 0.84 

Off-peak (✓) 27.98 99.89% 296.7 36.6% 4.8 2.28 0.86 

Note: “✓” = A peak power rate fee ($/kW) is added. “eVMT” = Empty VMT. 
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TABLE 7  Daily Per SAEV Health and Climate Damages from Electricity Generation by SCC and Electricity Price. 
Electricity 

Price  

(Peak Power  

Rate Fee) 

Avg Daily Health and Climate Damages 

(per SAEV) $40/tonne CO2 (2010 USD) 

Avg Daily Health and Climate Damages  

(per SAEV) $200/tonne CO2 (2010 USD) 

Price-Agnostic ($) Multi-Stage ($) % Decrease 
$ Damages 

Avoided 
Price-Agnostic ($) Multi-Stage ($) % Decrease 

$ Damages 

Avoided 

Flat $5.16/veh/d $5.07/veh/d 1.7% $0.09/veh/d $15.62/veh/d $15.15/veh/d 3.0% $0.48/veh/d 

Flat (✓) $5.16  $4.94  4.2% $0.22 $15.62 $15.00 4.0% $0.63 

TOU $5.16  $5.06  1.9% $0.10 $15.62 $15.11 3.3% $0.51 

TOU (✓) $5.16  $5.23  (1.4%) ($0.08) $15.62 $15.31 2.0% $0.32 

No Peak  $5.16  $5.06  1.8% $0.10 $15.62 $15.13 3.2% $0.49 

No Peak (✓) $5.16  $4.95  4.1% $0.21 $15.62 $15.18 2.8% $0.44 

Peak  $5.16  $4.99  3.2% $0.17 $15.62 $15.22 2.6% $0.41 

Peak (✓) $5.16  $4.97  3.7% $0.19 $15.62 $15.10 3.4% $0.52 

Spike $5.16  $5.11  0.9% $0.05 $15.62 $15.25 2.4% $0.37 

Spike (✓) $5.16  $5.29  (2.5%) ($0.13) $15.62 $15.61 0.1% $0.02 

Off-peak  $5.16  $5.08  1.5% $0.08 $15.62 $15.18 2.8% $0.44 

Off-peak (✓) $5.16  $4.95  4.1% $0.21 $15.62 $15.10 3.3% $0.52 

Note: “✓” = A peak power rate fee ($/kW) is added. “SCC” = social cost of carbon. Results are in 2021 USD. 
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6.2 Fleet Charging & Discharging Profiles 

The day-ahead strategy determines the amount of electricity to buy or sell for the next 24 hours to 

minimize total electricity costs. Fig. 7 shows the (dis)charging energy profiles by electricity price 

type ($/kWh) and peak power rate fee ($/kW) relative to the price-agnostic strategy (SCC = 

$40/tonne CO2). When fleets face a daily fee on their peak power draw, the strategy can spread 

charging into other low-cost periods while ensuring adequate fleet average SOC. The plot shows 

lower electricity consumption bars under TOU and spike wholesale prices with peak power rate 

fees (light yellow) than without these $/kW fees (dark grey). 

 Interestingly, TOU with $/kW fees led to the most amount of discharged electricity 

(totaling 85.1 MWh). In this scenario, the average SAEV providing V2G services supplied 42.5 

kWh of electricity. Although TOU electricity price variation is not as volatile as the wholesale 

energy market, the fleet can reduce its electricity costs through energy arbitrage when it knows 

prices in advance and the price difference is sufficiently high (6.57x in this study). Although the 

peak period was 2-7PM, discharging ramped up until 8PM before gradually declining. This finding 

suggests that day-ahead buying and selling should consider not only charging station availability 

but the effect of slower discharging rates on future charging station availability. This study used a 

first-in, first-out queueing policy at charging stations, which may explain temporal shifts between 

decisions and outcomes. 

 

6.3 SAEV Electricity Costs 

The multi-stage strategy reduces daily electricity costs, regardless of the electricity pricing type 

(e.g., fixed or wholesale). Table 5 shows the average difference (% and $) in passenger revenue 

and electricity purchase costs between the two strategies. These values are averaged across all five 

SCC scenarios for a typical day’s trips. Table 7 shows the average difference in health and 

environmental damages under low and high SCC prices ($40 and $200/tonne CO2). Fleet managers 

will likely adopt the multi-stage (dis)charging strategy because it can increase profit, mostly due 

to increases in passenger revenue. At the same time, fleet managers may pay 15.5% less in 

electricity purchasing costs (or $0.79 per SAEV per day). Prior research has shown lower per-mile 

costs with SAEVs compared to internal combustion engine vehicles (Bauer et al., 2018), partially 

due to lower “fuel” costs (e.g., up to 6% of operating costs per vehicle-mile in Austin (Becker et 

al., 2020)). Depending on the electricity prices set by the utility or the wholesale market, fleet 

managers can decrease daily per vehicle costs by $0.08 to $3.62. Flat electricity prices, which do 

not incentivize shifting charging demand, offer the least savings (average 5% without $/kW fees 

versus 3.5% with them). The highest cost savings was found in the wholesale spike with $/kW 

fees scenario (44.7%), similar to findings in Iacobucci et al. (2021). 
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Fig. 7. Hourly SAEV fleet energy profiles by electricity type and peak power rate fee. 
(Note: Assumes a $40 SCC in 2010 USD in the climate damages calculation) 

 The price-agnostic strategy’s objective function includes an opportunistic charging term, 

which may explain why the baseline has higher electricity demand. The objective function trades 

off between charging low-SOC vehicles with minimizing zonal supply deficits. So long as the 

zonal supply deficit is kept to a minimum, the strategy will charge vehicles. As a result, the average 

SAEV will visit a charging station 3.2 times per day versus an average of 2.2 with day-ahead 

charging (Table 6). 

 In general, pursuing a joint minimization of direct and indirect electricity costs can lead to 

reduced health and climate damages from power plant emissions. If the fleet ignores societal 

charging costs (i.e., $0/kWh), the average amount of CO2 per SAEV can fall in a third of pricing 

scenarios (e.g., flat, TOU, TOU with $/kW fees, spike), suggesting policy intervention to price 

charging emissions may be warranted (Table 8). Even if the social cost of carbon is ignored, the 

health damages from electricity generation rise in all but one pricing scenario (TOU), relative to 

price-agnostic control. If fleets are incentivized through policy (e.g., Clean Miles Standard) or 

deterred through carbon taxes, this multi-stage (dis)charging strategy may also lead to non-

transportation revenues or lower costs. At $200/tonne CO2, the day-ahead solution will always 

reduce upstream emissions. In contrast, the lowest SCC value leads to higher damages when the 

electricity price includes a $/kW fee and uses retail TOU or wholesale pricing with a spike (Table 

7). Increasing SCC can ensure a more consistent reduction in health damages of around 2.8% per 

vehicle per day. The average per-vehicle emission damages savings is between $0.10 and $0.43 

(for a SCC of 40 and 200, respectively). A 15,000-vehicle fleet in Austin could avoid $3,280–

$9,375 in health and environmental damages per day by switching to this multi-stage strategy.  
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TABLE 8 Daily Per SAEV Health Damages and Carbon Dioxide Release from Electricity Generation by Control Strategy Without 

Internalizing Social Costs. 

Electricity Price  

(Peak Power  

Rate Fee) 

Avg Daily Health Damages (per SAEV) Avg Daily kg CO2 Charging Emissions (per SAEV) 

Price-Agnostic ($) Multi-Stage ($) % Increase 
$ Damages 

Added 

Price-Agnostic  

(kg CO2) 

Multi-Stage 

(kg CO2) 
% Increase kg CO2 Added 

Flat $2.05/veh/d $2.20/veh/d 7.1% $0.16/veh/d 52.6 kg CO2/veh/d 51.0 kg CO2/veh/d (3.1%) (1.6) kg CO2/veh/d 

Flat (✓) $2.05 $2.21 7.6% $0.17 52.6 54.1 2.73% 1.5 

TOU $2.05 $2.04 (0.3%) ($0.01) 52.6 48.7 (7.5%) (3.9) 

TOU (✓) $2.05 $2.18 6.3% $0.14 52.6 51.6 (2.0%) (1.0) 

No Peak $2.05 $2.37 13.6% $0.32 52.6 53.7 1.9% 1.1 

No Peak (✓) $2.05 $2.22 7.7% $0.17 52.6 54.1 2.7% 1.5 

Peak $2.05 $2.30 11.1% $0.26 52.6 53.0 0.7% 0.4 

Peak (✓) $2.05 $2.34 12.4% $0.29 52.6 53.8 2.1% 1.2 

Spike $2.05 $2.19 6.8% $0.15 52.6 52.3 (0.6%) (0.3) 

Spike (✓) $2.05 $2.27 9.8% $0.22 52.6 53.1 1.0% 0.5 

Off-peak $2.05 $2.38 14.2% $0.34 52.6 54.4 3.2% 1.8 

Off-peak (✓) $2.05 $2.25 8.9% $0.20 52.6 54.3 3.2% 1.7 

Note: “✓” = A peak power rate fee ($/kW) is added. “SCC” = social cost of carbon. Results are in 2021 USD 
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6.4 Sensitivity Analysis with Battery Capacity and Charging Speed 

The prior sections summarized results of a comprehensive simulations of an on-demand SAEV 

fleet operating in the 6-County Austin, TX metro by varying electricity prices, peak power rate 

fees, and the cost of carbon within a joint health and climate emissions damages estimate. The 

sensitivity of the comparison between the proposed multi-stage charging and discharging strategy 

and the price-agnostic benchmark is evaluated here with respect to battery capacity and charging 

speed. All twelve electricity and power scenarios are studied using a SCC value of $40/tonne of 

CO2 in 2010 USD. Charging speed is set at 120 kW when shifting battery capacity, and vehicle 

battery capacity remains 90 kWh when shifting charging speed. 

Fig. 8 presents two bar plots to show how increasing vehicle battery capacity can reduce 

the frequency of charging trips in a day and increase queue time at charging stations (when there 

is a queue). Also, the median wait time that customers experience decreases as battery capacity 

increases since fewer vehicles need to charge at once, but only for the proposed framework. The 

results indicate that multi-stage charging and discharging can improve the quality of the service, 

albeit at long wait times at charging stations. The increase in profits per 75-kWh vehicle per day 

(using the same analysis shown visually in Fig. 5) is between -$0.01 and $6.76, depending on the 

day’s electric bill ($/kWh and $/kW). The loss is an outlier since the next lowest change in 

operating profits between strategies is $2.09. For 60-kWh vehicles, the increase in daily per vehicle 

profit is between $1.48 and $12.70. These ranges are comparable to Fig. 5’s 90-kWh fleet, which 

shows an additional daily per vehicle profit of $3.15 to $11.24. 

 

  

Fig. 8. Change in SAEV fleet service by changing battery capacity. 
(Note: SCC = $40/tonne CO2 in 2010 USD and Charging Speed is 120 kW) 

Similarly, Fig. 9 shows the sensitivity of two metrics for charging speed at the fleet-owned 

chargers. Increasing charging speed in three levels (60 kW, 90 kW, and 120 kW) can increase the 

frequency of charging trips in a day and decrease queue time at charging stations (when there is a 

queue). The proposed multi-stage charging and discharging strategy has an upper bound on buying 

energy that comes from max charging. Higher charging speeds mean more of the fleet’s energy 

can be bought within a low-cost hour, which can cause the fleet to dispatch vehicles to chase lower 

electricity costs, albeit at slightly higher percent empty travel. Faster charging also can reduce 

downtime and improve response times for passenger service. The increase in profits using 60 kW 

chargers with a 90-kWh vehicle per day (using the same analysis shown visually in Fig. 5) is 
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between $6.04 and $15.36, depending on the day’s electric bill ($/kWh and $/kW). For 90 kW 

chargers, the increase in daily per vehicle profit is between $2.78 and $8.89. These ranges are 

comparable to Fig. 5’s 120 kW charging speed, which shows an additional daily per vehicle profit 

of $3.15 to $11.24. 

 

  
 

Fig. 9. Change in SAEV fleet service by changing charging speed. 
(Note: SCC = $40/tonne CO2 in 2010 USD and Battery Capacity is 90 kWh) 

 

7. Discussion 

7.1 Power System Impacts 

A 15,000-vehicle fleet in Austin (serving about 7.1% of the region’s daily person-trips) with a 

baseline control strategy (Dean et al., 2022), called price-agnostic in this study, consumed 1,364 

MWh of electricity per day. Austin’s peak demand in 2019 was 2,810 MW (4–5 PM) and the price-

agnostic charging and repositioning strategy for SAEVs could add an additional 29.6 MW (or 

1.05% of the existing peak electricity demand for this region). In contrast, the multi-stage charging 

and discharging framework, which includes marginal emissions damages (often higher at the 

peak), reduced the average peak demand to 18.3 MW (shaving the peak by 38%). Since power 

distribution systems are designed with respect to the peak demand, shifting flexible loads from 

SAEV fleets could allow the utility to avoid costly infrastructure upgrades that would be passed 

onto all customers. Estimates on the marginal distribution system costs vary by utility and the 

scope (i.e., based on load, number of customers, load diversification) and range from $148/kW to 

$1,520/kW (Cutter et al., 2021). The multi-stage charging and discharging strategy can provide 

peak shaving benefits of $0.01 to $0.13 per SAEV per day, assuming a 25-year design life for 

substations. Higher benefits are received when SAEVs pay for the real cost of producing electricity 

(i.e., time-varying or wholesale prices). 

 

7.2 Empty Travel Impacts 

Increases in empty VMT affect all travelers and may be penalized in the future (Dean and 

Kockelman, 2022a). The revenue-miles average vehicle occupancy (AVO) across all strategies, 
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including the price-agnostic base, was at least 1.95. The percentage of unoccupied VMT in the 

5,300 square mile service area is higher than in Dean et al. (2022) (34%–37% versus 24%), likely 

due to maintenance and cleaning trips (Gurumurthy et al., 2022), which are performed in only four 

locations in this region. Supply shortages from maintenance and cleaning may also explain why 

AVO increased from 1.64 to 1.95. Assuming a 35% empty VMT allowance for a sprawling service 

area and a 5-cent road usage fee on any additional empty travel, the fleet would face an average 

daily penalty of $0.09 per vehicle. Although small relative to passenger revenue, the region’s 

transportation authorities could collect anywhere from $310,000 to $430,000 in additional revenue 

annually (depending on daily and seasonal changes in passenger demand). The price-agnostic 

strategy had 34.1% empty VMT and would avoid penalties under the assumed 35% cap (Table 6). 

A limitation of this study is that demand generation did not include surge pricing or recover costs 

from picking up passengers in exurban neighborhoods, which would likely reduce deadheading 

miles. A high empty VMT cap may also limit service to areas with a higher density of trip ends 

(i.e., geofences), which may have equity impacts because housing costs usually decline with 

distance from the downtown (Gurumurthy and Kockelman, 2022). 

 

7.3 Fleet Charging Infrastructure  

Managed charging can be implemented with existing EVs and charging infrastructure, provided 

communication capabilities exist between the fleet manager and either the vehicle or charger. V2G 

requires having an EV and charging station with bidirectional charging capabilities. Future 

proofing fleet-owned charging station investments may allow SAEVs to take advantage of non-

transportation revenues (e.g., grid services) or at the very least, lower costs through energy 

arbitrage. If fleets use only bidirectional charging equipment, vehicles that are contractually 

obligated to discharge may face queueing delays unless fleet managers prioritize discharging 

commitments by disconnecting charging vehicles (see results from the TOU with $/kW fees 

scenario). Alternatively, fleet managers can work with utilities to determine the value of V2G 

services to the local power distribution network and build out bidirectional chargers in select 

locations. Collaborations between EV fleets and utilities could allow for better EV-grid outcomes. 

 

7.4 Retail Electricity Prices & Peak Power Rate Fees 

Although fixed retail electricity prices, either flat or TOU, provide certainty to fleets in multi-year 

cost projections, they have some of the highest electricity costs (Table 5). If Texas allowed fleet 

customers within municipally-owned electric utility regions, like Austin, to opt into wholesale 

electricity prices, the fleet manager could significantly reduce their electric bills from current 

levels. However, wholesale indexed retail prices are not allowed to be offered to residential or 

small commercial customers in Texas (Public Utility Commission of Texas, 2022). Even in a 

volatile wholesale power price scenario (e.g., spike), the average daily electricity cost per vehicle 

was $5.31, which was less than all fixed retail prices ($5.45 to $6.53). Thus, considering electricity 

prices in dispatch decisions can protect the fleet from volatile and unusual spikes in prices (e.g., 

$1287/MWh versus a daily average of $20.53/MWh). However, wholesale electricity prices are 

usually lower than retail prices offered by utilities (Fig. 2). If fleets use price-agnostic dispatch 

strategies and the wholesale price spikes, per vehicle electricity costs could be $1 to $2 more than 
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under fixed retail rates (Table 5). Thus, fleets that elect to pay wholesale prices should adopt a 

charging strategy that can insulate them from volatile prices. 

 All electricity price scenarios where health damages increased also had peak power rate 

fees. Although these add-on fees have the effect of shaving peak charging, this study finds that 

shifting charging load could increase marginal emissions. The increase in health damages is 

relatively small (1.4%–2.5%, or 8–13 cents per vehicle per day) (Table 7). Utilities should 

carefully review how adding peak power rate fees may increase upstream pollution, depending on 

the hourly marginal emission rates of their region. 

   This study has lower electricity cost savings than Iacobucci et al. (2021) – 15.5% per 

SAEV per day versus their 52% average. However, 52% may be too high because there is no 

comparison to retail prices and a simple charging alternative called “on-demand.” This present 

study finds the average cost savings (across all non-zero carbon cost scenarios) for days with a 

spike in wholesale prices was 31.9% to 44.7% (with or without a peak power rate fee). In contrast, 

a multi-stage charging and discharging framework may only save between 3.5% and 15.3% in 

purchasing costs with retail prices relative to a price-agnostic optimization-based charging 

strategy. If one averages the cost savings from Iacobucci et al. (2021) without on-demand charging, 

the average savings is 32% (and the median is 25.8%). Zhang and  Chen (2020) used a low-battery 

charging heuristic as a comparison and started vehicles at the beginning of the day with a full 

charge. As a result, most SAEVs trigger a charging decision in the afternoon when electricity 

prices are higher.  

 

7.5 Renewable Energy Credits 

Multi-stage charging and discharging can avoid the daily release of up to 904 tonnes of CO2, with 

an average of 654 tonnes of CO2 avoided in the studied area. The average SAEV could reduce 43.6 

kg of CO2 per day with this multi-stage charging and discharging strategy. For comparison, the 

average US passenger vehicle emits 4.6 tonnes of CO2 each year (U.S. Environmental Protection 

Agency, 2022). It would take only 106 days for an SAEV to remove 1 gas-powered passenger 

vehicle from the road solely by implementing a different control strategy. In contrast to 60 tonnes 

of CO2 savings per California vehicle per year in Liao et al. (2021), this study finds an Austin 

SAEV would save at most 15.9 tonnes of CO2 per year with a charging and discharging strategy.  

 If an Austin fleet were to purchase unbundled RECs to reduce upstream charging emissions 

and claim charging comes from 100% renewable energy, there would be an additional average 

daily cost of $9,134, assuming a cost of $6.60/MWh (Heeter et al., 2021). Fleets could instead 

align their charging with low-carbon generation through this strategy to reduce their carbon 

footprint at no extra cost to them while also reducing their REC bill by 3.6%. This study shows 

that the increase in passenger revenue per SAEV per day can more than offset the cost of 

internalizing health and climate damages from electricity emissions (scope 2 activity) using a 

carbon cost of $200/tonne of CO2 in 2010 dollars. A fleet not required to pay carbon pricing could 

internally use a high SCC to increase profits (from serving more trips per vehicle per day and 

reducing direct electricity purchasing costs, Tables 5 and 6). 

A fleet operator could maximize the uptime of vehicles to increase passenger revenue and 

purchase unbundled RECs to reduce the impact of charging emissions that comes from ignoring 

real-time health and climate damages from their operations. However, purchasing inexpensive 
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unbundled RECs does not encourage the expansion of zero-carbon renewable power. An 

alternative strategy is to sign a long-term power purchase agreement from a newly constructed 

zero-carbon power plant, which supports new capacity additions. Power purchase agreement prices 

for utility-scale solar are valued around $30/MWh to $40/MWh in the continental US ($20/MWh 

in California) (Bolinger et al., 2022), while onshore wind averages $30/MWh ($20/MWh in the 

central US) (Wiser et al., 2022). 

 

7.6 Framework Assumptions and Limitations 

The multi-stage charging and discharging framework has several modeling assumptions, which 

can impact results. The day-ahead problem uses a virtual fleet battery, which aggregates individual 

vehicle information, to reduce problem size. The fleet must rely on a reliable energy consumption 

prediction to estimate how much energy to buy or sell to lower purchasing costs while reaching 

the end-of-day SOC target. Although the simulation environment uses an energy consumption 

model that can track vehicle-level energy usage (in kWh), the day-ahead problem reads in hourly 

mileage estimates and a single energy efficiency parameter (in kWh/mi). Since energy efficiency 

depends on weather, traffic, and built environment effects (e.g., temperature, vehicle speeds, and 

gradients), modelers could use previous hourly energy consumption outputs instead of a mile-

equivalent factor to improve solutions. 

A downside of using an average fleet battery to make charging and discharging decisions 

and relying on historical energy consumption estimates is that the optimal decision set may result 

in individual battery levels that are insufficient to meet travel demand. On the other hand, an 

advantage of aggregating battery levels is reducing problem size to keep the computational time 

low. Additionally, predicting energy consumption demand for individual vehicles depends on 

passenger-vehicle assignments. For example, an SAEV assigned to a reverse-commute trip may 

not find another passenger as quickly as a vehicle operating predominately within the central 

business district. As a result, the estimate for future energy is location and time specific and 

requires knowledge about expected routes for some n trips in the future. 

The last term of the day-ahead charging and discharging problem (Eq. 1) imposes a steep 

penalty if the fleet's average SOC at the end of the day deviates from the target. An alternative 

approach is to formulate the day’s end SOC target as a constraint instead of an objective term. 

However, this could lead to infeasible problems under certain circumstances. By using a 

sufficiently large number to penalize deviation from a target SOC, the fleet can almost always 

solve the problem of charging and discharging. During days when the 24-hour ahead day’s end 

SOC target is not attainable, the rolling horizon framework should allow the fleet to exploit low-

demand and low-cost periods to raise the fleet average SOC. 

Instead of a zone-specific opportunity cost parameter, this study used a constant value in 

the within-day idle vehicle dispatch problem. Although fleet operators would be wise to use 

historical trip revenue as a weight for the supply deficit variable, the authors felt that introducing 

more complexity would make it difficult to tease out differences in electricity prices, peak power 

rate fees, and carbon costs. This dispatch problem also assumes that the hourly day-ahead energy 

transaction targets (i.e., buying and selling) are divided uniformly across the number of within-

day decision epochs. Since the within-day decision is made at quarter-hour intervals, it becomes 

necessary to translate hourly decisions into smaller time steps to dispatch vehicles to charging 
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stations. However, the day-ahead problem could be converted to a quarter-hour scale if prices are 

available every fifteen minutes. More frequent decision epochs (like every 5 minutes) could reduce 

costs even further because each epoch would likely have fewer dispatch decisions and could better 

adapt to large changes in electricity prices. 

The first term of the within-day idle vehicle dispatch problem penalizes the cost of dispatch 

by estimating how much it would cost to charge the vehicle from dispatch travel alone. There are 

other distance costs to consider that could be considered, namely depreciation, tolls, wear and tear, 

battery degradation, and insurance. Adding a constant parameter to travel distance could reduce 

the frequency of some long-distance idle vehicle dispatch decisions. The idle vehicle dispatch 

problem excludes passenger assignment as a decision variable. Testing well-known passenger 

assignment strategies, such as Alonso-Mora et al. (2017), in large-scale simulations, could improve 

heuristic assignment methods but may worsen computational performance because of the size of 

the problem.  

The study used marginal emissions damages because SAEVs represent a new demand for 

electricity that corresponds to an increase in electricity generation. However, the emissions 

estimates come from historical data, and future changes in the grid could significantly affect the 

reliability of these estimates. For example, the retirement of inefficient and carbon-intensive fossil 

fuel power plants, like baseload coal, the new construction of natural gas power plants, utility-

scale wind and solar, transmission expansion, and expanded carbon trading schemes could 

significantly alter the generation and transmission operations of the grid (Ryan et al., 2016). Using 

power grid operation models with future generation and transmission inputs is one approach to 

incorporating a forward-looking analysis into this framework. 

The idle-vehicle dispatch problem was solved as an Integer Linear Programming problem 

for the case where wholesale prices spike in the day with an added peak power rate fee. Then, it 

was solved by removing the integer constraint (i.e., as a Linear Programming problem), although 

the matrix is not guaranteed to be totally unimodular in every instance. The objective value and 

solution vector (for charging, discharging, repositioning, and maintenance trips) were similar, 

albeit with higher solve times when enforcing integer solutions. In this study, the results shown 

used the Linear Programming solver to ensure efficient solve times across different decision 

scenarios. Since a non-integer solution is not practically feasible for vehicle decisions, the fleet 

operator ignored all solutions less than 0.85. In practice, discarding non-integer solutions while 

not resolving the need (i.e., supply deficits or low fleet average SOC) creates an incentive to 

remedy the issue in future decision epochs. 

 

7.7 Future Work 

This study used marginal emission damages to estimate the effect additional SAEV electricity 

demand may have on human health and the climate. However, the study did not couple this 

transportation simulation with a unit commitment and economic dispatch model that would show 

whether SAEVs can influence wholesale power prices by shifting the equilibrium point on supply 

and demand curves. With increasing EV adoption levels, integrated transportation and power 

models may be better suited to analyze least-cost idle vehicle dispatch strategies. Modelers 

studying large-scale regions, like the 6-County Austin metro, may consider how transmission 

constraints or locally varying demand for electricity may lead to a few hours of the day where 
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wholesale electricity prices vary by charging station. If the marginal difference between charging 

stations is higher than the cost of dispatch, then a new charging station assignment problem may 

be warranted. Although this strategy reveals lower health damages from increasing electricity 

demand, the analysis does not link perturbations in emissions with those most exposed to 

additional pollutants. Further work may show the distributional effects of changes in local air 

pollution from increased reliance on SAEVs for urban travel. 

The numerical experiments in this study used charging station inputs from Dean et al. 

(2022) and manually sited maintenance and cleaning depots. A sensitivity analysis varied battery 

capacity and charging speed but did not examine charging station or cord density. Although 

charging station siting and sizing was not within the scope of this study, future work should use 

advanced charging station location problems (within a joint fleet size problem, like Luke et al. 

(2021)). The authors also assumed that maintenance depots are staffed round the clock, but future 

work could restrict maintenance and cleaning to normal working hours.  

The case study assumed the SAEV fleet only offered shared services (i.e., a private ride 

was not available for a higher fare) to encourage de-congestion benefits. Although everyone was 

forced into this shared service, not everyone was successfully matched with another passenger en 

route because of maximum detour delay and directionality constraints (see Dean et al. 2022 for 

more details). Future work should include a willingness to pool model to consider whether an agent 

would consider a discounted shared service given their demographics and trip information. 

Moreover, modelers should simulate trips with multiple riders in a single request (i.e., multi-party 

trips) to simulate realistic party size distributions found in present-day ride-hailing trip data sets 

(e.g., Chicago’s Transportation Network Providers Trip Data Portal). 

 

7. Conclusions 

The future of shared passenger mobility is widely expected to be powered by all-electric 

powertrain technology. If autonomous vehicle technology advances and cities nudge residents into 

shared vehicular modes or active travel, daily travel may increasingly be taken using a system of 

on-demand SAEVs. The present study sought to investigate how a fleet could improve idle vehicle 

dispatch by lowering the cost of charging. A multi-stage charging and discharging framework 

translated optimal fleetwide energy transactions into vehicle-to-zone dispatch decisions at discrete 

decision-making epochs within the day. Since actions from one day affect the next, the hourly day-

ahead energy transaction problem is solved for the next 24-hour period at each within-day epoch. 

This rolling horizon approach also prevents a large divergence between energy consumption 

forecasts and within-simulation battery levels. 

This new multi-stage framework was compared to a price-agnostic optimization-based 

charging and repositioning joint strategy in the literature, which showed improved performance 

relative to disjoint strategies, including charging heuristics. New maintenance and cleaning 

requirements are also added to improve realism in vehicle downtime and empty travel. A numerical 

analysis of this method was simulated within POLARIS to take advantage of its endogenous traffic 

and dynamic traffic assignment algorithms and computationally efficient model of the 6-County 

Austin, TX region. 

Fleets may operate in regions with retail prices set by utilities, which provide stability in 

prices, but are more expensive than the wholesale power market. As the power system transitions 
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to zero-carbon energy sources, including intermittent wind and solar, and electricity demand rises 

with EVs, utilities may want to shift the cost of power onto consumers. This study investigated 

how retail prices (flat and TOU) and four wholesale price profiles (off-peak, peak, no peak, and 

spike), with or without a peak power rate fee, can influence charging and discharging decisions. 

By intentionally aligning fleet charging with low-cost hours in the day-ahead price market, 

the fleet operator could withstand temporary spikes in wholesale prices and have a lower daily 

electricity bill than if they paid a flat retail energy price. Daily savings on direct electricity costs 

averaged 15.5% per SAEV (or $0.79), and climate and health damage avoidance averaged 2.8% 

per SAEV (or $0.43). The simulation results were for a fleet serving a median 29 daily trips per 

vehicle. Although the percentage of unoccupied VMT is higher for the 5,300 square mile service 

region than in prior studies, new maintenance and cleaning requirements at just four depots suggest 

deadheading travel will continue to be high. That said, the revenue-miles AVO was at least 1.95 

across all scenarios, indicating that sharing rides among strangers can mitigate high empty travel. 

Although peak power rate fees can help reduce the impact of many EVs charging at once, 

this price add-on could lead to increases in electricity health and climate damages. This trade-off 

between deferred capacity investments and societal emission damages is a topic worthy of more 

discussion. Additionally, if the fleet only pursues lower electric bills and does not internalize the 

emissions damages from electricity generation, the fleet can increase societal costs for everyone. 

With this proposed strategy (and a non-zero carbon cost), an Austin fleet of 15,000 SAEVs can 

align charging with lower cost periods to avoid a daily release of an average of 656 metric tons of 

CO2, equivalent to 142 US passenger vehicles’ annual CO2 emissions. 

Although a fleet could purchase unbundled renewable energy credits for every kWh energy 

consumed, this accounting does not spur additional zero-carbon generation capacity. By reducing 

a fleet’s charging emissions damages in real-time, the fleet can purchase fewer credits and correct 

for the spatio-temporal mismatch between zero-carbon generation elsewhere and damages from 

electricity demand. 
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11. Appendix 

The hourly electricity price profiles used in the simulations of this study are explained and the 

wholesale price curves are plotted in Section 5.2. The data for these plots is shown below in Table 

A.1. 

Table A.1 Hourly Electricity Prices in Case Study 
 Retail Prices ($/MWh) Wholesale Prices ($/MWh) 

Hour 
Flat Time-of-Use 

(TOU) 

No Peak Day Peak Day Spike Day Off-Peak 

Day 

12:00 AM $70/MWh $35/MWh $16.42/MWh $18.23/MWh $19.23/MWh $8.16/MWh 

1:00 AM 70 35 16.06 17.04 18.52 5.59 

2:00 AM 70 35 15.24 16.82 17.80 3.36 

3:00 AM 70 35 14.94 17.66 16.76 2.69 

4:00 AM 70 35 15.33 18.68 16.94 2.67 

5:00 AM 70 35 17.24 19.08 16.79 8.66 

6:00 AM 70 35 19.79 24.40 18.25 16.11 

7:00 AM 70 35 19.57 32.63 18.02 16.06 

8:00 AM 70 35 19.38 29.72 18.08 15.98 

9:00 AM 70 35 19.12 27.91 18.29 15.51 

10:00 AM 70 35 19.10 25.01 19.61 16.10 

11:00 AM 70 35 20.43 23.86 23.26 16.76 

12:00 PM 70 35 20.36 24.41 26.99 15.61 

1:00 PM 70 230 20.47 24.64 32.00 16.74 

2:00 PM 70 230 20.05 23.93 37.85 16.89 

3:00 PM 70 230 20.50 30.00 175.82 17.17 

4:00 PM 70 230 21.70 31.08 627.98 18.56 

5:00 PM 70 230 22.52 27.66 1,287.35 20.24 

6:00 PM 70 35 21.72 26.43 266.06 19.22 

7:00 PM 70 35 21.50 50.41 27.39 19.38 

8:00 PM 70 35 20.57 87.40 36.51 20.18 

9:00 PM 70 35 18.67 23.89 23.61 18.47 

10:00 PM 70 35 18.43 27.00 21.46 16.11 

11:00 PM 70 35 16.78 21.39 18.74 11.48 

 

All simulations were run using 2 compute nodes (30 tasks per node) with a clock rate of 

2.45 GHz and 256 GB RAM. The computational solve time (in sec) for the simulation hours of 6-

8 AM are shown below in Table A.2. The multi-stage problem solve time includes the rolling 
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horizon day-ahead problem and the within-day vehicle dispatch problem under the $40/tonne CO2 

scenario. All scenarios took under 1 hour and 45 minutes, including pre-simulation and post-

simulation data processing. 

Table A.2 Computational Solve Time by Strategy 
Electricity 

Price 

(Peak Power 

Rate Fee) 

6:00 

AM 

6:15 

AM 

6:30 

AM 

6:45 

AM 

7:00 

AM 

7:15 

AM 

7:30 

AM 

7:45 

AM 

8:00 

AM 

Price-agnostic 16 sec 16 sec 18 sec 15 sec 9 sec 6 sec 4 sec 2 sec 1 sec 

Flat 3 3 2 2 3 0 1 1 0 

Flat (✓) 3 2 2 3 3 2 1 1 0 

TOU 3 2 2 3 3 2 1 1 0 

TOU (✓) 3 2 3 2 3 2 1 1 0 

No Peak 3 2 2 2 2 1 1 1 0 

No Peak (✓) 3 2 2 2 3 1 1 1 0 

Peak 3 2 2 2 3 1 1 1 0 

Peak (✓) 3 2 2 2 3 2 1 1 0 

Spike 3 2 2 2 2 2 2 1 0 

Spike (✓) 3 2 2 2 3 1 1 1 0 

Off-peak 3 2 2 2 3 2 1 1 0 

Off-peak (✓) 3 2 2 2 2 2 1 1 0 

Note: “✓” = A peak power rate fee ($/kW) is added.  

The range of annual empty VMT revenue is not intended to be used for budgetary purposes 

and is only illustrative. The average daily empty VMT fee for the 15,000-vehicle fleet across all 

health damage scenarios was $1,322.35. Since these results are based on a typical workday’s travel 

demand patterns, the authors assumed a lower bound of 65% and an upper bound of 90% from a 

linear projection of daily demand for the year. 

 The price-agnostic strategy led to a daily electricity demand of 1,383.94 MWh. Assuming 

the fleet buys unbundled RECs at a price of $6.60/MWh (Heeter et al., 2021), the base cost is 

$9,134.01. If a fleet were to adopt the multi-stage (dis)charging strategy, the daily electricity 

demand is 1,333.63 MWh (on average across all health damage scenarios). Their new energy 

demand would reduce their REC bill to $8,801.95 (or by 3.6%). Given that the average CO2 

emission factor for Texas in 2019 was 0.996 lbs/kWh (Holland et al., 2022) and the multi-stage 

charging strategy avoided the release of an average 654 tonnes of CO2, the fleet could claim 

1,447.61 MWh of carbon-free” power, although that ignores other generation-related pollutants. 

Table A.3 presents the average daily CO2 savings for the Austin SAEV fleet relative to the price-

agnostic charging strategy when there is a reduction in damages from the studied strategy. The 

results are averaged across all non-zero SCC scenarios.  
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Table A.3 Average Daily CO2 Emission Savings from Charging an SAEV Fleet 

Electricity Price 
Avoided Tonnes of CO2 from  

15,000-veh Fleet per Day 

Flat 800 tonnes CO2/day 

Flat (✓) 760 

TOU 870 

TOU (✓) 540 

No Peak 779 

No Peak (✓) 608 

Peak 823 

Peak (✓) 483 

Spike 709 

Spike (✓) 45 

Off-peak 782 

Off-peak (✓) 499 

Note: “✓” = A peak power rate fee ($/kW) is added.  
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