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ABSTRACT 1 
Agent-based activity-based transportation models have been increasingly used to simulate shared 2 
autonomous vehicle (SAV) fleet operations. Through these studies, the transportation research 3 

community is beginning to form a collective understanding of the operations, potential impacts, 4 
and opportunities of SAVs. However, these studies have been conducted under the premise of a 5 
variety of assumptions and simplifications, which, without properly appreciating the 6 
implications, can jeopardize our conclusions and weaken our collective understanding. This 7 
paper focuses on the issue of network complexity, as a majority of studies are conducted on 8 

simplified networks with missing links. Although relevant in all travel demand modeling studies, 9 

this issue is especially pertinent for SAVs, a door-to-door service whose success is highly 10 
affected by the concentration of travel demand. Using a simplified network locally omits first 11 
and last mile travel and aggregates origins and destinations, optimistically biasing SAV 12 
simulation results. To this end, we compare SAV fleet operations in Austin using two networks: 13 

Austin 6-county region’s network from the Capital Area Metropolitan Planning Organization 14 

(CAMPO) and a network obtained from OpenStreetMap (OSM). The CAMPO network contains 15 

approximately 46% and 42% of lane-miles and road-miles, respectively, of the OSM network.           16 
The results indicate that network complexity influences the determination of the minimum SAV 17 
fleet size. For a 5000-fleet size across Austin, daily vehicle-miles traveled increased by 18 

approximately 23.83%, the percentage of empty vehicle-miles travelled rose by 10.5 percent-19 
points, and the median wait time nearly doubled. Consequently, this study suggests utilizing a 20 

complete network for simulating SAVs, whenever feasible. 21 
 22 
Keywords: Transportation Network Simplification, Shared Autonomous Vehicle Simulations, 23 
Agent-based Modeling, Spatial Aggregation  24 
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INTRODUCTION 1 

The shape of transportation to come represents an open frontier, characterized by the emergence 2 

of innovative solutions enabled by information technologies and vehicle automation, as well as 3 

the growing interest in sustainability and people-centric planning (1–4). In an effort to capture 4 

the complex interactions of emerging transportation systems, researchers have turned to agent-5 

based modeling. In particular, the ability to simulate activity-based travel and operations of 6 

emerging mobility services has been highly valued. Some current agent-based modeling tools 7 

that were developed specifically for transport applications include MATSim (5), POLARIS (6), 8 

and SimMobility (7). Advancements in these tools’ capabilities and improvements in computer 9 

performance have enabled researchers to conduct simulations with unprecedented levels of detail 10 

and scale, previously unattainable (e.g., 30M+ trips per 24-hr simulated day across realistic 11 

networks with endogenous mode and route choices, mesoscopic traffic assignment features, and 12 

congestion feedbacks (8)).  13 

 One specific application of these tools that has garnered much attention is scenario 14 

analyses involving shared and fully automated or “autonomous” vehicles (SAVs). Along with 15 

survey-based studies, this is one approach used by transportation researchers to gain major 16 

insights into how SAVs will impact the way we travel. The focus of these papers includes travel 17 

behavior, operational strategy, and environmental impacts, and they have collectively 18 

contributed to improving our understanding of what we can expect and how we can make the 19 

most of the highly-anticipated mode. For example. while studies have shown that SAVs can 20 

improve transportation equity (9–11), uncontrolled implementation can increase vehicle-miles 21 

traveled (VMT) and worsen network congestion (12–14). Dynamic ridesharing (DRS), 22 

geofencing, and travel demand management policies like credit-based congestion pricing can 23 

mitigate such negative impacts (15–18). Researchers have also studied the ways in which SAVs 24 

can support public transit use (19–25). 25 

 While significant effort has been put into modeling the complex features of SAVs as an 26 

agent, details of more fundamental aspects of transportation simulations that can influence 27 

outcomes have been largely neglected. For example, many studies are conducted on simplified 28 

networks that only cover a fraction of the actual links in a city and simulate only a small 29 

percentage of the total population. Although these simplifications are mainly to save run time, 30 

they influence SAV metrics, such as wait times, average vehicle occupancies (AVO), and the 31 

share of empty VMT (%eVMT). Without appreciating the implications of such simplifications, 32 

the collective understanding of SAV fleet operations and opportunities is weakened and the 33 

conclusions (on fleet sizes needed, added VMT, emissions, profitability, etc.) jeopardized. 34 

Although these issues are relevant in any transportation simulation involving networks and 35 

synthesized demand, the goal of this paper is to contribute to the understanding of the various 36 

impacts of these simplifications on SAV operations. Specifically, we examine the effects of 37 

network complexity and the common practice of using incomplete networks, which likely 38 

optimistically biases SAV and non-SAV simulation results.  39 

To this end, we compare SAV fleet operations in Austin using two networks: Austin 6-40 

county region’s network from the Capital Area Metropolitan Planning Organization (CAMPO) 41 

and a network obtained from OpenStreetMap (OSM). The CAMPO network contains 42 

approximately 46% and 42% of lane-miles and road-miles, respectively, of the OSM network. In 43 
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this study, we used POLARIS agent-based traffic simulation tool to run and compare multiple 1 

scenarios in terms of SAV fleet size for both networks. POLARIS is an agent-based model, 2 

developed by Argonne National Laboratory, which enables simulations of SAV operations 3 

within intricate and realistic transportation networks spanning extensive regions (6). Similar to 4 

other renowned agent-based models, POLARIS empowers users to meticulously trace the 5 

trajectories of individual vehicles and travelers traversing through interconnected roadways, 6 

walkways, and bikeway links, all seamlessly tied to their respective destinations. To our 7 

knowledge, this study is the first to use two networks from distinct sources for the same city and 8 

compare the results. The effects of network complexity on SAV fleet operations is revealed 9 

through metrics, such as wait times, VMT, %eVMT, and vehicle occupancy, and the run times 10 

are compared. 11 

The structure of the paper is as follows. We first describe the problem of network 12 

complexity in transportation modeling and examine simplifications taken in recent studies (<4 13 

years) on agent-based simulations of SAVs. We then delve further into the problem of network 14 

complexity in the context of SAV simulations and illustrate what a complete network looks like 15 

for several popular cities in literature. Next, we describe the experiment using POLARIS traffic 16 

simulation tool and analyze the effects of network complexity on SAV fleet operations. Finally, 17 

we discuss the conclusions and future directions. 18 

 19 

LITERATURE REVIEW 20 

The origin of transportation modeling can be traced back to the 1950s with Chicago Area 21 

Transportation Study’s four-step travel model and Beckman’s solution to Wardrop’s user 22 

equilibrium (26, 27).The second breakthrough in transportation modeling occurred in the 1990s 23 

with the advent of activity-based models and dynamic traffic assignment (DTA). Since then, 24 

various dynamic network modeling software, such as DYNASMART (28) and DynaMIT (29), 25 

have been introduced to be used in conjunction with demand models. Today, there are various 26 

commercial traffic assignment software available, such as Emme, Visum, and TransCAD, 27 

offering static traffic assignment, DTA, or both. Recent developments in transportation modeling 28 

have been focused on the integration of demand and supply models into one platform. One of the 29 

earliest efforts was TRANSIMS, developed by the Los Alamos National Laboratory (30). Some 30 

popular comprehensive agent-based activity-based modeling systems currently used for cutting-31 

edge research are MATSim (5), POLARIS (6), and SimMobility (7). 32 

 Mainly due to computational constraints, early studies on transportation modeling relied 33 

on simple networks for validation before moving on to application in real networks. Some of 34 

these toy networks have become deeply engrained in the transportation research community as 35 

benchmarking networks. Perhaps the most notable example is the Sioux Falls network 36 

introduced by (31). Although there are several versions, the Sioux Falls network is generally 37 

comprised of 24 nodes and 76 links. Despite it being well-acknowledged that it is not a realistic 38 

network, many recent studies on SAVs have still relied only on the Sioux Falls network, 39 

especially research on the operation algorithms of SAVs (32–37). The selection of the Sioux 40 

Falls network is often justified due to its well-established status in the transportation field and 41 

low computational load, which makes it a proper choice for conducting initial analyses. 42 
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However, utilizing realistic networks in the same studies could enhance the comprehensiveness 1 

and practicality of their applications. 2 

 As agent-based activity-based modeling systems have been introduced, refined, and 3 

adopted over the past few years, many studies on SAVs have been conducted on such platforms 4 

using networks from various cities around the world. Table 1 shows a sample of recent studies 5 

on agent-based simulations of SAVs that contain at least some basic information about the 6 

network. Unfortunately, many studies fail to mention basic information about the simulation, 7 

such as the number of links and nodes in the network or the ratio of the simulated population. It 8 

can be seen that more researchers are starting to obtain more complex networks from OSM in 9 

recent years. To the best of our knowledge, only (45) has used both a complete network and 10 

population. However, their study was conducted in a small local city with a population of 11 

47,000. From the examination of recent literature, it is clear that 1) basic simulation properties in 12 

different studies are important in generalizing conclusions and should be stated, 2) there is a gap 13 

to conduct simulations on complete networks and compare it with an incomplete one to analyze 14 

the level of details missed in different studies, and 3) the effects of using incomplete demand or 15 

supply need to be understood. 16 

 A few studies have been conducted on the effects of population downscaling in agent-17 

based transportation simulations. Ben-Dor et al. (50) investigated this point using a more detailed 18 

version of the Sioux Falls network with 334 links and 282 nodes in MATSim. They looked at 19 

statistics, such as average travel distance and duration, trip counts, and traffic volume. They 20 

found that a simulated population percentage of 25% or higher was required to maintain the full 21 

population outcome. Ratios between 10% and 25% led to biases in some statistics, and results 22 

from ratios below 10% proved to be unusable. Also using MATSim, Kagho et al. (51) studied 23 

the effects of population downscaling for a ride-hailing service with DRS in Zurich. They 24 

focused on AVO and wait, travel, and detour times. They found that AVO does not 25 

asymptotically converge when increasing the simulated population ratio and recommended using 26 

the full population or estimating the bias of results when using a partial population. Similarly, 27 

Kamijo et al. (45) examined the effects of population downscaling on simulations with SAVs in 28 

the regional city of Numata, Japan, reporting the minimum required simulated population ratio to 29 

keep biases to less than 10%. They examined key statics for describing SAV service, such as 30 

wait time, number of trips served, VMT, eVMT%, and profit margin. They found that while 31 

SAVs without DRS can be reliably simulated with a population ratio of 10%, the required 32 

simulated population ratio is much higher for SAVs with DRS at 60%. The results of (45) and 33 

(51) match the findings of (15) and (52) in that the performance of a fleet with DRS improves 34 

with higher demand density. These studies imply that results of SAV simulations with population 35 

downscaling, which is usually around 10%, are likely unreliable.36 
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TABLE 1 Recent studies on agent-based simulations of SAVs 

 

Paper City 

Simulation 

platform 

Network 

source Links Nodes 

Population 

% 

Individuals Trips Area  

(sq miles) 

Time 

period 

(38) Austin, USA POLARIS MPO* 16,059 10,435 100% – – 5,300 24-h 

(39) Austin, USA POLARIS MPO 16,100 10,400 100% – – 5,300 24-h 

(40) Bloomington, IL, USA POLARIS – 4,000 2,500 
100% to 

2500% 

120,000 for 

100% 
– 74 24-h 

(8) Chicago, USA POLARIS MPO 31,000 19,000 100% 11M 30M 11,246 24-h 

(41) Hague, Netherlands Anylogic – 836 510 – – 27,452 – 
5:30-

10:00 AM 

(42) Lyon, France – OSM 27,000 11,310 – – 480,000 31 
6:00-

10:00 AM 

(43) Melbourne, Australia DynaMel – 55,719 24,502 – – – – 
6:00-

10:00 AM 

(44) 

Minneapolis–Saint Paul, 

USA (7-counties) 
MATSim OSM 42,485 20,746 

2%, 5% 
180,000 and 

457,000 
– 6,364 

24-h 
Minneapolis–Saint Paul, 

USA (Twin Cities) 
20% 487,000 – 245 

(45) Numata, Japan MATSim OSM – – 
2% to 

100% 
– – 360 24-h 

(46) Singapore SimMobility – 15,128 6,375 100% 6.7M – 283** 24-h 

(13) Singapore SimMobility – 15,128 6,375 100% 6.7M – 283** 24-h 

(14) Singapore SimMobility – 15,128 6,375 100% 
5.2M and 

6.7M 
– 283** 24-h 

(47) Tokyo, Japan MATSim OSM 338,652 134,112 10%*** 200,000 – 208** 

AM 

commute 

trips 

(48) Vienna, Austria MATSim OSM 156,000 71,000 12.5% 200,000 – 1,610 24-h 

(49) Zurich, Switzerland MATSim – 150,000 – 10% 220,000 – – 24-h 

* Metropolitan planning organization 

** estimated by us based on information given in the cited paper 

*** of corresponding entries in OD table from the Tokyo Person Trip Survey
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NETWORK COMPLETENESS IN SAV SIMULATIONS 1 

The use of incomplete networks is a key concern in generalizing the output of SAV simulations 2 

because most studies assume that SAVs will provide door-to-door (address point to address 3 

point) service, which means first-mile and last-mile travel on missing (or uncoded) minor 4 

roads/links. Additionally, simplified networks have the effect of aggregating pickup and dropoff 5 

(PUDO) positions of travelers, as it restricts PUDOs to the coded links, resulting in easier 6 

ridesharing. Both these features are likely to optimistically bias SAV and non-SAV simulation 7 

results. Figures 1 through 4 show the difference between simulated/coded and actual networks, 8 

for a range of examples used in the published literature. 9 

 10 

 11 
Figure 1 (a) Austin’s 6-county network used in several published works and (b) the OSM 12 

network of the Austin 6-county area 13 

 14 

 15 
Figure 2 (a) Singapore network (53) used in several published works and (b) the 16 

OpenStreetMap network of Singapore 17 

 18 

(a)                                                                 (b) 

(a)                                                                          (b) 
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 1 
Figure 3 (a) Chicago’s 20-county network (17) used in several published works and (b) the 2 

OSM network of the 20-county Chicago region 3 

 4 

 5 
Figure 4 (a) The classic Sioux Falls network (36) and (b) the OSM network of Sioux Falls 6 

 7 

On the demand side, using a smaller synthesized population is a common simplification. 8 

Since SAV performance is influenced by population density, simulated population ratio is also a 9 

(a)                                                                          (b) 

(a)                                                         (b) 
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concern. Many studies simulate approximately 10% of the total population in order to save 1 

computational cost. To this end, (45) and (51) simulated on-demand vehicle services with DRS 2 

using various population ratios and recommends using population ratios that are much higher 3 

than what has typically been used in literature. Thanks to their work, the effects of simulated 4 

population rates on SAV simulation outcomes has been illuminated. However, a similar 5 

comparative study looking at the effects of the level of network completeness has not been 6 

conducted. Arguably, this issue is more serious than that of simulated population ratio, since 7 

networks require additional data and effort to alter and are often used repeatedly in consecutive 8 

studies, whereas simulated population ratios are simply a matter of computational cost. 9 

Therefore, in this study, we compare the results of simulations involving SAVs in 10 

POLARIS using Austin 6-county region’s network from the Capital Area Metropolitan Planning 11 

Organization (CAMPO) and a network obtained from OpenStreetMap (OSM) (Figure 1). The 12 

CAMPO network is a well-established network that has been used in numerous previous studies 13 

of various topics (15, 38, 39, 54–555657). It contains approximately 18,268 lane-miles and 8,034 14 

road-miles, which are approximately 46% and 42% of lane-miles and road-miles, respectively, of 15 

the OSM network. The OSM network of Austin has previously been used by (16), (21), and (58), 16 

but (16) simulated only 5% of the population and the analysis in (58) was limited to a 18 sq. mile 17 

central region. To our knowledge, this study is the first to use two networks from distinct sources 18 

for the same city.  19 

 20 
SIMULATION FRAMEWORK 21 
This study uses the POLARIS transportation system simulation tool (6) to simulate SAV fleet 22 
operations in the Austin 6-county region. POLARIS is an agent-based activity-based modeling 23 

framework. It is able to create a synthetic population through iterative proportional fitting, 24 

simulate a full day of activities for that entire population, and track the movements of individual 25 
agents routed through a time-dependent dynamic traffic assignment model. POLARIS contains 26 
many features for simulating traffic network company (TNC) vehicles, including SAVs, and is 27 
able to output key metrics for understanding the performance of fleet operations, such as wait 28 

times, VMT, %eVMT, and vehicle occupancy. In POLARIS, TNC vehicles are centrally 29 
controlled by a TNC operator, which gives assignment, operation, and repositioning instructions 30 

while considering network congestion (17). POLARIS is the able to simulate DRS, a process by 31 
which a single vehicle can be arranged (in real time) to concurrently satisfy the travel demands 32 
of multiple travelers (15). 33 

TNC fleet model in POLARIS considers demand and supply sides correlated. The 34 

demand side generates TNC requests based on vehicle-ownership and mode-choice models while 35 

the supply side involves the fleet operator that centrally assigns requests to vehicles and the TNC 36 

vehicle that carries out the tasks. The operator assigns trips to the closest available vehicle to 37 
reduce empty travel distance and waiting time. The TNC vehicle maintains a task list, calculates 38 
optimal paths from the current location to the next operation location for the certain task, and 39 

records trip details (17). In this model structure, incomplete networks might lead to missing some 40 
of the links taken by vehicles, which needs to be investigated. 41 

In this study, we evaluate the effects of network complexity on the performance of SAV 42 
fleets of three different fleet sizes (5,000, 7,500, and 10,000 vehicles) using two different 43 

networks. For the base scenarios, we used the CAMPO network (Figure 1a) of the Austin 6-44 

county region. For the more complex or complete network, we used the network of the same 45 
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region obtained from OSM (Figure 1b). The raw OSM network data was converted to the general 1 
modeling network specification (GMNS) format using an open-source Python package 2 
osm2gmns (59), demonstrating the ease of obtaining a more complete network for any city. The 3 

GMNS network was then converted to the native POLARIS format and combined with other 4 
existing supply inputs for Austin (e.g., zones, locations, transit network) using a Python package 5 
developed in this study. The CAMPO network contains approximately 18,268 lane-miles and 6 
8,034 road-miles, which are approximately 46% and 42% of lane-miles and road-miles, 7 
respectively, of the OSM network. In POLARIS, each location is connected to up to four links to 8 

avoid network loadings that would create artificially high levels of congestion when using a 9 

simplified network. For the CAMPO network, the threshold for connecting to multiple links was 10 
set to 2 kilometers. For the OSM network, because it is a more complex network, this threshold 11 
was lowered to 500 meters. Other than these differences, all scenarios were identical in terms of 12 
synthesized population, activity-based model parameters, locations, and other features. 13 

 14 

RESULTS 15 

The results of the simulations are summarized in Table 2, showcasing key insights into the 16 
performance of SAVs in the two networks. We conducted these simulations on the Texas 17 
Advanced Computing Center's Lonestar6 high-performance computing system, utilizing 2 nodes 18 

equipped with 2x AMD EPYC 7763 64-Core Processors and 256 GB (3200 MT/s) DDR4 RAM. 19 
The run times for the CAMPO network were approximately 1 hour 40 minutes, while the OSM 20 

scenarios took around 5 hours 20 minutes. 21 
As expected, increasing network complexity led to higher average on-network trip 22 

distances extracted from trip trajectories and VMT for all fleet sizes. The 5000-vehicle fleet, in 23 
particular, was significantly impacted by the network changes. In the OSM network, the 24 

percentage of requests satisfied by the fleets was 11.2 percent-points lower than in the CAMPO 25 
network. Additionally, daily VMT increased by approximately 23.83% (from 831K mi to 26 

1.029M mi), and the percentage of eVMT rose by 10.5 percent-points. The median wait time 27 
also nearly doubled, further highlighting the network's influence on fleet performance. These 28 
metrics clearly demonstrate that the 5,000-vehicle fleet performed notably worse in the OSM 29 

network than in the CAMPO network. Such findings underscore the bias in minimum fleet size 30 
conclusions based on simplified networks, making it essential to consider comprehensive 31 

networks.  32 

The impact of network complexity on SAV operations is further illustrated by the number 33 
of vehicles utilized for each scenario. In the CAMPO network, approximately 3,800 vehicles 34 

were utilized regardless of the fleet size. However, in the OSM network, the entire fleet was 35 
utilized for fleet sizes of 5,000 and 7,500, while 8,887 vehicles were used for the scenario with 36 
10,000 SAVs. This disparity highlights the significantly different fleet size requirements between 37 

the two networks. 38 
Interestingly, the fleets comprising 7,500 and 10,000 vehicles showed slight 39 

improvements in the OSM network, characterized by lower %eVMTs and reduced median wait 40 
times. Furthermore, AVO was consistently higher in the OSM network across all scenarios. The 41 
observed differences in the two networks may be attributed to the trip choice models (e.g., 42 
departure time, mode choice, destination choice) producing higher SAV demand in the OSM 43 

network, as marked by the higher trips per SAV metric. This higher number of trips, in turn, 44 

leads to a higher demand density, enabling more efficient assignment and DRS practices. 45 

However, to gain a more understanding of these changes, further investigation is required. 46 
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TABLE 2 Summary of SAV simulation results 

 

Network Fleet size Trips/SAV 
% requests 

met 

Vehicles 

utilized 

VMT 

(mi) 
VMT/SAV 

% 

eVMT 

Avg trip 

distance 

(miles) 

Revenue 

trip 

AVO 

Revenue 

distance 

AVO 

Median wait 

time (min) 

CAMPO 

 

5,000 31.7 98.6 3,838 831K 166.2 31.5 3.08 1.36 1.30 3.60 

7,500 21.1 98.5 3,866 826K 110.2 31.3 3.08 1.36 1.30 3.57 

10,000 15.9 98.6 3,833 828K 82.8 31.4 3.09 1.36 1.30 3.55 

OSM 

5,000 32.9 87.4 5,000 1,029K 205.9 42.0 3.18 1.48 1.37 7.02 

7,500 25.9 98.0 7,500 965K 128.6 27.4 3.23 1.41 1.32 3.35 

10,000 19.5 98.2 8,887 957K 95.7 26.0 3.25 1.41 1.31 3.23 
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CONCLUSIONS 1 
In this study, we evaluated the influence of network complexity on SAV fleet operations using 2 
the POLARIS agent-based modeling platform. We simulated SAV fleet operations in Austin 3 

using two networks: Austin 6-county region’s network from the Capital Area Metropolitan 4 
Planning Organization and a network extracted from OpenStreetMap. The CAMPO network 5 
represented approximately 46% and 42% of lane-miles and road-miles, respectively, compared 6 
to the OSM network. The results highlight the significant implications of network complexity on 7 
determining the minimum fleet size. Specifically, the performance of the fleet with 5,000 8 

vehicles (the smallest of the evaluated fleet sizes) was significantly worse in the OSM network 9 

compared to the CAMPO network considering key metrics like the percentage of satisfied trip 10 
requests, VMT, %eVMT, and median wait time. These changes can be attributed to the addition 11 
of the new links, higher demand in the OSM network, or different travel choice model 12 
calibration requirements. Additionally, fleet utilization patterns were drastically different in the 13 

two networks. In the CAMPO network, the number of vehicles deployed remained relatively 14 

constant around 3,800 vehicles regardless of the fleet size, owing to discretization errors across 15 

zone boundaries, and skim travel time values being updated with a lower precision. However, in 16 
the OSM network, full utilization was observed for fleet sizes of 5,000 and 7,500, with an 88.9% 17 
utilization for the 10,000-vehicle fleet. Overall, average trip distance and VMT were consistently 18 

higher in the OSM network for all fleet sizes, because of adding the first- and last-mile links that 19 
were not modeled in the CAMPO network. 20 

Although this study provides insights into the impact of network simplifications on SAV 21 
operations, there are certain limitations that warrant consideration. In this study, we did not 22 
perform calibration for the OSM network and directly applied the demand model estimates from 23 
the CAMPO network. Consequently, the demand for SAVs in the OSM network was 24 

approximately 20% higher than that in the CAMPO network. Despite this limitation, our 25 
conclusions still hold, as the observed effects cannot be solely attributed to the 20% increase in 26 

the number of requests. Additional simulation iterations to get feedback might be necessary to 27 
reach convergence, which could affect the reported values. 28 
 Another aspect of network complexity, not covered in this study, is the impact of using 29 

actual addresses. While traditional travel demand models have long relied on traffic analysis 30 
zones (TAZs) as the smallest spatial unit of analysis and used zone centroids as the possible 31 

origins and destinations (60), agent-based simulation tools like POLARIS offer a more granular 32 

approach by tracking travel at the level of individual “locations” or “addresses” serving as 33 
origins and destinations (38). While this approach is an improvement over relying on TAZ 34 

centroids, the level of detail provided by the simulated addresses can still pose an issue and have 35 
a similar effect on SAV simulations as missing links, because simulated addresses essentially act 36 
as aggregated PUDO points. Future research can investigate the effects of aggregating addresses 37 

on SAV fleet operations. 38 
 39 
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