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Abstract

A Utility-Theory-Consistent System-of-Demand-Equations Approach

 to Household Travel Choice

by

Kara Maria Kockelman

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Mark Hansen, Chair

Modeling personal travel behavior is complex, particularly when one tries to adhere

closely to actual causal mechanisms while predicting human response to changes in the

transport environment.  There has long been a need for explicitly modeling the underlying

determinant of travel – the demand for participation in out-of-home activities; and

progress is being made in this area, primarily through discrete-choice models coupled

with continuous-duration choices.  However, these models tend to be restricted in size

and conditional on a wide variety of other choices that could be modeled more

endogenously.

This dissertation derives a system of demands for activity participation and other

travel-related goods that is rigorously linked to theories of utility maximization.  Two

difficulties inherent in the modeling of travel – the discrete nature of many travel-related

demands and the formal recognition of a time budget, not just a financial one – are dealt
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with explicitly.  The dissertation then empirically evaluates several such demand systems,

based on flexible specifications of indirect utility.  The results provide estimates of

activity generation and distribution and of economic parameters such as demand

elasticities.  Several hypotheses regarding travel behavior are tested, and estimates are

made of welfare effects generated by changes in the travel environment.

The models presented here can be extended to encompass more disaggregate

consumption bundles and stronger linkages between consumption of out-of-home

activities and other goods.  The flexibility and strong behavioral basis of the approach

make it a promising new direction for travel demand modeling.
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Chapter One:  Introduction

This research examines a methodology for modeling household travel demand, as

tied to out-of-home activity participation.  The investigation adheres to the

microeconomic theories of rational behavior and utility maximization1 by the household

and incorporates constraints on time, in addition to the common constraint on monetary

expenditures.  The methodology is tested empirically for several model specifications,

using data from the San Francisco Bay Area.  The results provide estimates of optimal

trip generation and distribution (that is, destination choice) by households together with

multiple economic variables, including cross-travel time elasticities, values of time, and

welfare changes.

Little prior travel-behavior research has taken into account a time constraint or

explicitly recognized travel demand as driven by demand for activities at physically

separate destinations.  Much of the research regarding time constraints has been

theoretical, with little empirical support (e.g., Becker 1965, Johnson 1966, DeSerpa

1971).  A primary reason for the absence of empirical method is the difficulty satisfying

utility maximization theory while permitting estimation.  Other methods of analysis have

resorted to substantial simplification of behavior based on strong assumptions such as

bindingness of a single constraint (either the money or the time constraint is binding, but

not both) and/or strongly additive preferences (e.g., Zahavi 1979a, Zahavi et al. 1981,

Gronau 1970).  Accordingly, these methods have lost many relations of interest.

Discrete-choice models can accommodate the simultaneous (rather than sequential)

nature of a variety of decision types and can be consistent with utility-maximizing

behavior (McFadden 1974, Ben-Akiva and Lerman 1985, Train et al. 1987).  However,
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many choice variables are ordered or continuous (for example, the number of dining trips

per month, square footage of home parcel).  Ordered logit and probit models have been

estimated for a single choice and for error-correlated simultaneous choices (e.g., Yen et

al. 1998), but not for a set of simultaneous choices where the parameters are constrained

across equations or where the outcomes are cardinal (such as the number of person-trips

by a household to different activity types over a day or more).  If ordered choices were

modeled simultaneously as non-ordered choices, the independence of irrelevant

alternatives (IIA) property of the logit model would not be tenable; and the probit suffers

from intractability for large numbers of (non-ordered) choices.

Thus, this dissertation takes a different approach and seeks to illuminate the

interactions and trade-offs among demands for out-of-home activities and, therefore,

travel.  The methodology is sufficiently flexible that other consumption can be

incorporated as well.  The approach employs models consistent with utility theory so that

the basic model structure and resulting predictions yield behaviors that are economically

rational under a wide range of circumstances.  Moreover, utility theory provides

numerous extensions, supplying, for example, estimates of welfare changes, cross-time

demand elasticities, and values of time.

In this research, systems of demand functions are derived from flexible functional

forms of the indirect utility function through parallels to Roy’s Identity.  Continuous

(though latent) demand levels underlie the system of interdependent equations, and these

equations are simultaneously estimated so that cross-equation parameter constraints and

correlated error structures are accommodated.  The system is estimated as a set of

negative binomial regressions, produced from mixing independent Poissons with
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stochastic gamma terms and thereby providing for unexplained heterogeneity in behavior.

These gamma terms are correlated, recognizing the correlation of unobserved information

across multiple responses for a single observational unit.

The methods developed here are intended to further the state of the art in travel-

demand modeling.  The behavioral foundations of the investigated models are stronger

than those of many existing models, lending greater credibility to the results and

predictions.  And the incorporation of relevant market “prices” (in the form of travel

times) as well as two distinct budget constraints makes the models applicable to a variety

of policy scenarios.2  Moreover, the requisite data are commonly available to

metropolitan and local planning organizations, so the methods advanced and applied here

can be implemented in the short term.

Additionally, the resulting models allow for various tests of hypotheses concerning

travel- and activity-related consumption, such as the existence of constant travel-time

budgets.   Application of microeconomic theory using the model’s estimated (scaled)

indirect utility functions also permits evaluation of “welfare” changes due to policy

changes (e.g., Hausman et al. 1995,  Burt and Brewer 1971, Cicchetti et al. 1976).  For

example, through inversion of the indirect utility function with respect to either one of the

constraint levels, measures of a project’s social “cost” or “benefit” can be estimated in

units of time and money by using differences in the constraints’ respective expenditure

functions across households.

This model’s recognition of simultaneity in decision-making, time constraints on

choice, and the discrete nature of travel data, along with its rigorous microeconomic



4

foundation, offer significant advantages in travel modeling.  The ensuing chapters detail

the model’s specification and illustrate its application.
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ENDNOTES:

                                                
1 The assumption of utility-maximizing behavior, implicit in many models and their constraints (e.g., cross-

equation constraints on parameters), can often be tested using empirical results.  For examples of such
tests, see Christensen et al., 1975, and Deaton and Muellbauer, 1980a.

2 For example, if sales and service opportunities were to re-locate, the travel-time environment would
change.  These changes are incorporated directly in the proposed model, permitting immediate estimation
of a household’s response, via substitution and time-constraint effects.
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Chapter Two:  Review of Related Literature

  General

Over the years, travel behavior has been modeled in a number of ways.  Many of the

earliest models were developed primarily for prediction; their virtue is that they are easy

to apply.  Later models are theoretically sounder, based on hypotheses concerning human

behavior and focusing on causation.  Some of the most plausible travel models

acknowledge simultaneity in decision-making by avoiding strictly sequential estimation,

hypothesize distinct behavioral mechanisms, and/or suggest new ways of adhering to

microeconomic theory.  However, shortcomings in existing models persist, and this

research seeks to overcome the deficiencies.  The purpose of this chapter is to summarize

the strengths and weaknesses of existing models.

  Models of Trip Generation

In the standard Urban Transportation Planning Model (UTPM), the first step is trip

generation – estimation of the number of trips made for different purposes by households.

The sequential, rather than simultaneous, estimation of such models and their lack of

transportation-supply variables have long been recognized as inherent weaknesses in this

mainstay of planning practice (e.g., Dickey 1978, Gur 1971), yet these practices continue

in the present day (e.g., MTC 1996, Purvis et al. 1996, ITE Journal 1994).  In their

comprehensive book Modelling Transport, Ortúzar and Willumsen (1994) point out that

while one’s access to opportunities affects trip generation and “offers a way to make trip

generation elastic (i.e., responsive) to changes in the transport system”, it “has rarely been

used....” (1994, p. 117)  For example, in a two-stage “recursive” model of trip and trip-

chain generation, Goulias and Kitamura’s (1991) explanatory variables are almost
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exclusively demographic in nature; for non-demographic data, they use a rural-versus-

large city dummy variable and segment their trip-chain model by three city sizes.1

Few recent methodologies consider total trip demand before addressing other aspects

of behavior, such as trip chaining, distribution, timing, and duration.  The absence of

interest may be due to the apparent inelasticity of total demand with respect to access

costs.  Following an extensive review of past literature on trip frequency as a function of

several rather simple measures of location type and accessibility (such as local-area

densities and distance to central business districts) and a correlation-based analysis of

their own, Hanson and Schwab (1987) conclude that “accessibility level has a greater

impact on mode use and travel distance than it does on discretionary trip frequency” – an

“unexpected” result given “the strong trip frequency-accessibility relationship posited

frequently in the literature” (1987, p. 735).  And Ortúzar and Willumsen observe that the

incorporation of typical measures of access “has not produced the expected results, at

least in the case of aggregate modeling applications, because the estimated parameters of

the accessibility variable have either been non-significant or with the wrong sign.” (1994,

p. 147)  These results may be questioned, however, since the models and measures used

to examine this relationship generally are unrefined.  In order to estimate the elasticity of

travel demand with respect to access, more sophisticated, behaviorally based models

should be used.

  Systems of Equations

A set of model equations is estimated as a system when a correlated error structure is

hypothesized, there exist endogenous explanatory variables, and/or cross-equation

parameter constraints exist.  Researchers have applied the technique of structural equation
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modeling to predict multiple travel choices in a manner similar to the modeling

methodology developed here, but without cross-equation parameter constraints or a strict

behavioral basis.  For example, Golob and McNally (1997), Golob and Meurs (1987),

Golob and van Wissen (1989 and 1990), and Lu and Pas (1997) regress variables such as

vehicle-miles traveled (VMT), time spent per day in different activities, mode share, and

auto-ownership on exogenous socioeconomic variables as well as on several endogenous

variables.  Much of the software used by these researchers allows for latent-variable

techniques, such as the Tobit and ordered probit.  However, the foundation for such

systems in a utility-maximizing framework is missing.  In a recent paper, Kitamura writes

that existing structural equations models “offer no explicit treatment of the decision

mechanisms underlying activity engagements.” (Kitamura 1996)  One finds that “prices”

are absent from these models, and measures of benefit cannot be constructed from their

results.

Outside of transportation, there are many simultaneous-equations models of demand

for goods and services.  Optimal shares of monetary expenditures are typically estimated

after applying rigorous microeconomic theory (e.g., symmetry in compensated

substitution, homogeneity in prices and income, summability and concavity of

expenditures); however, time constraints are not considered.  Abundant experience with

these models has resulted in an understanding of the limitations of different functional

forms and the need for specific cross-equation parameter restrictions for conformance

with neoclassical economic theory (such as demands’ zero-degree homogeneity in prices

and income).  For detailed examples, see Lau 1986, Deaton 1987, Deaton and Muellbauer

1980b, Stone 1954, and/or Pollack and Wales 1978 and 1980.
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  Hybrid/Simulation Models

Recent, so-called “hybrid” models hypothesize traveler decision mechanisms which

require less information than utility maximization yet satisfy spatial and temporal

constraints.  For example, Recker’s (1995) Household Activity Pattern Problem (HAPP)

algorithm minimizes a generalized time cost function (which he calls “disutility”) subject

to linear coupling, connectivity, temporal, and budget constraints.  However, his method

takes demand for participation in activities (as well as their duration and location) as

given and neglects actual behavior for calibration of the model or its objective function.

While the model is detailed and able to accommodate a variety of constraints, it avoids

consideration of the basis for travel demand and is effectively a scheduling problem.

STARCHILD (Recker, et al. 1986a, 1986b) and SMASH (Ettema et al. 1993, 1995a)

are similar to Recker’s HAPP model in that an activity program is provided exogenously,

decision rules to choose among alternatives are relatively simplistic, and the models

determine scheduling.  Another model, AMOS (RDC 1995), can be classified similarly,

but it requires more inputs and is tailored for response prediction in a limited policy

setting.  In comparing these models to econometric models, Bowman and Ben-Akiva

(1996) observe that with the “hybrid” models the sample of considered alternatives is

often inadequate, the response or decision process is probably too simplistic, and many

significant, related decisions must be determined exogenously (e.g., activity type,

location, and travel mode).

  Discrete- and Discrete + Continuous-Choice Models

Following McFadden’s seminal linkage of the logit model specification to

microeconomic theory (1974), many discrete-choice models have been developed for the
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purpose of travel demand modeling.  The strict application of these models requires a

complete specification of the feasible choice set, restricting the simultaneous and flexible

estimation of total demand.  Notwithstanding this limitation, many of these models

remain microeconomically rigorous by assuming and applying the principles of utility

maximization, though some of the strongest applications are not in the area of

transportation.  For example, Cameron (1982 & 1985) tests flexible2 indirect-utility

specifications in nested logit models for her analysis of home-weatherization choices.

While rigorous, the size of her problem is limited; she evaluates two choices – the

installation of energy-conserving appliances and, when applicable, the appliance package

chosen.

In an early study of travel behavior, Adler (1976) relies exclusively on a multinomial

logit across “all” possible non-work trip patterns for households, but the independence of

irrelevant alternatives (IIA) assumption implicit in the logit formulation is unlikely to

hold in his model.  Fortunately, the nested logit structure has provided a useful way to

avoid imposing the IIA property.  Domencich and McFadden (1975) detail a four-level

nested logit specification by modeling shop-trip mode split, time-of-day choice (peak vs.

off-peak), destination choice, and “frequency.”  Still, their model’s permitted shopping-

trip frequency allows just one or no shop trips per household per day, which may be too

limiting for many applications.

Incorporating the choice of trip purpose, but assuming fixed total demand, Kitamura

and Kermanshah (1984) sequentially estimate a nested logit for trip-purpose and trip-

destination choices.  In the destination-choice model, a negative and statistically

significant coefficient on the time-of-day-times-distance variable, after controlling for
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distance by itself, causes them to conclude that longer trips are less likely toward the end

of a day, as time constraints become more binding.  Their recognition of a possible time-

budget effect is important; however, their assumption of the time-of-day variable’s

exogeneity is questionable, and the time constraint is accommodated obliquely.

Damm and Lerman (1981) recognize travel as a derived demand and combine

discrete-choice models of activity participation with the continuous choice of activity

duration.  This model offers the advantage of providing information on the time-of-day

for an individual’s travel and a system of simultaneous equations for estimation of the

five periods’ activity durations.  However, while the authors discuss the indirect

incorporation of a discretionary-time constraint via an individual’s socio-economic

characteristics, this constraint is not made explicit.  Moreover, the research considers only

the choices of workers on a workday given five distinct periods3 during which to choose

participation in a non-work activity, and the authors specify linear utility functions with

additive separability across each of the five choices.

Kitamura’s work in this area (1984) is similar to that of Damm and Lerman (1981),

except in the functional form of the time-allocation equation and in the discussion of

model set-up.  Kitamura’s models are more fundamentally linked to economic theory and

avoid selectivity bias in parameter estimates (by weighting responses in the duration

model according to observations’ likelihoods in the discrete-choice model).

Nevertheless, due to the substantial complexities of the model, Kitamura relies on very

specific functional forms for indirect utility and error structure in order to readily derive

activity-participation-time demands.  He also considers only two classes of time use:

mandatory and discretionary.
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In the context of auto ownership and use, Mannering and Winston (1985) also

combine a discrete with a continuous choice.  Making use of Dubin and McFadden’s

(1984) appliance-purchase-and-consumption model specification, they specify a linear

functional form for demand of a single good, vehicle miles traveled in period “t” (VMTt),

and, using Roy’s Identity (dv dY VMT dv dPt VMTt
× + = 0 [where variables here and

throughout the paper are as defined in the List of Symbols, immediately following the

Table of Contents], Roy 1943), determine the implied functional form for indirect utility

(v).  They then use this indirect utility in a nested logit model for the number of cars

owned – and the type or “class” of vehicle, given the number owned.  After estimating the

logit – and thus an indirect utility function, the estimated levels of VMT are easily

obtained.  This modeling method provides another example of a semi-simultaneous

mixed discrete-with-continuous model of travel, and it incorporates some basic economic

theory for a behavioral basis.  Unfortunately, for a case of multiple goods, working

“backwards” to derive indirect utility can be very difficult unless one begins with highly

constrained demand equations; the connection is more clear if one moves from a

functional form for indirect utility to a form for demands.  Moreover, Mannering and

Winston’s necessarily specific choice of functional form for VMT demand leads to a

rather limiting indirect utility function, one that is not, for example, homogeneous of

degree zero in income and prices (which is a theoretically required condition discussed in

Chapter Three).  And, unlike this research, their focus is not on activity participation, the

influence of time constraints, or the accommodation of multiple, integer demands.

Harvey and Deakin’s STEP analysis package (1996) does not simultaneously

combine discrete and continuous choices, but it does apply discrete-choice estimation to a
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wide array of travel-related decisions by individuals, including location choice and time

of travel.  Notably, STEP incorporates an entire region’s travel “prices” (i.e., interzonal

travel times – peak and off-peak, and intrazonal parking prices) into its models of trip

distribution.  However, STEP is not fully simultaneous and pays little attention to the

implications of microeconomic theory for model form.

  Value-of-Time Models

For a long time microeconomics and utility theory focused on the money budget and

monetary expenditures.  In the 1960’s and 1970’s time valuation, the labor-leisure trade-

off, and activity participation choices began to be studied in a variety of ways, using

microeconomic principles.  Becker (1965), Johnson (1966), DeSerpa (1971), Oort (1969),

and Bruzelius (1979) provide theoretical derivations of time’s valuation across different

activities.  However, their hypothesized models typically treat travel as a single activity

and/or emphasize the time spent participating in (rather than accessing) the other

activities.  Moreover, their focus is on the theoretical value of time, rather than a working

system of demand equations for participation in out-of-home activities.

Becker (1965) argues that time use is a highly relevant aspect of household decision-

making and that “total-income losses” due to non-income-producing uses of time are very

significant.  Thus, he advocates the incorporation of time in economic models of the

household.  He suggests that a household’s “full income is substantially above money

income” (1965, p. 517) and acknowledges people’s pursuit of “productive consumption,”

such as eating and sleeping (activities which Golob and McNally [1997] and others have

termed “maintenance”).  Becker also comments on the intra-household allocation of

consumption and production activities, arguing that members offering relative
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efficiencies in different areas (e.g., high-wage earners) will contribute relatively more

time in those pursuits. More recently, Jara-Díaz (1994) extends time-valuation models

into a setting which relies on travel times and can illustrate modal trade-offs.  However,

his results remain similar to those just mentioned: largely theoretical, based on direct-

utility functions, and rarely tested empirically – except when employing random-utility

discrete-choice models.

Train and McFadden (1978) look specifically at the labor-leisure trade-off using a

discrete mode-choice model.  Their work demonstrates how wages might reasonably

enter the conditional-utility specification, as well as how workers optimize their time use.

But the model only considers the choice of workers and employs a restrictive, two-good,

Cobb-Douglas direct-utility specification.

Golob, Beckman, and Zahavi (1981) acknowledge the imposition of both time and

income constraints in a setting that uses microeconomic theory, but they either consider

only one at a time to be binding or assume travel expenditures are negligible relative to

time and/or money budgets.  Such assumptions may rarely hold: one can reasonably

expect that both constraints are binding, as long as people value time and do not

experience satiation in consumption.  For example, in order to maximize utility, a person

can sell his/her time to increase income (while reducing discretionary time available),

spend more time in enjoyable activities (e.g., leisure) and/or buy time-saving goods (such

as prepared meals).  This assumption of the bindingness of constraints is testable in the

proposed research4.  Additionally, Golob, Beckman, and Zahavi neglect activity

participation as the underlying basis for travel demands, rely on additive utility functions,
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and model total distance traveled, rather than distinguishing trip types or estimating the

number of trips made.

  Summary of Related Literature

There is a well-documented interest in the modeling of travel-related behaviors.

Moreover, substantial progress has been made in the topics of time constraints,

simultaneity of travel-related choices, the modeling of both continuous and discrete

behaviors, and the implications of microeconomic theory.

Still, deficiencies exist.  Most prominently, the existing literature does not consider

integer consumption of multiple goods based on a continuous and cardinal latent response

in a microeconomically rigorous framework; behaviorally-based time-use research

remains largely theoretical; models of simultaneous choices which are consistent with

utility maximization tend to be of discrete choices; and supply-side variables have been

lacking in models of trip demand.

In contrast, the present research prominently incorporates supply-side variables (in

the form of travel times to iso-opportunity contours) while allowing simultaneous

estimation of trip generation and trip distribution, based on continuous, underlying

demands derived from rigorously applied microeconomic theory5.  This research provides

estimates of numerous behavioral descriptors, such as demand elasticities; and it allows

for a variety of extensions, such as estimation of access times’ effects on a household’s

total travel time and on its welfare.  The methods and model specifications used are

considerably different from those found in previous work, and they are described in the

following chapters.
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ENDNOTES:

                                                
1 One, somewhat typical exception is Safwat and Magnanti’s (1988) Simultaneous Transportation

Equilibrium Model (STEM), where total trip generation is estimated as a function of a log-sum
accessibility measure (derived via the calibration of their trip-distribution logit model).

2 Cameron (1982) investigates household preferences using the rather flexible translog and Leontief
functional forms to describe indirect utility.  Note that these functional forms are summarized in the
Appendix, section A-1, and are discussed in Chapter Three.

3 The periods for non-work activity participation that Damm and Lerman model are: prior to the home-to-
work trip, during the home-to-work trip, during work, during the work-to-home trip, and following the
work-to-home trip.

4 The bindingness of constraints is tested in Chapter Five by calculating the T-statistics for the derivatives
of the estimated indirect utility function with respect to the constraint levels for each household; these
derivatives theoretically represent the shadow prices of these constraints, which come out of the utility
maximization.

5 In his ground-breaking time-valuation work, DeSerpa suggests that “(d)espite (its) difficulties” a system-
of-demands approach to the problem, where travel times effectively represent the minimum amount of
time required for participation in/consumption of an activity, “has considerable merit” because “‘non-
economic’ factors, such as comfort and convenience are ... implicitly considered”, aggregation of
demands “does not depend on any arbitrary assumptions about the individuals comprising the group”,
and, “most importantly, the measure (of time’s value) is compatible with the hypothesis of utility
maximisation.  No other (time-value) measure can make that claim.” (1971, pg. 842)  It appears that
DeSerpa would strongly support an approach fundamentally very similar to the one proposed here.
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Chapter Three:  Research Methodology

  Microeconomic Foundations

In this research household activity and other, related consumption trade-offs are

posited to adhere to microeconomic theories of utility maximization.  Estimates of travel-

related behaviors, such as trip-making rates and trip distribution, are derived from

empirical analyses of statistical models based on this theory.  In a rather general

formulation of the utility-maximization problem, a household may be assumed to derive

its welfare (i.e., utility) from consumption of/participation in a vector of distinct, out-of-

home activities 
v
A  (which are location specific, include the household’s work activities,

and are indexed by i), the time spent participating in each of these activities iT  (and, in

particular for the work activity, wT ), the total time spent accessing all of these activities

vv
tA  (where 

v
t  is the vector of fixed travel times to access the activities1), and

consumption of all other goods 
v
Z .  It is helpful to think of the consumption/decision

variables in this problem as rates; for example, one activity might be the number of

shopping trips in the local neighborhood per day.  Under the general model, households

are subject to unearned income ( unY ) and available-time (H) constraints which are also

rates (e.g., dollars per day, hours per day), and these constraints lead to trade-offs between

consumption of the different goods.  In equation form, the problem can be written as the

following:

 
Max Utility A T t A Z

s t P A P A P Z Y wT T t A H and A T Z

A T Z

A trvl Z un w i
i

v v

v v vv v

v v v v v v vv v v v
, ,

( , , , )

. . , , , & .+ + ≤ + + = ≥∑ 0
(3-1)
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Note that time spent for activity participation is of two types: travel to non-home

sites ( it ) and during participation itself ( iT ); both of these enter explicitly in the direct

utility function, though only the participation time, iT , is an endogenous variable.  The

work activity contributes to the income budget level via the wage earned, w; but

participation in most other activities is likely to cost money (with P Ptrvl i Ai, +  representing

the monetary price per unit of participation in activity i, due to travel costs and direct

participation costs).  There is an equality in the time constraint since all time not spent in

accessing and participating in activities outside of the home counts as time spent in at-

home activities2.

The general model is subject to various modifications.  For example, if one wishes to

focus on discretionary activity choices and assume work and income exogeneity in such

decisions, one would not explicitly model work as an activity and would substitute total

income, Y, for unearned income, unY , and discretionary time, dT  (total time minus, for

example, work and school time), for total time, H.  Also, there are many other constraint

possibilities; for example, minimum participation-time constraints may exist for certain

activities (such as working, dining out, or seeing a movie in a theater) and only fixed

levels of consumption may be permitted (such as working or going to school five times

per week).
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FIGURE 3-1 here *******
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Figure 3-1 is an illustration of what the utility maximization looks like in a

simplified, two-activity case; in this illustration a single, per-unit price and time-

expenditure exist for each of the two activities and income and time budgets are

exogenous/given so that t A t A H P A P A Y1 1 2 2 1 1 2 2+ = + =& .  In a more-realistic, N-

good case, the intersection of the two budget constraints is an N-2 dimensional

hyperplane; so the optimal choice “bundle” of activities will not appear as a single point

of intersection, as it does in the illustrated case of Figure 3-1.  Furthermore, choice of

activity participation times (over a given period), rather than just optimal rates, expands

the decision space substantially, yielding a hyperplane of dimension 2N-2.

In practice, a closed-form/analytic solution to constrained maximization of direct

utility functions of more than a couple goods is rare, because solution of the Lagrangian

equation’s set of first-order conditions is often intractable.  In order to derive a system of

(optimal) demand equations, it has been found significantly more convenient to work

with the indirect utility function, as defined in Equation 3-2 (with arguments defined as

for Equation 3-1 and in the List of Symbols, which follows the Table of Contents).

Indirect Utility MaxUtility Budget Time Constraints

v P P P t Y w HA trvl Z un

=

=

{ & }

( , , , , , )
v v v v  (Chapter

Three:-2)

By beginning from a specification of indirect utility, one can then rely on a relation

called Roy’s Identity (Roy 1943) to provide individual demand equations.  The derivation

of the entire system from a single indirect utility specification imposes many cross-

equation parameter constraints automatically (because many parameters are likely to

show up in two or more of the demand equations).  However, there are a variety of other
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constraints implied by long-held microeconomic theories for the typical, money-based

applications of these methods, and these constraints tend to be more subtle; they are

discussed shortly, in a section titled Theory-Implied Constraints.

  Roy’s Identity in a Two-Budget Framework

Roy’s Identity is the method for deriving demand functions, whose dependent

variables (consumption) can be observed, from indirect utility, which is unobservable and

ordinal – rather than cardinal – in nature.  Fortunately, Roy’s Identity continues to hold in

a two-budget framework, although more restrictively than in the typical, single-budget

framework.  Given a functional specification for indirect utility, v, as well as exogenously

determined available time (T) and income (Y) constraints, the relations one can use to

identify optimal demand, Ai
* , are shown in Equation 3-3.  Details of this equation’s

derivation are provided in section A-2 of the Appendix.

( )
Roy s Identity A

dv

dt
dv

dT

dv

d P P

dv

dY

i

where A Optimal long run rate of consumption per period

v Indirect utility t Travel time to Activity i

T Time available per period

P P Unit Price to participate in Activity i

due to travel participation costs Y Income available per period

i
i trvl i A

i

i

trvl i A

i

i

’ : , ,

, ,

, ,

,

( & ),& .

* ,

*

,

= − = −
+

∀

= −
= =
=

+ =

=

 (Chapter

Three:-3)

When income and time budget levels are exogenous and observed, the derivation of

optimal demand levels is reasonably straightforward.  However, income and discretionary

time are likely to be endogenous to the decisions to participate in non-work/discretionary

activities; in other words, households probably make choices of how much time to spend
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working – earning income while giving up discretionary time – when determining the

amounts of other activities they might engage in.  In such a situation, the identities

allowing one to identify demands do not look so similar to the common form of Roy’s

Identity, and the estimations of value of time and compensated demand are complicated.

Imagine a situation where total time available to a household’s members (e.g., 24

hours each day a member is surveyed), marginal hourly wage of the household, unearned

income, travel times, and activity-participation prices are observed.  The Lagrangian

equation and several of its first-order conditions for utility maximization would look like

the following:

( )
( )
[ ] [ ]

L A T Z U A T t A Z H T t A

Y wT P A P A P Z

L v P P P t Y H w

L
A P P P t Y H w T P P P t Y H w

Z P P P

Time Money Time k
k

Money un w A trvl z

opt
A trvl Z un

A trvl Z un A A trvl Z un
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( , , , , ) ( , , , ) ...

, , , , , ,

, , , , , , , , , , , , , ,
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The endogeneity of discretionary time leads to a form of Roy’s Identity which differs

from that shown in Equation 3-3.  Following some simple manipulation of the first-order

conditions found in Equation 3-4, one has the following form:

( )

Roy s Identity with Discretionary Time Endogeneity

A

dv

dt
dv

dH

dv

d P P

dv

dY

i

where A Optimal long run rate of consumption per period

v Indirect utility t Travel time to Activity i

H Total time available per period

P P Unit Price to participate in Activity i

due to travel participation costs

Y Unearned Income available per period

i
i trvl i A

un

i

i

trvl i A

un

i

i

’ :

, ,

, ,

, ,

,

( & ),

& .

* ,

*

,

−

= − = −
+

∀

= −
= =
=

+ =

=

(Chapter

Three:-5)

The above identity is not the only one that can be derived from this model

specification.  Incorporation of the wage variable, w, allows one to identify optimal work

time, *
wT , as the ratio of the derivative of indirect utility with respect to wage and with

respect to total time available.  And the vector of other goods (
v
Z ) remains identifiable (as

it is under a situation of exogenous income and discretionary time); demands for these

goods equal the negative ratio of the derivative of indirect utility with respect to their

prices and with respect to unearned income.

Under a situation of endogenously determined budgets, the value-of-time

computations change; if unearned income and total time available are observed but

discretionary time is endogenous, one can use the following:
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Value of Time
dv

dH
dv

dY

de t Y w u

dY
Time

Money
un

H un

un

= = =
λ

λ
( , , , )
v

(Chapter

Three:-6)

However, if unearned income is not observed in the data set (but total time available

and wage are, and discretionary time is endogenous), one will need to rely on the

following equation:

Valueof Time
dv

dH
dv

dw
T

dv
dH

dv
dw

T

Time

Money

w w

= =












≈












λ
λ

*

(Chapter

Three:-7)

Note that in this equation one may care to use the observed amount of time worked

( wT ) to approximate value of time rather than the optimal level of working hours ( *
wT ),

because unearned-income information may not be available and/or may be measured with

significant error.  Since unearned-income information is not available in the data set used

here for empirical analyses, the approximation in Equation 3-7 is used in those models of

Chapter Five that endogenize time expenditures.

Assuming that households are able to optimize their time expenditures and activity

participation3, how will models which assume exogenous total expenditures/income and

discretionary time compare in their value-of-time computations with those which

incorporate these variables endogenously?  One way to look at the difference is to

manipulate the ratio of derivatives in the income-and-discretionary-time endogenous

case; for example:
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Three:-8)

So, if the second term in the last part of the above equation is greater than one, one

will over-estimate the value of time.  It seems reasonable that, as total time available (H)

increases, a household’s members will work somewhat more, but not all of the newly

available time.  Thus, the denominator of the second term is likely to be less than one but

not necessarily very close to zero (especially if work restrictions – such as a forty-hour

week maximum paid week – are imposed).  And, as unearned income increases, one may

expect work time to decrease, perhaps so much that wage multiplied by work time exactly

cancels unearned income, making the top part of the equation close to zero and causing

one’s value of time estimate (with the assumption of work-time and income exogeneity)

to be much lower than the actual.

If work time is exogenously determined for households, then work time is

unresponsive to changes in total time available to a household, H, and unearned income,

Yun, and one will be estimating the true value of time, without inflation or deflation.

Unfortunately, without observing the variable of unearned income across the sample, it is

difficult to analyze how work time depends on total time and unearned income.

However, one can crudely estimate work time’s response to changes in total time
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available by modeling observed work time for this sample as a function of wage, travel

times, total time available, and a coarse estimate of unearned income; a simple ordinary

least squares model across households with one or more workers produces a derivative

value of just 0.0808 hours of work time per hour of total time available to the household

(with a T-statistic of 29.5). 4  The estimate of unearned income on which this crude model

relies is a value equal to the household’s income if the household has no surveyed

workers and zero otherwise.  Running this same model specification for all sampled

households produces a coefficient estimate of just -0.145 hours per $1,000 of unearned

income (with a T-statistic of -27.3).  These results suggest that the derivatives of work

time with respect to both income and wage are small; in fact the ratio of the derivatives of

indirect utility with respect to discretionary time and total income available to the

household (as in Equation 3-8) are estimated this way to be about nine percent higher

than the true value of time, on average5.  If this is a good estimate of the bias in this

measure, it makes sense to deflate the value-of-time results for models which taken

income and discretionary time to be exogenous by five to fifteen percent.

  Theory-Implied Constraints

The models estimated here are not as general as the formulation presented in

Equation 3-2, due to a lack of data on monetary prices and an inability to

microeconomically identify non-work time expenditures in activities; but they are

described by a system of equations which determines the optimal number of out-of-home

activities accessed per day by household members.  In order for a system of demand

equations to be consistent with microeconomic theory and common sense, the equations

must generally be compatible with several types of constraints; not only do such
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restrictions impose consistency with theory, they can be helpful in reducing the

dimensionality of the problem (i.e., the size of the parameter space)6.  Non-negativity of

optimal demands is a feasibility limitation, and concavity of total monetary expenditures

in prices is a requirement when prices are exogenous and constant; these conditions are

generally checked following model estimation.  In contrast, zero-degree homogeneity of

demands (in prices and expenditures/income) is typically imposed a priori and

automatically in the functional specification, and summability of expenditures (to equal

total budget) and symmetry (of compensated cross-price effects) are often imposed

through parameter constraints.  If the conditions of summability and symmetry are not

needed for parameter identifiability, their viability can generally be tested using

differences in the constrained and unconstrained likelihood values.  A final constraint on

many estimated models is the implicit assumption of separability of preferences from

other, non-considered goods.  These various constraint types and their usefulness in the

models investigated here are discussed below.

  Non-Negativity

Generally, people cannot consume negative amounts of a good, unless, for example,

they own some and sell or give it to others.  In the context of this research, one can argue

that people sometimes pay others to participate in out-of-home activities for them (such

as food shopping).  However, the available data do not provide information on such

transactions so all observations are non-negative and this condition is imposed on the

estimates.  The method of ensuring this condition via the estimation process used here is

an assignment of a very low likelihood value every time the iterative maximum-

likelihood search mechanism tries parameter sets which produce negative demand
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estimates for every demand type of at least one household.  If some, but not all, demand

types are estimated to be negative for a given household, the parameter set is permitted

but optimal demands which are initially predicted to be negative are set to a positive level

very close to zero.  The optimal demand rates are not set to exactly zero since it is

expected that, for the demand types specified, every household will eventually have to

consume at least one such good.  For example, a demand set of four iso-opportunity

contours for all types of discretionary trips represents a partitioning of destinations for a

type of trip virtually all households  eventually make.  However, if trip purposes were

partitioned quite narrowly, segregating purposes like “education,” “work,” and “child-

care”, one would need to incorporate zero-level demands since households without

students, workers, and/or children would not reasonably be expected to make such trips7.

Before concluding this discussion of non-negativity, one should recognize that the

rather ad hoc choice of a close-to-zero level of demand to assign to households with a

predicted-to-be-negative optimal demand level is not theoretically satisfactory,

particularly when the other demand levels are left as initially predicted.  In reality, such

households find themselves at a corner solution, where Roy’s Identity no longer applies to

all demand types at once; instead, theory suggests that an optimization over limited

choice sets is undertaken and the maximized utilities of distinct scenarios are compared.

This added complexity can be accommodated in the models presented here, though it has

not been in the estimated models provided in Chapter Four.  In fact, Chapter Four’s

predicted demands are well above the close-to-zero value for all demand types in almost

all the models estimated.
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  Concavity of the Expenditure Function

Price extremes are preferable to balanced prices; this characteristic is manifest in

quasiconvexity of the indirect utility function and concavity of its inverse8, the

expenditure function.  While this characteristic is not immediately intuitive, it is

theoretically expected.  It is expected because at “average” prices, one can buy no more

than one could buy across the combined feasible space of the two price extremes which

produced the average, subject to a single budget level; so one cannot be better off at

balanced prices that at a combination of the two extremes.  Thus, the indirect utility

resulting from a weighted average of price vectors can be no higher than that achieved

from a weighted average of indirect utilities resulting from the two extreme price sets.

Moreover, if one or more prices increase, one is at least as well off if one’s budget

increases in an amount equal to the price change (a vector) times the vector of previously

optimal quantities; this amount of added income will allow one to consume the old

bundle of goods and thereby be just as well-off.  But, due to substitution effects, one will

likely shift away from consumption of the relatively more expensive goods and be able to

be just as well-off, so the amount of expenditures needed to achieve a given level of

utility is less and thus concave in prices.  These relations translate to the matrix of second

derivatives of the money-expenditure function in prices being negative semi-definite.

(For further discussion of these conditions, see, e.g., Varian 1992.)

How do these conditions apply in the present model, where time characterizes costs?

If one were to consider all time use, one would expect humans to require more time in a

day in order to be just as well-off if travel times increase.  However, the amount of

additional time required is not necessarily less than the quantity of activities consumed
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times their change in travel times.  Humans directly experience time use, including travel

time, so time expenditures are arguments in the direct utility function.  This aspect of

time use also arises in the following discussion, on homogeneity, and affects the

application of many microeconomic theories in a time-expenditure setting.

In reality, more time spent accessing opportunities/activities may require more than a

full compensation of total time to keep welfare constant; the direct impact on one’s

welfare may be sufficiently negative9.  Thus, concavity of time expenditures in travel

times is not a required property.  And, as one might expect, the sister property of a

quasiconvex indirect utility function with respect to travel times does not apply here

either.  While the time-budget constraint resulting from a weighted averaging of two

travel-time vectors leads to a feasible consumption space which is a subset of the union of

the two feasible spaces of the original two vectors, one may be better off because the

indirect utility function shifts when the time vector changes!  There may be a preference

for better-balanced travel times because, for example, one can then spend better balanced

amounts of time participating in a variety of activities (versus being “stuck” in the few

activities which are relatively travel-time inexpensive).  Changes in iso-utility contours

due to changes in the travel times can bring this about.  For these reasons, the conditions

of time-budget concavity and indirect utility quasiconvexity are not imposed or expected

for the models estimated here.10

  Homogeneity

Since money is just a unit of exchange and does not itself hold value, rational

humans are expected to not alter their choices under pure inflation.  The theory is that

indirect utility and all demands are homogeneous of degree zero in prices and income; so,



31

if prices and income all change by the same factor, a household’s welfare/utility and

consumption choices do not change (see, e.g., Deaton and Muellbauer 1980b, Varian

1992).  A typical specification of indirect utility and its resulting system of demand

equations show prices everywhere divided by total expenditures, so that homogeneity is

implicit in the formulation; section A-1 of the Appendix details several such

specifications for a money-expenditure setting, but a general description of such a model

in a time-and-money-homogenous setting is the following:

Indirect Utility v
t

H

P

Y
=









v v

, (Chapter

Three:-9)

The idea that pure inflation should not change one’s consumption patterns is

theoretically acceptable in an environment where people pay for goods with money, but

this is probably too strong an assumption for consumption which involves time

expenditures, since time is not instantly tradable – people directly experience their

spending of time11.  For this reason, several modifications were made to the typical model

specifications, providing greater functional flexibility by not imposing homogeneity with

respect to travel times and the time budget; these functional forms are shown in the

section titled Model Specifications.  Note that if information on monetary prices were

available in the data sets, one could include these and impose homogeneity over prices

and monetary expenditures.

  Summability

The very common assumption of non-satiation12, that a little more of a good is a

positive thing, no matter how much a person already has, implies summability of

monetary expenditures when one is considering consumption across all demand
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alternatives.  Summability is also the condition that the sum of all demands considered in

a model times their prices equals total expenditure on the set of goods considered.

In a system of activity-demand equations where one is modeling all uses of time (or

all uses of, say, discretionary time), one would probably want to impose summability to

ensure that results are consistent with reality (e.g., a 24-hour day).  However, when one

considers only the number of activities accessed, as in this research, rather than also

modeling the amount of time spent in each, summability’s imposition – in this case across

travel-time expenditures – puts the focus on allocating an exogenous total travel time,

rather than allocating total time available.  Thus, summability would be unnecessarily

limiting and is not imposed here.

  Separability

The neglect of other goods’ price information generally necessitates an assumption of

separability and shifts the modeling focus to substitution and trade-offs within a subset of

consumption over an exogenously determined subset of the budget. Separability

exists when direct utility is a function of sub-utility functions having distinct good sets as

arguments; if utility is an additive function of these subutility functions, strong

separability exists.13

As an example, one may collect detailed data on households’ consumption of food

items but not have any information on their consumption of clothing, lodging, transport,

and utilities.  To be able to apply the rigorous microeconomic theories associated with

utility maximization and estimate a system of demand equations across this limited data

set, one would need to argue for separability of preferences and rely on food expenditures
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as the exogenous budget constraint, rather than total budget.  The utility function and

demand functions would then be written as the following:

( )u X f u X u X

X X P Y

Food Other

i Food i Food Food Food

( ) ( ), ( ) ,

( , )., ,

v v v

v
=

=
1 2

(Chapter
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Separability is a strong assumption; it implies that consumers can order their

preferences in each, distinct subset of choices independent of the amounts of other goods

consumed.  Strong or additive separability is even more restrictive; it rules out the

possibilities of inferior subsets of goods and complementarity across subsets while

imposing approximate proportionality between own-price and income elasticities.  A

more detailed discussion of separability can be found in Deaton and Muellbauer (1980a).

A model which assumes separable preferences can be significantly more limiting

than a model considering the role of the entire budget available to a consumer.  However,

if one assumes that prices of all non-considered goods are the same for all households,

preference separability is unnecessary.  In the case at hand, this condition requires that

only the travel-time environments differ across the sample population.  The constancy of

other goods’ prices across the sampled observations means that their effects are not

identifiable empirically; so, even if these prices were known, their invariance would

effectively conceal their distinct parameters within the set of identifiable effects.  One of

the limitations this assumption places on model estimates is that the effects of changes in

relative prices of the non-considered goods will not be predictable with the results

established here.
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How valid is the assumption of price invariance across non-considered consumption

in the models estimated here?  The price of a McDonald’s hamburger may be the same

regardless of where purchased in a region, but the prices of other goods, such as

restaurant dining and food shopping may vary according to land rents, freight delivery

costs, and local shoppers’ preferences.  However, if, for example, demand types are

defined sufficiently broadly in a spatial sense (e.g., destination zones are large), average

price variability may be rather negligible, with enough opportunities present to match the

prices found elsewhere.

If prices of goods not considered in the demand system do vary significantly, one

may assume that separability holds and replace the variable of total expenditures with that

of the subset’s expenditures.  Or, if prices move proportionally together, according to

one’s location (e.g., central-city versus suburban dwellers), one may consider deflating or

inflating income measures according to a price index, across sampled consumers.  These

approaches are not taken here, however, because it is virtually impossible to argue

separability of goods consumption and activity participation (since many activities are

complements of consumption – for example, recreational activities and entertainment

expenses) and because price and monetary-expenditure information is lacking in available

data sets.

  Symmetry

Symmetry is a condition that arises in the typical system-of-demands frameworks,

i.e., in those where only a monetary constraint governs.  It refers to the condition of

symmetry of compensated cross-price effects (Slutsky 1915).  Income-compensated or

Hicksian demands can be derived simply by taking the first derivatives of the typical,
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money-expenditure function; the derivatives of these demands with respect to other

goods’ prices are the cross-price effects, and these are symmetric thanks to Young’s

Theorem (which says that the order of differentiation is not important).  Thus, the second

derivatives of the expenditure function with respect to prices Pi and Pj are symmetric, as

illustrated in the following equations:

Expenditure e P u Money needed at prices P to achieve utility u

Money Compensated Hicksian Demand h P u
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The matrix of compensated-demand derivatives is called the Slutsky matrix, and

theory implies that it is negative semi-definite, since total money expenditures are

concave in prices.  However, in the model structure investigated here, the first derivative

of time expenditures with respect to an activity’s travel time is not the compensated

demand for that activity.  In the common application, expenditures equal prices times

amount of goods consumed; but in the decisions considered here, time expenditures are

the sum of access costs/travel times multiplied by the number of out-of-home activities

consumed plus the amount of time spent in each activity (in- and out-of-home).  Thus, the

derivative of time expenditures with respect to any travel time is no longer equal to the

time-compensated demands for activities, so the matrix of second derivatives of the time-

compensated expenditure function is no longer the same as the time-based Slutsky matrix

and symmetry is not a condition imposed on the demand system estimated here.  The

following equations illustrate this property:14
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  Validity of Utility Maximization Hypothesis

It is important to recognize that many empirical analyses of demand systems,

analyzing different consumption sets’ shares of monetary expenditures for aggregate,

serial data sets and using a variety of common forms (such as the translog and generalized

Leontief), have failed to support results satisfying basic economic theories (e.g., Guilkey

et al. 1983 and Caves and Christensen 1980). For example, imposition of symmetry

constraints may reduce the likelihood of the observed sample substantially or the

concavity of expenditures in prices may not be satisfied at many observations. (Lau 1986,

Deaton and Muellbauer 1980a & 1980b, Pollack and Wales 1978 & 1980)  Lack of

support for well-accepted economic theory by a model suggests that the model

specification is substantially incorrect and/or the households/individuals observed are not

economically “rational” (according to a utility-maximization hypothesis of behavior).

Any modeler should be conscious of these possible inconsistencies and check for them

where practicable.  However, as discussed throughout much of this section on theory-

implied constraints, very few of the theories which are expected to apply in a money-
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expenditure setting are likely to hold here.  Without symmetry and summability, Roy’s

Identity is the origin of virtually all restrictions imposed in the models estimated in

Chapter Four; these restrictions are implicit by virtue of the common parameters found

throughout the estimated demand equations and are due to the system’s derivation from a

single indirect utility function.  Non-negativity of demands and positivity of the marginal

utility of time are the only other conditions imposed here; however, marginal utility

estimates are considered for their conformance with theory, and the concavity of

estimated expenditure functions and convexity of estimated indirect utility functions are

examined briefly.

  Estimating Benefits and Costs

“Equivalent” and “compensating variation” are measures of welfare changes

following price changes, each using a difference in expenditure functions but at different

reference levels of indirect utility.  The author knows of no empirical examples where

equivalent and/or compensating variation has been quantified with anything other than a

money metric.  Actual welfare change is not measurable in known units, since it is

generally agreed to be the change in utility associated with price/cost changes.15

The distributional effects associated with policy changes are very important.  Total

benefits exceeding costs/disbenefits only signifies a potential for Pareto superiority, i.e.,

the possibility of a Pareto-preferred redistribution of the benefits so that no one is worse

off following a positive-net-benefits change. (Varian 1992)  As economist Steven M.

Goldman describes it, “Cost-benefit analysis as a welfare measure which is done

independently of distributional effects is fundamentally flawed.” (Goldman 1998)
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Measurement of welfare changes using a money metric favors projects benefiting

those who have the most monetary resources available, rather than those who might

experience the most welfare benefit, because those with the most money can place the

highest monetary value on a change in conditions16 (see, e.g., Heap et al. 1992, Price

1993).  This is of particular concern in the evaluation of projects producing significant

time-expenditure differences, such as transportation infrastructure alterations (e.g.,

Daganzo 1997).  A fortunate result of recognizing a time constraint in utility

maximization is that the indirect utility function can be inverted with respect to this

budget variable and welfare impacts can be assessed with a time metric.  Equation 3-13

provides the definitions of equivalent variation which are used here, in terms of money

( EV$ ) and time ( EVT ).  As illustrated, equivalent variation can be written as the

difference in expenditure function values at reference price levels, as well as, under

constant budget levels, the integrals of the compensated/Hicksian demand equations.17
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Note that the negative of equivalent variation can be understood to mean the

maximum amount of money or time a household would be willing to give up to avoid the

change in prices/travel times, if budgets levels are unchanged.  Chapter Five’s section on

cost-benefit analysis uses both the income and time definitions of equivalent variation to

estimate the welfare impacts of an increase in travel times.
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  Functional Specification

Assuming that the demand equations arise from derivatives of the indirect utility

function, one may wish to select functional forms for the indirect utility function, v,

which are flexible to a second (or greater) order18.  This flexibility permits estimation of

cross-price and income elasticities, in contrast to non-interactive functional forms, which

produce only non-zero direct elasticities.  The transcendental logarithmic’s functional

form (i.e., the translog) is commonly used in practice (e.g., Cameron 1982, Christensen et

al. 1973 & 1975, Pollack and Wales 1980) and is quite flexible19, but it has some

drawbacks.  Under a situation of no cross-parameter constraints, the number of translog

parameters increases with more than two times the square of (rather than linearly with)

the number of goods, which may result in statistical insignificance for many parameters

and low confidence in estimation – depending on sample size.  For empirical estimability

over limited sample sizes, one may need to make some a priori assumptions as to

relationships and assume a relatively parsimonious form for estimation.

Other functional forms for indirect utility are also possible and have been used in

money-expenditure systems of demand.  A variety of forms are shown and discussed

briefly in the Appendix (A-1), but the simplest to estimate impose untenable assumptions

implicitly.  For example, in a theoretically consistent linear-in-unknowns demand system

of monetary expenditures on three or more goods, all income elasticities must equal one.

(Lau 1986)  And, in the traditional consumption framework where only a monetary

budget governs, the Cobb-Douglas and utility-consistent Rotterdam (Barten 1964, Theil

1965) functional forms impose additivity and homotheticity assumptions on preferences –

along with a constant, unitary elasticity of substitution20 across all pairs of goods! (Greene
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1993, Christensen et al. 1975)  In reality, the substitutability of consumption goods may

vary widely, given different relative combinations (for example, at extremes of goods

ratios, less substitutability is expected than at better-balanced levels).  The generalized

Leontief functional form may be more flexible than the translog when unequal or low

elasticities of substitutions exist across the choices (Guilkey et al. 1983, Caves and

Christensen 1980), but can be rather intractable in its most general form (Diewert 1971 &

1974) and is not expected to perform as well when high and unequal substitution

elasticities exist (Caves and Christensen 1980).

There is no particular reason to expect similarity of substitution across different

activity types, but there is an expectation of high substitutability across certain choice

definitions.  For example, in the empirical investigations pursued here, activities are

distinguished by the iso-opportunity zones in which they take place, rather than the

activity type or purpose; therefore, one may expect very high substitution effects across

zones and opt for a translog specification.  Substitution is expected to be less when one

considers very distinct activity types, such as personal business versus social, so the

Generalized Leontief may be most useful in these cases; however, some trip types, such

as non-food shopping and recreation, may to a certain degree still act as substitutes.

Among the models estimated here, in Chapter Four, one of the specifications resembles

Stone’s Linear Expenditure System (1954), while the others are based on modifications of

the translog specification.

  Model Specifications

Four distinct model types are tested empirically in Chapter Four, and their functional

forms are specified here, with typical economic notation for demand (X i
* ) replacing the
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notation for optimal rate of activity participation, Ai
* .  The first of these four models is

an attempt at a relatively simple specification using an indirect utility specification

similar to that which generates Stone’s Linear Expenditure System (1954).  The other

three are modifications of the translog model (Christensen et al. 1973 & 1975), and they

are presented here in order of increasing generality.  All models are used to estimate long-

run, optimal out-of-home activity participation rates (per day) for households, and all but

the third are used only once, to model participation in discretionary activities.  The third

of these specifications is also used to model entire home-based tours of activities, rather

than just individual stops, and these tours can include non-discretionary trip-making.  All

specifications shown, except the fourth, rely on discretionary time (total time minus work

and school time) and income as exogenously provided arguments.  The empirical results

from those analyses are provided in chapters Four and Five.

  Type 1 Model Specification: Modified Linear Expenditure System

In an effort to begin with as simple a functional specification as possible, Stone’s

Linear Expenditure System or “LES” (1954) was examined for use.  However, without

the ability to impose homogeneity in the time dimension and due to the presence of two

budget variables, the resulting demand system is not nearly as simple as Stone’s.  The

indirect-utility specification and resulting demand equations used for this modified-LES

specification are as follows:
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Note that Stone’s original specification produces a system of demand equations

whose parameter space increases only linearly with the number of goods consumed, “I”.

While Stone’s system requires the estimation of 2I-1 parameters, the modified system

used here has a parameter set which grows quadratically with the number of goods

considered, requiring the estimation of 2I+I(I+1)/2 parameters21!  The assumption of

homogeneity saves a modeler many degrees of freedom for estimation purposes;

however, there exist many major weaknesses with the LES, as discussed in Section A-1

of the Appendix.

Under the modified LES specification used here, the value of time is independent of

the budget levels, depending only on access times, and the time-budget elasticities of

demand are independent of all variables but the demand’s own access time; such

functional inflexibilities pose a serious problem.  For example, this model’s estimation

results, which are provided in Chapter Four, produce negative values of time for all

households in the 10,834-observation sample!  A more flexible model is almost certainly

necessary.
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  Type 2 Model Specification: Modified Translog

Having considered the strengths and weaknesses of various functional forms, many

of which were discussed in a previous section, titled “Functional Specification”, a

modified version of the Christensen et al.’s translog form (1975) was chosen to represent

the indirect utility function for the remaining set of models estimated here.  The translog

was chosen for its second-order functional flexibility as well as for its ability to flexibly

model substitutes well.22  The  most restrictive form of this general specification that is

analyzed here is termed the “Type 2 Model Specification”, and it is as follows:
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The optimal demand levels which result from application of Roy’s Identity (with

respect to time) to the above formulation are the following:
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Notice that the number of parameters in this modified translog system increases

quadratically with the number of good types considered.  The system of equations
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requires the estimation of 3I+I(I+1)/2 parameters, which is 2I more than in the LES-

based, Type 1 model.

  Type 3 Model Specification: Modified Translog with Constants

The Type 2 model specification can not be nested with a no-information model

specification (i.e., a model without any explanatory information) since all of its unknown

parameters interact with explanatory variables.  Therefore, a more flexible model of this

form was investigated, adding I+1 parameters to the modified-translog specification to

effectively function as constant terms; this change produces the following:
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The optimal demand levels which result from application of Roy’s Identity (with

respect to time) to the above formulation are the following:
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The expectation is that this more flexible specification will provide more reasonable

estimates of behavior, such as demand elasticities and values of time; it also allows the
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nesting of the Type 2 specification within the Type 3 and so provides a means of gauging

the need for Type 3’s added flexibility.

  Type 4 Model Specification: Modified Translog with Constants, using Wage and
Total Time Data

As discussed in the section on application of Roy’s Identity, one’s discretionary-time

and income budgets may be endogenous to the choice of discretionary-activity

participation.  Thus, a model that allows for these choices in a simultaneous manner may

prove useful.  Taking the most flexible of the model specifications suggested, i.e. that of

the modified translog with constants, a specification based on wage rates and total time

availability to a household’s members is the following:
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The optimal demand levels which result from application of Roy’s Identity (with

respect to time) to the above formulation are the following:

So X
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Since income is not exogenous in this model, values of time are estimated using

Equation 3-8’s approximation, which requires an estimate of the unobserved variable

optimal work time, *
wT .  As described in Table 3-2, a household’s work time is assumed

to be eight hours per day for full-time workers plus four hours per day for part-time

workers.  These results of these computations are shown in the following chapter,

Chapter Four.

  Statistical Specification

  Integer Demand Observations and the Poisson Assumption

Observed demands can be visibly discrete in limited-period data sets.  However, one

may expect that continuous and smoothly differentiable preference and demand functions

underlie observed behavior, since households are typically free to optimize their choices

over relatively long periods of time.  This is the assumption made here, so a link to a

model of cardinally ordered discrete demand levels is needed for empirical estimation.

This link may be best provided via the Poisson distribution, which is defined over the set

of non-negative integers.

Given an assumption of Poisson-distributed demands, the various activity types i

(e.g., near vs. far, or dining vs. social activities) can be characterized as in Equation 3-21.

This set of Poisson random variables is simultaneous in nature, since the derivation of all

mean demands from a single indirect utility specification introduces common parameters

across the demand specifications.

X Poisson i
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The Poisson distribution arises naturally from counts of independent events that

occur at a specified rate, so it would be a plausible distributional assumption if household

members make trips at randomly and independently selected times throughout their

window of discretionary time.  In reality, household members are often constrained to

temporally and spatially coordinate their trip-making due to limitations on automobile,

driver, and transit availability, closures of activity sites (e.g., stores late at night), and the

desire to engage in activities together.  Moreover, activity participation and travel take

time, undermining the assumption that such events occur independently in time.23

Without independent and identically distributed exponential inter-event times, the

Poisson may still characterize the counts of activity participation across households; this

may be particularly true over longer periods of time, as the short-term/daily realities of

trip chaining and activity coordination take on less importance relative to long-run

behavior.  Unfortunately, the household travel surveys with sufficient sample size and

detail for use in this study tend to be of short duration (e.g., one to two days, typically); so

the Poisson remains a significant assumption.  However, as described next, the Poisson is

mixed here with a gamma distribution, in order to capture unobserved heterogeneity

across different households having the same set of observed characteristics.

  Generalizing the Poisson Assumption through Use of a Negative Binomial

One limitation of the typical Poisson regression model is that its variance is

constrained to equal its mean.  Cameron and Trivedi (1998) describe the failure of the

Poisson assumption of equidispersion as qualitatively similar to a failure of

homoscedasticity in a linear regression model, but with possibly much larger effects on

standard errors.  However, allowing variation in the Poisson’s parameter λ by mixing the



48

Poisson with another distribution can help one avoid a restrictive equi-dispersion

assumption and accommodate the effect of unobserved factors on each household’s mean

trip-making rates.

Overdispersion is common in behavioral data (Cameron and Trivedi, 1998), and it

was found to be present in the trip-making data sets, after controlling for a variety of

market characteristics and demographic explanatory variables and then applying

statistical tests described in Cameron and Trivedi (1998).  Even though a large set of

explanatory variables is used, the dispersion coefficients (the α parameters) are highly

statistically significant in all models, indicating a decisive rejection of an equidispersion

hypothesis.

Factors other than travel times and income and time budget levels play an important

role in household activity participation rates.  Whether a household is active or inactive,

profligate or frugal, may mean significant differences in optimal rates of trip-making.

Thanks to these unobserved characteristics, one also would expect there to be some

variation in trip-making rates across households with the same observed characteristics.

It is therefore useful to add a “second layer” of stochasticity by mixing a Poisson with a

second distribution.  Additionally, one may reasonably hypothesize correlation across the

unobserved components of the various demands by a single household, since one can

expect the deviation in a household’s demand for one type of trip to be associated with

deviations in its other trip demands.  For example, if a household is taking part in a

certain out-of-home activity more than one expected (given its time and income

constraints and the set of travel times it faces), it may also tend to participate in other out-

of-home activities with a higher-than-expected frequency.  Information on one set of
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demands observed for a specific household, relative to expectations, is likely to help one

better predict other consumption by the same household.

The use of a compounded and correlated error structure within a system of Poisson

equations is unusual.  Few modeling efforts have used a multivariate Poisson form to

model demands, particularly in a rigorous micro-economic framework with more than

two choice types.  Hausman, Hall, and Griliches (1984) use the seminal set-up of Bates

and Neyman (1952) in order to model the number of patents received by a panel of firms

over time as “fixed-effect Poissons”, which integrate to negative binomials; but there are

no “prices” or explicit links to profit maximization in their model.  Hausman, Leonard,

and McFadden (1995) estimate the choice of recreational sites using a multinomial

distribution conditioned on total number of trips, where the total is a fixed-effects Poisson

and travel costs are included in the set of explanatory variables.  Hausman, Leonard, and

McFadden’s model provides measures of welfare/benefits via a logit model’s log-sum

maximum-expected-utility.  However, their model does not consider other types of trips

or related consumption, and the two decision stages (i.e., total number of trips and

allocation of these trips across sites) are estimated sequentially, rather than

simultaneously.

If significant flexibility of the error terms’ covariance structure (e.g., a multivariate

normal distribution across the “ε i ’s”) were permitted, the maximum-likelihood

equation’s values would almost certainly have to be computed using numerical

integration or distribution simulation over the multiple of probabilities.  Such an approach

is illustrated by Equation 3-22, with g( )
vε  representing an assumed joint-density, such as
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the multivariate normal, with fixed mean and a variance-covariance matrix to be

determined.
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Many have used simulation for estimation of complex specifications; for example,

Yen et al. (1998) have used it for a set of correlated-in-unobserveds ordered probits, and

Train (1996), McFadden and Train (1996), and Mehndiratta (1996) have used simulation

successfully for a random-parameters logit model.  However, estimation times tend to be

long – and a second simulation will invariably lead to a set of different estimates.

Instead, if one can specify the second layer of stochasticity (i.e., the layer within the

Poisson’s own lambda parameter) so that the random component can be tractably

integrated out, the estimation is much simplified.  For this reason, an integrable error

structure was sought in this research, leading to the mixing of a Poisson with a gamma to

produce a negative binomial distribution; the use of the same gamma error term across all

of a household’s demands allows for a cancellation of these terms in the probabilities of a

multinomial (which is conditioned on a negative binomial for total demand), as illustrated

in the following equations:
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As implied in the above equations, two parameters characterize a negative binomial.

The parameters m and p*  are used in Equation 3-23, and these can be thought of as a size

and probability parameter.  Appendix section A-4 describes the negative binomial

distribution in more detail.

The negative binomial assumption has been used in empirical work for several

decades.  For example, Chatfield et al. (1966) used a single negative binomial regression

equation to model household purchases, but Rao et al. (1973) were the first to use a

system of equations and thus a specification similar to (yet much simpler than) the set-up

followed here.  Rao et al. (1973) modeled the number of boys and the number of girls

born to a pair of parents as symmetric binomials (i.e., with probability of either equal to

0.5) conditioned on a negative binomial for the total.

As mentioned, a negative binomial distribution (NB) can be thought of as a Poisson

whose parameter varies as a gamma (i.e., Poisson∧Gamma).  And the entire system of

demand equations can still be considered a system of Poissons, but with variation

permitted in the rates ( λ i ’s).  Knowing total count, a system of independent Poissons
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becomes a multinomial (MN) distribution; knowing total count under a system of

correlated Poissons conditioned on a negative binomial (i.e., Poissons∧NB( λ T )) also

implies a MN.  However, for one to be able to identify the probabilities of the choices

(pi’s) with a closed-form solution – and avoid simulation or numerical integration, one

must make some assumptions and thereby constrain the system’s “double stochasticity”

to a certain form.  Here, the assumption that the system conditioned on total count is a

MN with pi’s equaling λ λi T  implies that the variation in each λ i  is equal to the factor

of variation in the λ T  times pi.  Thus, for such a set-up, each multiplicative gamma error

component is the same value as the gamma random variable that affects total trips.

Since a gamma variable times a constant is also a gamma variable, all marginal

distributions of trips (X i ’s) are negative binomial(m,piP), with their mean rate having a

gamma distribution; in statistical notation: X i ~Poisson(λ i )∧Gamma( *, iXmm ).24  The

density function for a gamma distribution is shown in Equation 3-24, helping illustrate

why the rates for individual demands are also gamma distributed.  The stochastic

assumptions of observed demands having Poisson distributions whose rates interact

multiplicatively with the same unobserved gamma variable, for a given household, imply

that individual rates can be thought of as gamma variables with the same size parameter

as total demand (m), but with modified scale parameters (m X i
* , rather than m X T

* ).
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Typically, a multinomial’s component levels are negatively correlated, because of a

fixed sum.  However, when the sum or total is allowed to vary as permitted here, the

unconditional correlation becomes positive, as shown in the following set of equations.

Overdispersion, as previously discussed, is also a property of this distribution and

illustrated in the following equations.
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In sum then, the system of demand equations can be termed a multivariate negative

binomial, since each of the demands is marginally represented by a negative binomial.

Moreover, the special, same-gamma-term assumption allows the system to collapse to a

multinomial for the different splits of activity types, conditioned on a negative binomial

for total activity participation.  As a point of comparison, the third model specification in

Chapter Four is run with the same-gamma-term assumption and without it (i.e., as a

system of independent Poissons); the correlations of residuals resulting from this later

specification are investigated.
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  Implication of the Assumption of Multiplicative Error Component for Indirect
Utility

The assumption that households having the same observed characteristics can have

different long-run, optimal rates of activity participation according to a gamma

distribution implies something about the variation across these households’ indirect

utility values.  Since the average optimal rates, X i
* ’s, are derived via Roy’s Identity, the

gamma error component must come out of one or both of the derivatives which are used:

the derivative of indirect utility with respect to travel time or that with respect to available

time.  One stochastically convenient theory is that the households, although well aware of

their marginal utility of available time, observe their travel-time environment with some

error such that the travel time they perceive is really distributed like the inverse of a

gamma random variable around the “true” or observed travel time.  Another possibility is

that the travel time data observed and used to estimate the models provide the mean travel

times within different neighborhoods, but the actual, household-specific travel times

within that neighborhood are inversely gamma distributed around that neighborhood’s

mean.  These stochastically equivalent assumptions translate to the following:
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The above is likely the simplest method of integrating back from the error

assumption on the observed demand system to the unobserved indirect utility function;
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but other processes also could lead to the multiplicative gamma specification in the

demand system.  However, no matter what method of accommodating the gamma error

specification at the level of the indirect utility function, welfare analysis is likely to be

complicated and one should be wary of using the indirect utility functions and their

inverted expenditure functions as originally specified, without explicitly acknowledging

the stochastic components.  The need for averaging a measure like equivalent variation

over its unobserved, random components is generally important when the error does not

enter additively with a mean of zero, since expectation is a linear operation.  McFadden

(1996) provides a nice discussion of this situation in discrete-choice models.

Note that a simulation-of-likelihoods estimation method would allow one to estimate

a more distributionally complex model, without imposing the same gamma error term on

all the Poisson rates at the level of observed demand.  For example, one could begin by

specifying the unobserved heterogeneity to occur in the indirect utility function and then

see what that implies for the demand functions.  An error term which arises additively

and which is independent of travel times and the total-time-budget variable would not

show up in the demand equations for number of trips (though it would typically be

relevant in average welfare estimates).  A more reasonable assumption would be of

random parameters, i.e. of unobserved differences in household’s preference structures;

such an assumption would be very similar in nature to Train’s (1996) and Mehndiratta’s

(1996) random-parameters logit models.

  Data Set

The 1990 Bay Area Travel Surveys (BATS) was used for the empirical portion of

this research.  They detail trip-making of over 10,000 households in the San Francisco
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Bay Area for periods of one, three, or five workdays.  While the BATS are not surveys of

activities, per se, BATS households’ activity participation can be inferred from the trip

purposes and the start and end times of consecutive trips.  Since survey lengths vary

across the BATS households, a time component is included explicitly in the likelihood.

For example, if the Poisson rates, X i
* ’s, are for a one-day period, one must multiply

them everywhere in the Poisson specification with the variable days, where “days” is the

number of days for which the household was observed participating in activities.  In the

multivariate negative-binomial likelihood equation used here (shown in Equation 3-23)

the multinomial portion of the likelihood remains the same, but the negative binomial’s

probability for total observed trips (TX ) changes.  The expectation of a multi-day

survey’s total number of trips,TX , is days times the single-day level, but the variance

increases more than linearly (unlike a Poisson).  The parameter*p for a multi-day survey

must be replaced by ( ))( *
TXdaysmm ×+  everywhere, so the variance remains equal

toµ αµ+ 2 , but the mean,µ , has become daysX ×* .  Note that the process remains a

negative binomial with the same gamma term, as long as one assumes that the

heterogeneity for an household is constant for each of the days the household is

surveyed.25  The BATS data set is described in more detail in the Appendix section A-3,

and a definition of all variables used is provided in Table 3-2.

  Definition of the Consumption Space

Interestingly – but not too surprisingly, investigations for this research indicate that

access times for activities distinguished simply by type or purpose (e.g., dining versus

recreational) are endogenous, given a household’s location.  In other words, even given
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their relatively fixed residential locations, households can, to a significant extent, choose

how long they spend accessing different types of activities.

Initially, per-trip travel times and distances for the San Francisco Bay Area were

regressed on a wide variety of urban form variables (e.g., accessibility to all jobs by

automobile, accessibility to sales and service jobs by walking, entropy across the

proportions of half-mile-radius-neighboring land uses, mix of neighborhood land uses,

and developed-area densities, as defined in Kockelman 1996 & 1997) in order to

instrument for the travel times and costs associated with different locations, after

controlling for trip purpose/activity type.  The predictive power of these models was

minimal; for example, ordinary least squares regressions of per-trip travel times and

distance on the large set of detailed urban-form variables produces R-squareds of just

0.002 and 0.016, respectively.  The R-squared results of OLS regressions controlling for

mode and trip type are shown in Table 3-1, where it appears clear that such models are

effectively useless for prediction.  This set of access measures does not predict

statistically significant reductions in per-trip travel times or distances, even after

controlling for mode and/or trip purpose!26  The first of these two general results is in

agreement with the combination of Zahavi et al.’s constant travel-time-expenditures

hypothesis (Zahavi 1979a & 1979b, Zahavi and Talvitie 1980, Zahavi and Ryan 1980)

and the travel-time-inelastic nature of  trip demands described by Ortúzar and Willumsen

(1994) and Hanson and Schwab (1987) (as mentioned in Chapter Two’s literature

review).  As a result of all these indications, the possibility of instrumenting for the travel

costs needed for the system-of-demands approach by using characterizations of a

household’s environment appears very remote.
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The evidence suggests that people travel further than they need to; this may very well

be because they wish to expand their choice set of activity sites and thereby increase the

expected “quality” of the activity they do engage in, at their chosen sites.  For example,

while one probably will travel only to the closest of a very specific activity type (such as

eating out at a McDonald’s), one will not often travel to the closest dining

establishment.27  As long as the marginal value of travel time plus the monetary cost of

travel remains below the marginal value of increased opportunities brought about by

traveling further, people can be expected to lengthen their journeys.

Table 3-1: Regressions of Travel Time and Distance on Measures of Urban Form
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TIME Regression’s Dependent Variable: R-Squared

PV-Trip Travel Time for Personal-Business Trips 0.006
PV-Trip Travel Time for Social Visit Trips 0.004
PV-Trip Travel Time for Dining/Eat Trips 0.006
PV-Trip Travel Time for Recreation Trips 0.009
PV-Trip Travel Time for Grocery/Food Shop Trips 0.002
PV-Trip Travel Time for Non-Food Shopping Trips 0.004

Non-PV-Trip Travel Time for Personal-Business Trips 0.020
Non-PV-Trip Travel Time for Social Visit Trips 0.073
Non-PV-Trip Travel Time for Dining/Eat Trips 0.008
Non-PV-Trip Travel Time for Recreation Trips 0.009
Non-PV-Trip Travel Time for Grocery/Food Shop Trips 0.061
Non-PV-Trip Travel Time for Non-Food Shopping Trips 0.033

DISTANCE Regression’s Dependent Variable: R-Squared

PV-Trip Travel Distance for Personal-Business Trips 0.011
PV-Trip Travel Distance for Social Visit Trips 0.011
PV-Trip Travel Distance for Dining/Eat Trips 0.010
PV-Trip Travel Distance for Recreation Trips 0.016
PV-Trip Travel Distance for Grocery/Food Shop Trips 0.014
PV-Trip Travel Distance for Non-Food Shopping Trips 0.020

Non-PV-Trip Travel Distance for Personal-Business Trips 0.011
Non-PV-Trip Travel Distance for Social Visit Trips 0.026
Non-PV-Trip Travel Distance for Dining/Eat Trips 0.009
Non-PV-Trip Travel Distance for Recreation Trips 0.006
Non-PV-Trip Travel Distance for Grocery/Food Shop Trips 0.027
Non-PV-Trip Travel Distance for Non-Food Shopping Trips 0.028

Unfortunately, in virtually all existing travel data sets there is no information

regarding the quality of activities pursued.  For example, except for general activity-

purpose categories, there are no survey questions regarding the grade or class of

establishments visited or the unit prices of activity consumption.  To deal with this lack

of detail in the data, one may choose to segment activities by some measure of quality,

relative to an observation-specific origin (e.g., the household’s home location).  One such

measure is the number of choices a trip-maker has, which increases with time and/or

distance traveled28.  Thus, the number of jobs has been used here to distinguish activity
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quality for trip types.  Discretionary trips to locations within bands of 60,000, 300,000,

900,000 and two million jobs serve as the four types of trips in the models investigated.

The variables derived from the travel surveys and from travel-time and employment

data are described in Table 3-2.  The focus is on the household as a unit, rather than intra-

household trade-offs and decisions.  So the total time available and income budget29

apply to the entire household, and the sum of activity engagements over the households’

members is the observed demand.  Travel times for the four good groups distinguished in

the data set represent average travel times to access the four different iso-opportunity

contours from a household’s home location.

In addition to the number of jobs, the amount of land area in different uses can be

used to measure opportunity levels, particularly for activities like outdoor recreation.  One

may also wish to include trip-making from non-home trip-making bases, such as work.

However, the size of the demand set may increase multiplicatively; for example, trip-

making to four iso-opportunity contours from the home and work bases of a one-worker

household across all trip types would mean eight different demand types (and eight

different travel times upon which to apply Roy’s Identity).
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Another way of creating more detailed consumption sets involves segmenting iso-

opportunity contours by modes of travel and by trip type.  For example, the different

modes available would generate different travel times, recreational trips’ travel times

would come from contours based on entertainment and other recreational employment,

and shopping trip travel times would come from those based on sales jobs.  Clearly, there

will be very high substitutability among these classes, which can be accommodated using

Table 3-2: Description of Variables Used

Dependent Variables:
Number of Person Trips - Number of trips by surveyed household members (i.e., those members aged five

and over) in the region on the survey days(s); does not include trips to home location
to:
   Discretionary Activities, including:

Medical/Dental Activity
Social Visit
Dining - Eat meal
Recreation
Grocery Shopping
Non-Food Shopping

   Non-Discretionary Activities, including:
Work and Work-Related Activities
Personal Business Activity
Education
Other - Child care, serve passenger, change travel mode, other reason

Explanatory Variables:
Income “Y” - Pre-tax household income in 1989
Marginal Wage “w” - Estimate of average wage per hour for household ($/hour)

= Income/50/(40×#full-time workers + 20×#part-time workers in household)
Discretionary Time “Td”  - Estimate of non-work-related and non-school time in a day available to a

household’s members age five and older (hours/day)
= 24×Household Size - Time in work-related & school activities

Total Available Time “H” - Household Size (#members age five & older) × 24 hours (hours/day)

Travel Times to Iso-Opportunity Contours - Average total travel time by single-occupant vehicle
during free-flow conditions to access successively further sets of opportunities, relative to
household’s home traffic analysis zone (TAZ); computed sequentially to nearest TAZs in turn (and
exclusive of travel times to TAZs lying in other iso-opportunity contours).
Contour Levels constructed at: 60,000, 300,000, 900,000 and two million total jobs, cummulatively.
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a flexible system of demand equations, as described in the section on functional

specification in this chapter.

  Trip Chaining

The chaining of trips into “tours” is a common phenomenon which complicates the

analysis of activity-participation demands by altering access times.  Within the Bay Area

Travel Surveys (BATS), 36.6% of home-based trip tours involve more than one non-

home stop.  51.6% of the BATS person sample are full-time workers (and six percent are

part-time workers); so a large percentage (12.3%) of the BATS trips are between work

and some non-home purpose, and 5.74% of sequential trip pairs represent a tour from

work and back (i.e., they have “work” as the first trip’s origin and as the second trip’s

destination). However, more than half (56.4%) of the chained trips are unrelated to work.

The marginal cost of adding a stop to one’s tour can be relatively small, if that

stop is anywhere near the general path between primary activity locations.  The nature of

home-based tours found in the data set was investigated and it was found that most tours

contain a single major leg from home, even though the average number of stops per tour

is close to three, at 2.71.  The mean and median total travel time per tour30 are 21.4 and

11.9 minutes, respectively, across all tours made (which number almost 40,000); and the

travel time from home to the furthest destination accessed in each tour (with “furthest”

measured by travel time) are 9.6 and 5.2 minutes.  Thus, a single leg of the tour accounts

for about 45-percent of the tour’s travel time, which can be taken to mean that about 90-

percent of the tour time is spent accessing a single destination. These results suggest that

a single destination accounts for much of the tour’s travel time, while additional stops are

relatively marginal in travel time cost.



63

Weekday non-work trip-making by workers tends to not be very complicated. For

example, in their 1981 data set of Nagoya, Japan, workers, Kwakami and Isobe (1990)

found that of the 15% of workers making non-work trips before or after work, only 2.3%

made a trip on their way to work, 6.7% made one stop on their way home, and 4.2% made

a single trip after arriving home.  Kwakami and Isobe’s simulation results, which took

work time to be exogenous, predict that as the time spent working during the day falls,

workers travel further per non-work trip in addition to making more non-work trips; this

is likely due to the loosening of the discretionary-time budget constraint and the ability to

consume a higher quality of activity by traveling further.  In a related study of trip-

chaining by workers, Kitamura et al. (1990) found that mid-chain stop locations between

work and home “tend to cluster along the line segment than connects the home and work

bases as commuting distance increases” (1990, p. 153); they also found that intensity

“peaks” of stop location form toward the home and work ends of the segment.

These same sorts of tour characteristics were found in the analyzed data sets, leading

to a specification which accommodates chaining behavior; further description of this

model’s definition of demands, along with empirical results, are presented in the

following chapter.
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ENDNOTES:

                                                
1 The chaining of trips as well as the linking of activities at a single opportunity site (e.g., shopping and

entertainment at a shopping center) complicate the analysis since access times can be reduced and, to a
significant extent, endogenized.  To accommodate this effect, one can introduce variables for the
possibilities of linking trips and/or model endogenously the number of chained trips to better account for
the impact such travel behaviors have on a household’s choice set and utility.  Chapter Four presents and
estimates a model, using the Type 3 model specification described later in the current chapter.

2 In-home activities are included in the vector of activities, A , but they have zero travel time and zero
travel costs.

3 One should be aware that these formulations assume a two-constraint case.  If other constraints apply and
lead to corner solutions for variables such as work time, the specified model will be insufficient and
equations such as 3-7 and 3-8 will not apply.  Moreover, if a household’s perceived wage or marginal
return to an extra hour of work is unobservable, one may need to construct a model which accommodates
this fact.

4 For this regression model, observed work time is the amount of hours spent at work and in work-related
activities during the survey day(s) for each household with workers, across its members.  Table 3-2
defines the wage variable, w, used in these regressions (which is estimated using income and the number
of full- and part-time workers) as well as the total time available to the household (per day), H.

5 The median wage estimate for the household sample is $15.58/hour in 1990 pre-tax dollars, and this was
substituted for the wage variable, w, in Equation 3-8.  Substituting -0.000145 hours/dollar and +0.0808
hours/hour for the derivatives of work time with respect to unearned income and total time, respectively,
yields a bias estimate of +9.04 percent.

6  There is significant debate as to the validity of constraints implied by the theory of demand, such as
homogeneity and symmetry (of the substitution matrix).  For example, empirical tests of aggregate, serial
demand systems by Deaton and Muellbauer (1980a) and Christensen et al. (1975) reject these
restrictions.  Deaton and Muellbauer suggest that their model’s “rejection of homogeneity may be due to
insufficient attention to the dynamic aspects of consumer behavior.” (1980a, p. 312)  They suggest adding
time-trend variables, lagged values, and stocks as explanatory variables.  And Polak and Wales (1978 &
1980) cite the importance of analyzing stocks, rather than flows, of durable goods, which requires a
rigorous dynamic treatment of behavior.  Thus, one should use care in the analysis of some of the goods
of interest here, for example the number of automobiles or size of home; and any results using basic
methods of analysis for such goods should be considered with some caution.  However, the data likely to
be available for the research at hand will not be serial, so there can be little consideration of these effects.
Additionally, the current research will not experience the problems of high collinearity in prices and
aggregation biases, which aggregate serial data are prone to (e.g., Deaton and Muellbauer 1980a, Barten
1977).

7 Note that the log-likelihood equation must be re-written to accommodate certain zero-level demands,
since one or more multinomial probabilities will equal zero and the logarithm of zero is undefined.  If a
demand level is optimally zero, the multinomial’s choice set collapses, eliminating the zero-level
possibilities.

8 An Rn→R1 function f(x) is convex/concave if f(αx1+(1-α)x2) is less/greater than or equal to αf(x1)+(1-
α)f(x2), for α∈[0,1].  Therefore, concavity of the money-expenditure function implies that the amount of
expenditures needed to achieve a given utility level is no lower at a set of average prices than at two
initial sets of unbalanced prices.  Very similarly, quasiconvexity of the indirect utility function implies
that the upper contour set of a such a function is a convex set; so, if two sets of prices, given income, lead
to the same level of indirect utility, any average of those prices can be no better for the consumer.  In a
money-expenditures setting, this condition can be written as the following: the set of prices P such that k
≥  v(P,Y) is a convex set.

9 Since added consumption of some activities (without binding budget constraints) may require so much
added travel time and produce a net negative impact on utility, the commonly assumed property of
“nonsatiation” or “monotonicity” is not likely to always be viable here.  After a certain point, strictly
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more of an activity is not necessarily a good thing.  This is important to note because even if preferences
are complete, reflexive, transitive and continuous (as described in Varian 1992), there may not exist a
continuous utility function which represents those preferences.

10  Concavity implies that the symmetric matrix of second derivatives has only non-positive diagonal terms
(i.e., d e dtT id

2 2 0≤ ∀ ).  The matrices of second derivatives in prices of the expenditure function which
result from estimation of the Type Two model were computed for all 10,834 households, separately.
Rather interestingly, for all 10,834 households, the first three of the four diagonal terms were positive and
the fourth was negative; this result may suggest a condition more closely resembling convexity in
discretionary-time expenditures with respect to travel times to the first through third contours!

Convexity of the indirect utility function is a little easier to examine, since indirect utility is an immediate
product of the models’ parameter estimation.  In the case of the modified translog model specifications
with and without constant terms, the diagonal terms of the matrix of second derivatives (with respect to
travel times) is βii/ti

2.  These should be non-negative if the function is convex, but one finds that the βii

(which determine the sign of this derivative) are estimated with negative signs for two to three of the
demand types in the four models of this type (as shown in Tables 4-2a, 4-3a, 4-4a, and 4-5a).  Thus,
convexity of the indirect utility function is not apparent in travel times.

11 With monetary expenditures, people simply “hand over” their money; it is an immediate transaction, not
requiring effort at the moment of use and affecting the spender only in how much money he/she has left
over.

12  One word of caution as to expectations of non-satiation here: Activity participation can be tiring and
eventually undesirable for an individual, so non-satiation may not exist in terms of out-of-home time
expenditures alone.  Having more goods is easy when compared with experiencing activities, since the
former requires storage space (or friends who are willing to cart away your belongings).  Thus, the
viability on non-satiation in activity participation may not make sense, particularly at the level of the
individual.  Still, one must experience his/her entire day (in contrast to not having to spend one’s entire
income); restorative activities such as sleeping help make up for energy, and summability across all time
expenditures is clearly a valid condition.

13 Note that strong separability allows a monotonic transformation of the direct utility function to produce
an equivalent direct utility function which is explicitly additive in the sub-utility functions.

14 Even if one were to make the highly heroic and unreasonable assumptions that discretionary time
expenditure is homogeneous of degree one in access times, time-compensated activity demands are
homogeneous of degree zero in access times, and the sum of the derivatives of the various time-
compensated time-in-activity demands [T t P Y ui T, ( , , , ) ’s] with respect to a single access time equal zero,
one can still not argue that the time-compensated activity demands are the first derivatives of the time-
compensated expenditure function.  The following equations make this apparent:
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If the time-compensated activity demands were in fact the first derivatives of the time-compensated
expenditure function, one then could impose Slutsky symmetry on the estimable/identifiable demands,
derived from one’s indirect utility function.  Symmetry of the Slutsky matrix in the common problem
formulation (i.e., one with purely a monetary expenditure constraint) is generally very useful because,
together with a condition for negative semi-definiteness (i.e., concavity of expenditures in prices), it
guarantees integrability (see, e.g., Jorgenson and Lau, 1979); this means that these two conditions
guarantee the existence of an indirect utility function that could generate the demand system estimated.
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However, as discussed in a prior section, one cannot assume concavity of the time-expenditure function,
thanks to travel time’s direct effect on one’s welfare.  And, without the expenditure derivatives producing
compensated demands here, one cannot logically impose symmetry on the Slutsky relation, as illustrated
by the following relation.
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15 Changes in what is known as “consumer surplus” are a special case of equivalent and compensating
variation; the value of change in consumer surplus lies between these two estimates and is defined as the
integral of demand (vectors) over a change in prices. (Varian 1992)

16 The argument for a money measure of benefits/disbenefits is that it best accommodates society’s values of
benefits/disbenefits to everyone over a variety of impacts experienced.  For example, one can argue that
the time of high-income persons should be more valued by society than that of other persons, since their
elevated incomes are typically due to their higher-valued labor-market activities; in other words, society
optimally trades their time at a higher rate.

17 Equivalent variation was originally defined by Hicks (1956) as the difference in expenditures at a
reference utility level, rather than at a reference price level.  However, when budget levels are held
constant, the expenditures under the before and after scenarios are the same, so the definitions provided
in Equation 3-13 are then equivalent to those given by Hicks.  The definitions used here can be found in
Varian (1992); they are the negative of Deaton and Muellbauer’s (1980) definitions, when available
income levels are unchanged.

Note also that Equation 3-13 assumes income (Y) and available time (T) are exogenous.  With income
and work time endogenous instead, one would write the lower set of equalities with unearned income, Yun,
in place of total income, Y, and both sets of equalities with an added argument of wage, w.

18 Flexibility to a certain order means that any set of values for that order of derivatives can be achieved
(with a single, variable set of parameters).

19 Christensen et al. (1975) note that the translog provides a second-order approximation to any (typical)
direct or indirect utility function; thus, the resulting demand functions provide a first-order approximation
to any system.  The same is true of the Almost Ideal Demand System (Deaton and Muellbauer, 1980a)
and the generalized Leontief (Lau 1986).

20 An elasticity of substitution is the dimensionless version of the derivative of the ratio of two goods with
respect to their marginal rate of substitution (MRS).  MRS is effectively a utility-constant measure of
substitution between two goods.  The following equations illustrate this definition:
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21 The parameterization of the distributional assumptions, which are described in the following section –

Statistical Specification, adds additional parameters requiring estimation to each of the model types
discussed in this section.

22 Second-order flexibility is not fully realized with the current specification, because it does not include a
log(Y)2  term (which would not be identifiable from the demand system estimated).  However, the ability
of this functional specification to capture substitution relationships is likely to remain superior to that of
the other most popular form for such models, that of the Leontief.  As discussed earlier, in the section on
Functional Specification, substitution is important in the empirical analysis pursued here because the
demand sets modeled in Chapter Four differ by quality of destination, rather than by activity type or
purpose.  So significant substitutability is anticipated.

23 Some researchers are working with activity-duration models, acknowledging that activities endure
separately rather than overlap (e.g., Ettema et al. 1995b, Bhat 1996), but micro-economic or other
rigorous behavioral linkages are missing from these models.  For example, using Weibull-based hazard
functions, Kim (1994) models activity duration separately from trip generation but simultaneous with trip
travel time.

24 Recall that a gamma random variable can be thought of as the sum of m independent exponential random
variables, with each exponential sharing the rate λ.  Thus, a constant p (which is less than one) times a
gamma can be thought of as the sum of m independent exponentials, each with a longer rate of λ/p; so the
inverse of the rate (which is the average time between events) is shorter and the sum of the exponential
times between events is shorter.

25 One can think of the sum of “t” days worth of a household’s travel data as being the sum of “t” Poisson
random variables, each with the same mean over the population having this household’s characteristics –
and each interacted with the same gamma term, which represents the heterogeneity within a population of
similar observed characteristics.  As is well known, the sum of “t” independent Poissons is Poisson; the
“t”  days of Poissons considered here for a single household (indexed by n) are independent when one
conditions on knowing the gamma error term and the mean rate (over the population with this
household’s characteristics).  Thus:
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26 More accessible environments do appear to lower automobile ownership, reduce total travel distances,
and shift mode of travel to slower modes (such as bus and walking), as described by Kockelman (1996 &
1997).

27 The aggregation of trips into the broad categories asked for in surveys (e.g., recreational vs. shopping
trips) obscures the subtle but important distinctions across activities and renders travel times endogenous.
In theory, if one had a large enough sample of observations, one could model a system of activity
demands where essentially every destination-and-mode (and time-of-day!) combination was a possible
“good” to be consumed by everyone residing in the region.  Travel costs would be fairly obvious (given
inter-zonal travel times and distances), and with regional data one could ensure that an individual’s
responses to a limited survey would not bias his/her vectors of travel costs while implicitly controlling for
quality- and price-of-activity differences.

28 It merits mention that much of Zahavi’s work (e.g., Zahavi 1979a) measures utility by total distance
traveled, essentially asserting that it is access to opportunities that determines one’s welfare – an idea
similar to those discussed here.  However, distance may be a seriously flawed utility measure; for
example, who can say with certainty that several short-distance journeys are preferred to a few longer
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journeys, just because the first choice involves less distance?  The approach advocated in this dissertation
allows the data to interpret preferences far more flexibly than a distance metric.

29 The survey used, like most surveys of significant size, does not provide income-per-worker or hourly
wage information, so analysis at the individual level would not have been feasible.

30 The travel times referred to in this section are not as reported by survey respondents (who tend to report
times in increments of five minutes); instead, they come from interzonal free-flow automobile-travel
times provided by the region’s metropolitan planning organization, which is the Metropolitan
Transportation Commission in the case of the Bay Area Travel Surveys.
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Chapter Four:  Empirical Estimation and Model
Validation

  Estimation Techniques

  Likelihood Maximization

The likelihood maximization relies on S-Plus statistical computing software

(produced by MathSoft Co.), using a model/trust-region approach described by Gay

(1983).  Due to the constraint of strict positivity on the Poisson rates ( X i
* ) and the

complexity of the likelihood equations’ first and second derivatives1, the algorithm

employs its own, numerical approximations to the derivatives utilized in a quadratic

approximation to the likelihood function over an iterative series of neighborhoods it

“trusts”2.

  Acquiring Starting Parameter Values

When a model’s regression equations are not linear in unknown parameters, as is the

case for the functional forms considered here, the choice of a method to achieve starting

parameter estimates can be quite difficult.  This is particularly true when negative

estimates of the marginal utility of time and negative demand estimates are effectively

disallowed (as discussed in the section on non-negativity in Chapter Three).  In the

present specification, one could run an iterative maximum-likelihood search procedure on

each demand equation individually, using negative binomial stochastic assumptions;

however, such individual regressions require their own sets of feasible start values for

many of the unknown parameters, along with a likelihood search, without guarantee of

unique convergence.
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To begin the maximum-likelihood search routines in the models estimated here,

several different sets of parameter estimates were attempted for each system of equations

as a whole, with theory often guiding the choice of sign (e.g., the derivative of indirect

utility with respect to each travel time should be negative, so signs on the starting values

of prominent coefficients of travel times were chosen appropriately).  Section A-5 of the

Appendix provides actual code and starting values used in typical program files.

Fortunately, not too many parameter sets were required to find a feasible set from which

to begin the iterative search in each model.  Additionally, several very distinct but

feasible starting parameter sets were used on each model, and the likelihood values of

their solutions were compared in an attempt to avoid convergence to a local, rather than

global, maximum.

  Variance-Covariance Estimation

The model complexities complicate the estimation of errors in estimation, so the

specification of the log-likelihoods’ gradients and Hessians is not elementary.  To

facilitate computations, the Berndt et al. (1974) method (BHHH) of Hessian estimation is

used, requiring only gradient information.  The variance-covariance matrix for the

parameter set is thus estimated applying the following equation, but employing the

parameter estimates generated from the sampled observations (Greene 1993, p. 326):
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  Results to be Estimated

To limit the problem size while analyzing a variety of different functional

specifications and illustrating use of the method, only four demand types were

distinguished here; and they are used with all four model types (Type 1 through Type 4,

as specified in Chapter Three).  Specifically, the four demand types used in four sets of

results are the number of discretionary trips (i.e., non-work, non-education, and non-

serve-passenger trips) made to each of four iso-opportunity contours using the Bay Area

Travel Surveys.  The contours are defined, as discussed in Chapter Three, by (free-flow,

automobile) travel times from a household’s specific “neighborhood”/traffic analysis

zone (TAZ) out to contours of 60,000, 300,000, 900,000, and two million jobs in the

region.  The fifth set of results presented here also relies on just four distinct demand

types across the four all-jobs iso-opportunity contours described, and it uses the Type 3

model specification; however, it explicitly accommodates trip chaining by focusing on

activity tours, rather than individual stops/single activities.  These five sets of results are

described here now.

  Results of Type One Model: Modified Linear Expenditure System

The estimates for a Type 1 model of discretionary-activity participation (represented

by Equation 3-14) are shown in Table 4-1a; these represent the likelihood-maximizing set

over the full sample (N=10,834) after starting from a variety of parameter values.  The

median levels of first-order estimates of demand elasticities and the value of time for this

model are shown in Table 4-1b.

Even though the great majority of the parameter estimates appear to be highly

statistically significant in this model, the value-of-time and aggregate mean estimates



72

differ significantly from expectations.  For example, the quartiles of the value-of-time

estimates are all negative across the sample; these estimates are presented in Table 4-7,

along with value-of-time estimates from other models, in the section titled “Discussion of

Value of Time Estimates”, toward the end of this chapter.

There are other clues that the model is far off.  For example, the average X 1
*  across

households is 2.67 trips/day, which is more than twice the observed mean of 1.09

trips/day, and the ratio of the sum of X 2 to X 3  is 2.25 while the model predicts 1.55.

Thus, this model does not appear to be sufficiently flexible for our purposes, and its

results should not be taken too seriously.
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Table 4-1a

Parameter Estimates of Modified Linear Expenditure System, as applied to
Discretionary-Activity Participation across Four All-Jobs Iso-Opportunity
Contours, using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics

α 0.902 1.94E-01 46 0.000
α1 0.0929 3.26E-02 28 0.000
α2 0.160 4.68E-02 34 0.000
α3 0.0947 2.16E-02 44 0.000
α4 0.0580 3.15E-02 18 0.000
β1Y -4.39E-05 2.24E-06 -20 0.000
β2Y -5.06E-05 1.74E-06 -29 0.000
β3Y -3.21E-05 3.06E-07 -105 0.000
β4Y -2.99E-05 6.23E-07 -48 0.000
β11 -2.18E-01 3.79E-02 -5.8 0.000
β12 -6.72E-02 1.52E-02 -4.4 0.000
β13 -8.91E-02 7.19E-02 -1.2 0.215
β14 2.69E-02 5.50E-02 0.5 0.625
β22 5.14E-02 1.87E-02 2.7 0.006
β23 -1.15E-01 1.66E-02 -7.0 0.000
β24 5.49E-02 7.41E-03 7.4 0.000
β33 1.95E-01 2.54E-03 77 0.000
β34 -5.93E-02 2.10E-03 -28 0.000
β44 9.96E-03 3.66E-04 27 0.000

L = -46,696
N = 10,834



74

Table 4-1b

Economic Implications of Modified Linear Expenditure System, as applied to
Discretionary-Activity Participation across Four All-Jobs Iso-Opportunity
Contours, using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:
           Immediate Zone Demand 0.389
           Near Zone 0.672
           Moderate Zone 0.572
           Far Zone 0.304
Income Elasticity of Demand:
           Immediate Zone Demand 0.044
           Near Zone 0.163
           Moderate Zone 0.411
           Far Zone 0.696

Cross-Time Demand Elasticities:
         w/r/t Time of:   Immediate Near Moderate Far

Immediate Zone: -0.054 0.081 0.234 -0.191
Near Zone: 0.016 -0.725 0.575 -0.617
Moderate Zone: 0.284 0.814 -2.711 1.021
Far Zone: -0.216 -0.658 -0.209 -0.541

Notes:
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.

  Results of Type Two Model: Modified Translog

The translog functional form of Equations 3-15 and 3-16 was used, with the

expectation that its larger parameter set would provide more flexible estimation and better

results than that of the modified linear expenditure system.  For purposes of parameter

identification, this model’s γ TY  parameter was fixed to equal positive one and the β ij ’s

are constrained to equal β ji ’s.  The parameter estimates are shown in Table 4-2a.

The log-likelihood value for this estimation is -46,431.6, but it cannot be compared

with a no-information situation (where each X i
*  is modeled as a constant, independent of

time and income information) or even a full-information situation (where each
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household’s X i n,
*  is modeled as its own constant), because there are no free constants in

this model – every unknown parameter is interacted with explanatory variables which

vary across households.

Observe that the variance in the data is substantially reduced by using explanatory

information.  For example, the estimate of the overdispersion parameter, α, falls from

1.6383 (for total trips) to 1.001 here, signaling a tighter distribution thanks to explanatory

information and the model structure itself.

The average X i
*  estimates of this model fall much closer to the sample means than

those of the modified linear expenditure system, suggesting much better accuracy in

aggregate prediction.  The average X i
* ’s are estimated to be 1.14, 0.66, 0.29, and 0.19,

respectively, while the observed per-day average demands are 1.09, 0.62, 0.27, and 0.19.

Theoretical considerations aside, this model appears to predict aggregate behavior well.



76

Table 4-2a

Parameter Estimates of Modified Translog Model, as applied to Discretionary-
Activity Participation across Four All-Jobs Iso-Opportunity Contours,
using the BATS data set

Parameter Final Standard T- P-Values
Estimates Error Statistics

α 1.00 0.00 123 0.000
α1 1.53 1.29 1.2 0.238
α2 -8.35 1.96 -4.3 0.000
α3 -9.69 1.74 -5.6 0.000
α4 -3.52 1.55 -2.3 0.023
β11 -7.96 0.91 -8.7 0.000
β12 -0.643 0.24 -2.7 0.007
β13 -1.05 0.24 -4.4 0.000
β14 -0.202 0.19 -1.1 0.286
β22 -1.03 0.51 -2.0 0.041
β23 -3.90 0.60 -6.5 0.000
β24 0.858 0.29 3.0 0.003
β33 8.47 1.02 8.3 0.000
β34 -2.27 0.40 -5.7 0.000
β44 1.95 0.48 4.1 0.000
γ1Y 1.60 0.19 8.6 0.000
γ2Y 1.15 0.16 7.2 0.000
γ3Y -0.576 0.10 -6.0 0.000
γ4Y -0.836 0.12 -6.8 0.000
γ1T -0.178 0.10 -1.9 0.064
γ2T 0.913 0.23 4.0 0.000
γ3T 1.44 0.26 5.6 0.000
γ4T 1.50 0.28 5.4 0.000
γTY (fixed) 1.00 n/a n/a n/a

L = -46,432
N = 10,834
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  Economic Implications of the Type Two Model Results

This model’s estimates’ of elasticities are shown in Table 4-2b.  Overall, this

model’s results appear reasonable, including the value-of-time estimates across the

household sample (whose quartiles are provided in Table 4-7).

Discretionary-time elasticities are positive, as one would expect (i.e., more

discretionary time available to the household leads to more discretionary activity

participation).  Income elasticities, on the other hand, are positive for far and moderate

zone activities but negative for closer activities; it appears that money is spent on access

to consumption of activities further away, rather than near one’s home.  It is interesting

that near trips are not found to be “inferior” with respect to time, but they are with respect

to income (albeit to a minor extent).  Note that these results are not definitive because

part of this income effect is due to the purchase of automobiles, which effectively reduce

per-trip marginal costs and travel times, and part is arguably due to the higher-income

households having more specialized workers who must travel further on workdays and so

undertake more activities at sites remote from home, but near their work locations.  The

presentation of the fifth set of model results more explicitly considers this question of trip

chaining.

Finally, observe that own-travel-time elasticity estimates are generally negative as

one would expect of economically “normal” goods, but not for the nearest zone’s activity

participation rates.  And most cross-time elasticities are positive, suggesting the expected

substitution effects (rather than complementarity), since the demands are only defined

across “quality” here (i.e., level of opportunity choice), not activity type (e.g., social and

personal business activities are less likely to be substitutable).
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Table 4-2b

Economic Implications of Modified Translog Model, as applied to Discretionary
Activity Participation across Four All-Jobs Iso-Opportunity Contours,
using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:
           Immediate Zone Demand 1.028
           Near Zone 0.869
           Moderate Zone 0.678
           Far Zone 0.706
Income Elasticity of Demand:
           Immediate Zone Demand -0.294
           Near Zone -0.208
           Moderate Zone 0.086
           Far Zone 0.122

Cross-Time Demand Elasticities:
         w/r/t Time of:   Immediate Near Moderate Far

Immediate Zone: 0.257 0.061 0.103 -0.033
Near Zone: 0.100 -0.891 0.496 -0.188
Moderate Zone: 0.242 0.832 -2.952 0.442
Far Zone: 0.047 -0.207 0.383 -1.446

Notes:
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.



79

  Results of Type 3 Model: Modified Translog with Constants

The Type 3 model specification, a modified translog which includes constant terms,

(as shown in Equation 3-18) has been applied here to two different demand sets.  The first

covers the discretionary-activity participation demands used in the previous two models;

the second looks at home-based tours of all trip types.  Both rely on the four iso-

opportunity contours used previously, which count all job types as opportunities.

  I. Discretionary Activity Participation

The estimated parameters for a Type 3 model across four divisions of discretionary-

activity participation are shown in Table 4-3a.  The estimate of the overdispersion

parameter α has dropped to 0.938, suggesting that estimates are falling closer to

observations than in the two previous models; and the demand estimates accurately

estimate aggregate behavior. The average X i
* ’s are estimated to be 1.08, 0.62, 0.28, and

0.19, respectively, while the observed per-day average demands are 1.09, 0.62, 0.27, and

0.19.

An advantage of the translog specification with constant terms is that one can nest a

no-information case within the specification.  Table 4-3c provides a summary of the

likelihood values resulting from a variety of specifications linked to this particular

specification. The log-likelihood value for the no-information case4 is -47,688; in

contrast, the log-likelihood of the full model is -46,218.  The p-value for the hypothesis

that the no-information model is the proper model, given the assumption that this third

model specification encompasses the true model as a nested specialization, is 0.000; so

one must reject this hypothesis (given the assumption).
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Table 4-3a

Parameter Estimates of Modified Translog Model with Intercept Terms,
as applied to Discretionary Activity Participation across Four All-Jobs Iso-
Opportunity Contours, using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics

α 0.938 0.020 47 0.000
µ0 0.267 0.049 5.5 0.000
µ1 0.930 0.234 4.0 0.000
µ2 0.189 0.062 3.1 0.002
µ3 -0.075 0.026 -2.9 0.004
µ4 -0.033 0.030 -1.1 0.266
α1 -0.831 2.306 -0.4 0.718
α2 -1.066 3.325 -0.3 0.749
α3 -1.112 2.676 -0.4 0.678
α4 -0.944 5.668 -0.2 0.868
β11 -4.191 1.159 -3.6 0.000
β12 0.051 0.329 0.2 0.876
β13 -1.453 0.414 -3.5 0.000
β14 0.714 0.268 2.7 0.008
β22 -0.123 1.287 -0.0 0.924
β23 -4.464 1.007 -4.4 0.000
β24 2.237 0.537 4.2 0.000
β33 7.845 1.513 5.2 0.000
β34 -2.842 0.709 -4.0 0.000
β44 -0.200 1.658 -0.1 0.904
γ1Y 1.491 0.292 5.1 0.000
γ2Y 0.078 0.141 0.6 0.579
γ3Y -1.126 0.216 -5.2 0.000
γ4Y -1.187 0.230 -5.2 0.000
γ1T -0.813 0.146 -5.6 0.000
γ2Y 0.262 0.310 0.8 0.398
γ3Y 1.443 0.435 3.3 0.000
γ4Y 1.888 0.521 3.6 0.000
γTY (fixed) 1.000 n/a n/a n/a

L = -46,219
N = 10,834

Table 4-3b
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Economic Implications of Modified Translog Model with Intercept Terms,
as applied to Discretionary Activity Participation across Four All-Jobs Iso-
Opportunity Contours, using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:
           Immediate Zone Demand 0.774
           Near Zone 0.652
           Moderate Zone 0.440
           Far Zone 0.415
Income Elasticity of Demand:
           Immediate Zone Demand -0.206
           Near Zone -0.039
           Moderate Zone 0.144
           Far Zone 0.132

Cross-Time Demand Elasticities:
         w/r/t Time of:   Immediate Near Moderate Far

Immediate Zone: 0.574 -0.014 0.124 -0.144
Near Zone: 0.020 -0.630 0.440 -0.303
Moderate Zone: 0.252 0.688 -2.608 0.384
Far Zone: -0.073 -0.316 0.347 -1.231

Notes:
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.

Economic Implications of the Type Three, Discretionary Activities Model Results

Estimates of various economic implications of this model are shown in Table 4-3b.

While elasticity signs and magnitudes appear to be in general agreement with those

estimated for the previous, no-constant-terms model for these data, the value of time

estimates differ dramatically.  Even though this model is more flexible (and offers a

significantly higher log-likelihood value, of -46,218 versus -46,432, for a difference of

just five parameters), its value-of-time estimates are highly negative and thus contrary to

expectations – in clear contrast to the value-of-time results for the previous model.  This
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model’s value-of-time results are provided and discussed along with the value-of-time

results for other models, toward the end of this chapter.

  Model Comparisons: Case Example

Ten variations of this Type 3 system of discretionary-activity demands were run for

purpose of likelihood comparisons.  They differ primarily in their assumptions about the

stochastic nature of the unobserved heterogeneity; but, the “no-information” and “full-

information” variants make assumptions about the access to explanatory information.  A

broad comparison of likelihoods like this can be done for any of the modified-translog-

with-intercept models since their specification includes intercepts, allowing them to be

rigorous nested within a full-information case and over a no-information case.  Note,

however, not all of the ten variants are specialization’s or generalizations of all others.

All ten cases are described briefly and compared by means of their log-likelihood values

in Table 4-3c.

Several interesting results emerge from these log-likelihood values.  One is that the

imposition of the same-gamma heterogeneity assumption significantly constrains the

model as estimated.  Without removing any estimated parameters yet allowing optimal

activity-participation rates to vary independently of one another (given their population

means, for a given set of household characteristics), the log-likelihood rises dramatically,

from -46,218 to -42,592, given a difference of just three identifying restrictions5.

Following this change in stochastic specification, the overdispersion factor, α or “a” in

the table, rises substantially as well, from 0.938 across the set of trips to 1.5 for

“immediate” or very local trips, 2.2 for “near” trips, 2.8 for “moderate” trips, and 7.4 for

“far” trips.  These results suggest that the imposition of the same-gamma assumption for
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characterizing the unobserved heterogeneity in optimal participation rates is too strong –

at least for the data set used, where short-duration observations are likely to be more

heavily influenced by chaining and intra-household trip coordination.  More flexible

models, which still provide for some correlation in unobserved information, should prove

useful, though these likelihoods will probably require simulation.

Table 4-3c

Comparison of Log-Likelihood Values across Different Models
based on the Modified Translog Model with Intercepts
(analyzing Discretionary-Activity Participation across Four Iso-Opportunity
Contours, using the BATS data set)

Model Description: α Log-Likelihood

i. Poisson (no unobserved heterogeneity,α=0): 0 -52,052
ii. No Information (no explanatory variables): 1.012 -47,688
iii. MODEL AS ESTIMATED (same-gamma heterogeneity): 0.938 -46,218
iv. Semi-Independent Negative Binomials (with same overdispersion "α"): 2.13 -42,981
v. Totally Independent Negative Binomials (different "α"’s): 1.5 to 7.4 -42,592
vi. Full Information (all optimal rates = observed rates, minimized variance): 0 -32,749

vii. Individually Estimated Negative Binomials for each Demand

(without cross-equation parameter constraints):                 Immediate Trips: 1.51 -16,640
                                                                             Near Trips: 2.20 -12,538
                                                                             Moderate Trips: 3.04 -7,635
                                                                             Far Trips: 6.18 -5,864

Sum = -42,677

Another way to look at these results is to compute the fraction of total likelihood

difference, between the full- and no-information cases (cases vi and ii), that is

“explained” by the specified model (case iii).  This ratio is often referred to as a pseudo-

R2, and it is 9.84% for this model6.  This is actually higher than one might expect, given

the disaggregate and short-term nature of the data.  As mentioned in Chapter Two’s

literature review, little if any research has found significant elasticities of trip demand

with respect to travel times (Ortúzar and Willumsen 1994, Hanson and Schwab 1987).

The percentage of explained variation in models of single-day trip-making, other than the
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model proposed in this research, tend to be on the order of five percent (e.g., Hanson and

Schwab 1987).  However, one should not put too much stock in this measure of explained

variation; simply a longer survey period with fewer zero-level observations of demand

would increase the percentage (or R-squared), without any change in parameter estimates,

because the zeros do not diminish the full-information log-likelihood at all7.

Another point of interest is that the removal of the cross-equation parameter

constraints does not do much for the log-likelihood.  In case vii, where each demand is

estimated completely independently of the others (but with the same general functional

form given in Equation 3-18), 18 more parameters are being estimated than in the set of

demand equations derived from case v’s single indirect utility specification8 (of Equation

3-17); yet this only translates to a likelihood increase of  -42,592-(-42,677), or 85.  This

difference still provides for a highly statistically significant likelihood ratio test of the

difference9, but the magnitude of the difference appears small when compared with the

differences other changes in the model create.  For as many observations as there are in

the data set (10,834 households times four dependent-value observations per household),

it is not surprising that one would get a statistically significant result for most tests; what

is surprising is the relatively small size of this difference for this particular test.  It

suggests that the derivation of a set of demands from a single indirect utility specification

is not so presumptuous or limiting!  However, the value-of-time results remain

unbelievable, so the model structure is imperfect.

  II. Modeling Tours Explicitly

Due to the prevalence of trip-chaining or “tour-making” in many observations of

activity-participation, the incremental travel time faced by a household to pursue an
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added activity can be substantially less than the round-trip travel time from home.  Since

most tours appear to involve a primary stop or leg with a significant travel time from the

home location, the data set of demands constructed for analysis here is based on the

number of tours made, with the furthest destination visited during the tour determining

the tour type (according to which of the four distinct iso-opportunity contours the tour

belongs).  Since the number of tours that are exclusively non-work related is rather small

(about 15,000 tours in the BATS data set) and many of the tours containing a work

purpose also contain discretionary-purpose stops, tours of all types were assembled here

for analysis, providing roughly 40,000 tours across the BATS households surveyed.

Estimation results are given in Tables 4-4a and 4-4b.
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Table 4-4a

Parameter Estimates of Modified Translog Model with Intercept Terms,
as applied to Trip Tours to Four All-Jobs Iso-Opportunity Contours,
using the BATS data set

Parameter Final Standard T- P-Values
Estimates Errors Statistics

α 0.076 0.004 20.7 0.000
µ0 -0.079 0.035 -2.3 0.022
µ1 1.339 0.412 3.3 0.001
µ2 0.339 0.120 2.8 0.005
µ3 0.187 0.073 2.6 0.010
µ4 0.127 0.097 1.3 0.189
α1 -0.044 2.847 -0.0 0.988
α2 -0.931 4.114 -0.2 0.821
α3 -1.101 5.650 -0.2 0.845
α4 -0.729 14.639 -0.0 0.960
β11 -2.702 1.226 -2.2 0.028
β12 1.231 0.510 2.4 0.016
β13 -0.835 0.522 -1.6 0.110
β14 0.812 0.437 1.9 0.063
β22 -0.000 1.594 -0.0 1.000
β23 -4.450 1.457 -3.1 0.002
β24 3.012 0.920 3.3 0.001
β33 7.866 2.696 2.9 0.004
β34 -1.974 1.006 -2.0 0.050
β44 0.445 4.695 0.0 0.924
γ1Y -0.032 0.119 -0.3 0.789
γ2Y -0.625 0.186 -3.4 0.000
γ3Y -1.506 0.378 -4.0 0.000
γ4Y -2.833 0.722 -3.9 0.000
γ1T 1.225 0.575 2.1 0.033
γ2Y 1.225 0.575 2.1 0.033
γ3Y 2.343 0.862 2.7 0.007
γ4Y 4.959 1.607 3.1 0.002
γTY (fixed) 1.000 n/a n/a n/a

L = -48,469
N = 10,834
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Table 4-4b

Economic Implications of Modified Translog Model with Intercept Terms,
as applied to Trip Tours to Four All-Jobs Iso-Opportunity Contours,
using the BATS data set

VALUE ESTIMATED: Median
of Sample

Discretionary-Time Elasticity of Demand:
           Immediate Zone Demand 0.970
           Near Zone 0.956
           Moderate Zone 0.848
           Far Zone 0.704
Income Elasticity of Demand:
           Immediate Zone Demand -0.022
           Near Zone 0.039
           Moderate Zone 0.123
           Far Zone 0.191

Cross-Time Demand Elasticities:
         w/r/t Time of:   Immediate Near Moderate Far

Immediate Zone: 0.356 -0.139 0.015 -0.196
Near Zone: -0.157 -0.400 0.397 -0.433
Moderate Zone: 0.052 0.407 -1.344 0.070
Far Zone: -0.092 -0.259 0.093 -0.711

Notes:
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.

Observe that the overdispersion factor α  is very close to zero here, suggesting less of

a negative binomial and more of a Poisson distribution; this reduced value also suggests

more stability in estimation thanks to less unobserved variation (assuming that a Poisson

holds).  So tour-making may be less variable than individual stop-making, which makes

some sense given the fixed cost of getting ready to leave one’s home and take care of

business and activities outside one’s home; the marginal cost of adding stops is relatively

small once is already “out and about”.  Moreover, the same-gamma-error assumption may

apply better here because gross estimates of the α terms10 for the different, individual
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demands are much more stable; they are 0.84, 0.85, 0.70, and 0.52, rather than 1.7, 2.6,

3.4, and 7.6, as estimated for individual-activity (non-tour) demands.

This model’s estimates of demand are reasonable predictors of aggregate behavior.

The average X i
* ’s are estimated to be 1.22, 0.57, 0.37, and 0.28, respectively, while the

observed per-day average trip-chain rates to the different contours are 1.14, 0.64, 0.38,

and 0.32.

In Table 4-7, the value of times estimated for this model are negative, though they

are not as extreme as those implied by the previous translog-with-constants model of

discretionary trip-making.  The travel-time elasticity matrix (shown in Table 4-4b)

resembles earlier estimates of this matrix, but three of the four income elasticities are now

positive.

  Results of Type 4 Model: Modified Translog with Constants, Using Wage
and Total Time Data

As discussed in Chapter 3, the work decision, and thus the income and discretionary-

time budgets are likely to be made simultaneously with the discretionary-activity

decisions.  Thus, a model where these budgets are endogenous may prove useful.  The

Type 4 model accommodates these decisions by relying on wage and total-time data,

rather than income and discretionary-time data, but the demand set analyzed is the same,

four-zone discretionary-trip data set analyzed in the first three models discussed here.

The results of this analysis are shown in Tables 4-5a and 4-5b.
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Table 4-5a

Parameter Estimates of Modified Translog Model with Intercept Terms and Wage
and Total-Time Information, as applied to Discretionary-Activity Participation
across Four All-Jobs Iso-Opportunity Contours, using the BATS data set
Parameter Final Standard T- P-Values

Estimates Errors Statistics
α 0.935 0.020 47 0.000
µH 0.387 5.529 0.0 0.944
µ1 3.212 1.537 2.1 0.037
µ2 0.528 0.270 2.0 0.050
µ3 -0.361 0.174 -2.1 0.038
µ4 -0.192 0.117 -1.6 0.100
α1 3.564 5.456 0.7 0.514
α2 -3.332 6.137 -0.5 0.587
α3 -4.253 5.436 -0.8 0.434
α4 -2.461 11.412 -0.2 0.829
β11 4.211 2.565 1.6 0.101
β12 0.841 0.861 1.0 0.329
β13 -4.060 2.088 -1.9 0.052
β14 1.978 1.231 1.6 0.108
β22 -0.270 2.660 -0.1 0.919
β23 -4.443 2.480 -1.8 0.073
β24 -2.426 1.432 -1.7 0.090
β33 2.300 2.421 1.0 0.342
β34 -6.493 3.401 -1.9 0.056
β44 -2.749 3.779 -0.7 0.467
γ1W 0.527 0.377 1.4 0.162
γ2W 0.586 0.437 1.3 0.179
γ3W -0.223 0.203 -1.1 0.273
γ4W -2.267 1.132 -2.0 0.045
γ1H (fixed) 1.000 n/a n/a n/a
γ2H 3.948 1.520 2.6 0.009
γ3H 5.084 2.238 2.3 0.023
γ4H 4.935 2.174 2.3 0.023
γWH 4.580 2.318 2.0 0.048
γH 1.617 0.246 6.6 0.000
L = -46,267
N = 10,834
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Table 4-5b

Economic Implications of Modified Translog Model with Intercept Terms and Wage
and Total-Time Information, as applied to Discretionary-Activity Participation
across Four All-Jobs Iso-Opportunity Contours, using the BATS data set

VALUE ESTIMATED: Median
of Sample

Total-Time Elasticity of Demand:
           Immediate Zone Demand 0.705
           Near Zone 0.554
           Moderate Zone 0.379
           Far Zone 0.435
Wage Elasticity of Demand:
           Immediate Zone Demand -0.077
           Near Zone -0.079
           Moderate Zone -0.031
           Far Zone 0.104

Cross-Time Demand Elasticities:
         w/r/t Time of:   Immediate Near Moderate Far

Immediate Zone: 0.850 -0.100 0.180 -0.181
Near Zone: -0.058 -0.567 0.169 0.065
Moderate Zone: 0.297 0.291 -1.878 0.434
Far Zone: -0.146 0.117 0.383 -1.716

Notes:
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.

Predictions of aggregate behavior using this model do not appear to be as strong as

those from the Type 3 model estimates, but they are quite reasonable.  The average X i
* ’s

are estimated to be 1.07, 0.62, 0.28, and 0.19, respectively, while the observed per-day

average demands are 1.09, 0.62, 0.27, and 0.19.

The travel-time elasticity matrix corresponds roughly with those estimated previously

and total-time elasticities are positive, as expected.  However, the wage elasticities are

generally negative and negligible, except for the furthest zone.  One might expect more

significantly negative wage effects on discretionary trip-making as workers choose to
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work more and engage in fewer discretionary activities (during weekdays at least).

However, the act of working more often may add to discretionary activity participation

because of added purchasing power and because work travel can put workers in contact

with many activity sites (along travel routes to and from work) for lower travel-time costs

than home-based trips.11

  Comparison of All Model’s Elasticity Estimates

To facilitate comparisons, Table 4-6 provides a summary of elasticities estimated for

all five of the model specifications analyzed.  The reported values are the median values

for the 10,834-household sample, and only the first three models are strictly comparable

in terms of all estimates shown, since their response and explanatory variables sets are the

same.  As described earlier, the fourth model analyzed relies on the same functional form

for demand as the third, but it models trip tours to all activity types, rather than

individual, discretionary-activity stops.  The fifth model allows for work-time (and,

therefore, much of discretionary-time) and income endogeneity, so its reported elasticities

are with respect to total time and wage variables.
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Table 4-6

Summary of Elasticity Estimates: Median Values across Households

Model Used:       Type 1 Type 2 Type 3 Type 3* Type 4**
(All Tours) (Endogen.

Work)

Discretionary/Total**-Time Elasticity of Demand:
           Immediate Zone Demand 0.389 1.028 0.774 0.970 0.705
           Near Zone 0.672 0.869 0.652 0.956 0.554
           Moderate Zone 0.572 0.678 0.440 0.848 0.379
           Far Zone 0.304 0.706 0.415 0.704 0.435
Income/Wage** Elasticity of Demand:
           Immediate Zone Demand 0.044 -0.294 -0.206 -0.022 -0.077
           Near Zone 0.163 -0.208 -0.039 0.039 -0.079
           Moderate Zone 0.411 0.086 0.144 0.123 -0.031
           Far Zone 0.696 0.122 0.132 0.191 0.104

Cross-Time Demand Elasticities: Type 1 Type 2 Type 3 Type 3* Type 4**
Demand for Activities in: w/r/t to Travel Time to Immediate Zone:

   Immediate Zone: -0.05 0.26 0.57 0.36 0.85
   Near Zone: 0.02 0.10 0.02 -0.16 -0.06
   Moderate Zone: 0.28 0.24 0.25 0.05 0.30
   Far Zone: -0.22 0.05 -0.07 -0.09 -0.15

w/r/t to Travel Time to Near Zone:

   Immediate Zone: 0.08 0.06 -0.01 -0.14 -0.10
   Near Zone: -0.73 -0.89 -0.63 -0.40 -0.57
   Moderate Zone: 0.81 0.83 0.69 0.41 0.29
   Far Zone: -0.66 -0.21 -0.32 -0.26 0.12

w/r/t to Travel Time to Moderate Zone:

   Immediate Zone: 0.23 0.10 0.12 0.02 0.18
   Near Zone: 0.57 0.50 0.44 0.40 0.17
   Moderate Zone: -2.71 -2.95 -2.61 -1.34 -1.88
   Far Zone: -0.21 0.38 0.35 0.09 0.38

w/r/t to Travel Time to Far Zone:

   Immediate Zone: -0.19 -0.03 -0.14 -0.20 -0.18
   Near Zone: -0.62 -0.19 -0.30 -0.43 0.06
   Moderate Zone: 1.02 0.44 0.38 0.07 0.43
   Far Zone: -0.54 -1.45 -1.23 -0.71 -1.72

Notes:
*The first three models and the fifth model discretionary activity participation;
   the fourth models trip tours  and includes all activities.
**The fifth model allows for discretionary-time and income endogeneity, while the others do not.
Demands are in trips per day, Discretionary Time is hours,
   Travel Times are minutes, & Income is before-tax dollars.

Of the first three, comparable models, signs on estimates are strongly consistent

between the second and third models; but the first model, which relies on a modified

version of the linear expenditure functional form, is not so consistent with these two.  As

described briefly in Chapter Three and earlier in this chapter, the first model suffers from
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several constraints on its predictions – and the second and third specifications have their

own inflexibilities.

Despite their differences, all models predict strong elasticities of demand with

respect to time budgets; however, only the second model produces an estimate exceeding

one.  The own-travel-time elasticities of demand tend to be significantly negative, with

elasticities for demand for activities in the moderately distant contour estimated to be the

most notably inelastic.  Additionally, though generally positive, many cross-time effects

on demand to the furthest iso-opportunity contour are estimated to be negative.

All five models predict rather negligible elasticities of discretionary-activity and tour

demands with respect to income and wages.  This effect may be due to a lack of

identification of all income contributions to indirect utility (as discussed earlier), but,

also, it may be that additional money does not lead to additional activity participation,

everything else constant.  For example, the quality of activities and the amount of money

spent on them may be substantially affected by income and/or wages, but rates of activity

participation may not change much, given fixed time constraints.  More detailed data sets,

including expenditure and price information, may resolve this question.

  Discussion of Value of Time Estimates

In contrast to the reasonable and rather stable elasticity results, the value-of-time

estimates vary substantially across the five models.  The quartiles of the sample’s value-

of-time estimates are provided in Table 4-7.
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Table 4-7

Summary of Value-of-Time Estimates12: Quartiles across Households

Model Used:       Type 1 Type 2 Type 3 Type 3 Type 4**
(All Tours) (Endogen.

Work)
Value of Discretionary/Total** Time:
           Minimum (10.73)$   0.22$      $(7.67E+6) (82.11)$   $           0
           First Quartile (8.92)$     7.94$      (187.62)$ (13.92)$   11.72$    
           Median (8.06)$     13.13$    (102.80)$ (9.09)$     26.17$    
           Third Quartile (6.22)$     21.47$    (58.95)$   (5.61)$     42.66$    
           Maximum (1.98)$     151.80$   $ 2.42E+6 (0.16)$     384.90$  

All values are before-tax, 1990 dollars per hour.
**The fifth model allows for discretionary-time and income endogeneity, while the others do not.
    Thus, the fifth model’s value of time elasticities are with respect to total  time and wage.

While of the expected order of magnitude, the signs are opposite of one’s

expectations in three of the five models!  As mentioned in Chapter Three’s specification

of the first model, the modified linear expenditure system’s structure is so limiting that its

value-of-time estimates depend only on travel times – rather than income and

discretionary time levels.  This reasoning may explain a large part of the unexpected

results for the first of the five models.  But what about the other negative estimates?  Isn’t

a modified translog form flexible enough to provide a first-order estimate of the value of

time?

  A Functional Conflict between Behavioral Indicators

One interesting but restrictive consequence of the modified-translog specification is

that there may be some conflict between the income elasticity signs and those on the

marginal utility of income (dv/dY); both depend on the γ iY  and γ TY  terms, and for one to

be positive the other is likely to wind up negative.  Equation 4-2 illustrates the conflicting

incorporation of these parameters for the Type 3 model specification.  In this set of

equations, note how the final term of the income elasticity is implicitly negative and the
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first term has a negative denominator; therefore, it is just the γ iY  parameter that has

flexibility to determine the sign on income elasticity for the ith demand.
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The same conflict holds true for the less flexible, Type 2 Model.  However, its value-

of-time results happen to be much more in line with expectations here13.  One should be

wary of these ostensibly flexible specifications, and further functional flexibility may be

sought where practical14.  But something more fundamental to the structure of the models

may be causing the unanticipated results.

  Identification of All Income/Wage Terms in Indirect Utility

In fact, the primary reason for a negative marginal-utility-of-time result may be that

the indirect utility functions underlying the estimated models are limited in their

representation of income (or wage) effects.  Everywhere one finds an income term (Y) [or

wage term (w)] in the different model specifications, it is interacted with either a travel

time or available-time-budget term, allowing immediate estimation of the assumed

indirect utility function from the results of the system-of-demands estimation.  However,
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if there are other, isolated income (or wage) effects, in the form of g(Y) (for

example, log( )Y 2 ), these will impact the marginal-utility-of-income estimates and thus the

value-of-time estimates.

If one is relying on a system of demand equations derived from the application of

Roy’s Identity in a time environment, one can only identify the magnitude of the effects

that are available from derivatives of indirect utility with respect to time and available

time.  In order to identify the purely income (or wage) effects (or these effects interacted

with the vector of prices, which are assumed not to vary across households and thus show

up as constants or concealed within fundamental parameters in the regression equations),

one needs observable information based on these effects.  Essentially then, one needs a

system of demands derived from application of Roy’s Identity in a money/price

environment so that parameters characterizing the derivatives of indirect with respect to

income (or wage) are all present.

Assume then that one has the system of demand equations as developed from the

negative ratios of the derivatives of indirect utility with respect to (invariable) prices and

income.  The entire model should be estimated in a simultaneous fashion, so that the

estimates of optimal demand levels developed in the time setting equal those developed

in the price/money setting.  One can impose equality across the two demand systems by

substituting rather complicated functions of explanatory variables and parameters for

several of the constant terms (e.g., the µ i ’s).  Given this imposed equality, one can then

maximize the likelihood of the sample observations using this single set of significantly

more complicated demand equations and one should have access to all parameters of

interest.
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There is a different way to assess the magnitude of income effects which do not

appear in derivatives of indirect utility with respect to travel times and available time;

however, it is not as elegant and may not produce consistent estimators.  It requires taking

the results of the existing models and regressing these estimates of optimal activity

participation on a system of demands developed in a price environment.  This method

was used with the third model to take a closer look at the marginal utility of income, and

it consistently produced positive marginal utilities, thanks to the incorporation of Y,

log( )Y  and log( )Y 2  effects.  The indirect utility specification used is the following:
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The optimal demand levels which result from application of Roy’s Identity in a price

environment to the above formulation are the following:
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Note that assumption of constant price levels leads to non-identification of the

fundamental price-interacted parameters but produces a similar, estimable functional

form, where the price-interacted parameters are subsumed into identifiable parameters.

This implicit incorporation of the price-specific parameters can be thought of as having

occurred in all model specifications used here, particularly those with the constant terms

(which thereby allow for isolated-price effects).

Using this specification, a solution was sought which minimized the squared

difference between earlier estimates of X i
* ’s (derived in a time environment and

constructed using Table 4-2a’s parameter estimates) and the estimates arising from

Equation 4-4’s demand specification (with γ TY = +1 and the already-estimated γ iY ’s

substituted in directly).  This method produced estimates of the marginal utility of income

(i.e., the denominator in the demand equation of Equation 4-4) which are dominated by a

positive δ Y  term.  The negative terms in the marginal utility of income which come from

dv dY1  are negligible in comparison with the highly positive estimate of δ Y .  The new
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value-of-time estimates are all positive, but their magnitude is too low by several orders

(e.g., the median value is $.00045/hour).  Moreover, the second set of estimates relies so

substantially on the constant terms in the demand equations that estimates are predicted to

vary little across households.  Apparently then, this expanded indirect utility specification

and/or the methods used to estimate this system’s parameters (including simply

minimizing the sum of squared differences over all demands and strong assumptions like

price invariability) remain lacking.  These modeling complexities are a prime area for

additional research.

  Other Reasons for Incorrect Marginal Utility of Income Estimates

In addition to full identification of the indirect utility function and flexibility in

functional form, there are other issues to consider in the estimation of the value of time.

For example, in the fifth model estimated here, which comes from the Type 4 Model

specification, the assumption of exogenously determined income and discretionary time

budgets is dropped, theoretically removing any unmodeled dependencies across these

explanatory variables and demand which may have caused erroneous results.  The loss of

this implicit and strong exogeneity assumption – which is present in the previously

estimated models – may be what gives this final model its reasonable value-of-time

estimates.15

Another reason for a negative marginal utility of income (and thus negative value of

time) results may be that high income households are able to live in lower travel-time

environments, so the parameters affecting the marginal utility of travel times might pick

up an income effect, leaving the final income effect rather ambiguous and ostensibly

negative in many models.  For example, after normalizing income for total-time
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availability, H, one finds that average travel times to each of the four all-job iso-

opportunity contours gradually fall as normalized income increases; the mean travel times

between the first and fourth quartiles of HY  fall from 11.5 to 11.0 minutes to reach the

first contour, 22.1 to 20.6 to reach the second, 33.5 to 31.3 to reach the third, and 49.4 to

47.2 to reach the fourth.  It appears that high-income/low-time households are residing in

locations that better fit their constraints, as one would expect; thus, if household location

choice were made endogenous to the model, one could avoid some of the biases this

dependence may create.

  Further Qualifications

While the results of this research are interesting, one should recognize that the data

are imperfect and the model assumptions are strong.  For example, the travel-time data

are measured with some error, thanks to zonal aggregation and reliance on free-flow,

automobile travel times (– and due to the chaining of trips, as discussed at the end of

Chapter Three).  And the income and wage variables either come from survey-bin mid-

points, in the case of income-reporting households, or have been estimated, for the non-

reporting households.  Simply the use of a model with one or more explanatory variables

measured with error leads to highly uncertain impacts on estimates. (Greene 1993)

Unfortunately, most models of travel behavior are subject to such deficiencies in the data

set, since income tends to be reported by ranges and/or travel times come from a time-of-

day-independent data base.

There also is the concern that cross-sectional data do not provide the necessary

variation to discern heterogeneity from state dependence in the unobserved information

which influences decisions.  Meurs (1990) recommends use of panel data for estimation
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of trip generation due to difficulties arising in cross-sectional models from omitted time-

invariant/fixed effects across individuals; for example, Meurs’s models using the Dutch

Mobility Panel data set indicate that cross-sectional income elasticities of demand tend to

be biased high.  Kitamura (1988) uses a three-year panel data set to study trip generation

rates and finds the serial correlation to be substantial “suggest(ing) that important

determinants of trip generation lie outside the set of variables that have traditionally been

considered in travel behavior analysis.”

Kitamura et al. discuss the need for longitudinal calibration to avoid a “longitudinal

extrapolation of cross-section variations” (Kitamura et al. 1996).  In other words, cross-

sectional elasticities are observed over different individuals yet often “applied as if they

represent longitudinal elasticities that capture the change in behavior that follows a

change in a contributing factor within each behavioral unit.” (Kitamura et al. 1996, pg.

274).  The use of cross-sectional elasticities for estimation of longitudinal behavior is

only rigorously valid under restrictive conditions, such as response being immediate and

its magnitude being independent of past behaviors, according to Goodwin et al. (1990).

In some cases, the greater the amount of time between a change in an independent

variable and measurement of behavioral response, the higher the likelihood that cross-

sectional estimates apply.

Becker (1965) voices some concern about the interpretation of cross-sectional

elasticities for a different reason.  His primary thesis is that the true cost of “commodity”

consumption involves a time cost, not just a monetary cost for the non-time factors/goods

used to produce commodities.  Thus, he argues that “traditional cross-sectional estimates

of income elasticity (which) do not hold either factor or commodity prices constant...” are
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“...biased downward for time-intensive commodities, and give a misleading impression of

the effect of income on the quality of commodities consumed.” (1965, pg. 517)

Unfortunately, without adequate longitudinal data sets, Kitamura’s comments can

only be used to qualify the results of this research, in the estimates of such elasticities.

Accommodation of Becker’s fully general model requires information on the production

technology of commodities (e.g., the combinations of time and money that produce a

dining-out experience), so Becker’s concerns may can only be stated as qualifications

here.

The globalness of the likelihood’s maxima used to estimate parameter values and

assess covariance also represents an assumption of these results.  While the global

maximum is a consistent estimate of the true parameter values – assuming the model and

its distribution have been correctly specified, there is no guarantee that the search routine

has converged upon the function’s global maximum16.  This particular model’s

requirement of positive activity-participation rate-parameter estimates for a calculable

likelihood value17 often makes the acquisition of feasible starting parameter values a

significant chore, particularly for the most functionally flexible models; thus, it is not

easy to try starting at a wide variety of highly distinct parameter sets and comparing final

points of convergence in an effort to avoid local maxima.  However, as long as the results

seem reasonable (e.g., as long as estimates of the means and proportions of trip-making

correspond well with observed values), one may expect that one’s results are not a local

maximum of poor prediction quality.  And, as long as the convergent set seems robust to

some changes in starting values, one may expect to be at the neighborhood’s maximum.

Both these details were confirmed for the results presented here.
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The assumption of a single gamma variable characterizing the unobserved

heterogeneity across all consumption types considered is a very strong one.  The

assumption of activities taking place as a Poisson process is also a strong one; it implies

independent increments, meaning that the number and types of events to show up in a

particular time interval, knowing the rates of occurrence, are independent of those

appearing in another, non-overlapping interval.  In reality, one expects that people will

not over-consume any certain type of activity; so, if, for example, one knows that a

household engaged in several social activities in the morning, one would expect fewer

such activities in the evening, given the household’s optimal rate of social-activity

participation.  However, this issue of behavior conforming to a Poisson process is likely

to be less of a concern over longer survey periods.

As a means of comparing different stochastic specifications, consider the nesting of

the Type 3 specification for the four-contours discretionary trip making within less

stochastically restrictive models.  For example, consider a model of no gamma-error-term

correlation, i.e., a system of independent negative binomials (with related means, thanks

to the sharing of parameters across the X i
*  specifications).  As shown in Table 4-3c, this

difference of models produces a likelihood ratio test statistic of 2(-42592-(-46218)) or

7,252, for a three-parameter change (via the addition of three more over-dispersion

factors).  This result clearly calls for a rejection of the assumption that the unobservable

gamma errors are equal across the four demand types18.  And it suggests that a more

complex model of correlation in unobserved information is needed – in place of the

perfect-correlation/same-gamma assumption being made here.  To allow more flexibility

and thus complexity, one may with to consider, for example, the incorporation of a set of
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unobservable random variables having a multivariate log-normal stochastic distribution –

all within the Poisson specification of Equation 3-21.  However, it may well be that no

form of unobserved heterogeneity – other than that of the single gamma term – allows the

observation probabilities to collapse to a closed-form solution.  And, without a tractable

solution, one will need to rely on a technique like the simulation of likelihoods to

approximate maximum likelihood estimation.

It is anticipated that the correlations of unobserved information are at least positive

for the current specification of demand types, and this belief is supported by correlation

results.  For example, sample correlations of the ratios of observed trip-making to

average, optimal demands (predicted using the independent-negative-binomials-with-

shared-parameters model, type v in Table 4-3c) are all positive – though none exceeds

0.155.  These sample correlations also are observed to depend on similarity of demand

types: they all support a general trend of decrease with dissimilarity (for example falling

from 0.154 between the first and second contours, to 0.036 between the first and third

contours, to 0.003 between the first and fourth contours).  Note, however, that this is a

coarse way to estimate the correlation because the observed activity participation is highly

discrete (owing to the short sample period of the surveys).

In the short run, correlation may be less apparent because the phenomenon of trip

chaining produces a dependence among the number of trips taken to the more distant

activities (in addition to allowing the traveler to face a different set of trip costs than the

estimated models assume).  For example, when one is analyzing stops (rather than tours)

and one observes at least one distant/far trip on a specific day for a specific household,

one may expect more far trips but fewer short/near trips that same day than the long-run
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optimal rates for that household would suggest.  However, as the length of a survey

period increases (e.g., from one day to a week or more), more balance in destination

choices is likely, so the trip-chaining phenomenon is expected to affect parameter

estimates less.
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ENDNOTES:

                                                
1 S-Plus’s symbolic differentiation capabilities are limited to general operands (e.g., multiplication,

logarithms); it will not automatically take derivatives of the gamma functions which exist in the
likelihood formulation used here.  To facilitate the maximization process, entire derivatives may be
specified for the S-Plus minimization routine, minsum(); however, such derivatives must be specified
within a couple lines of code, which was not possible with the complex specification used here.

2 Unfortunately, due to reasons of proprietary information protection, the numerical derivatives that the
algorithm creates and uses for optimization are not available to the modeler; if available, these would
prove useful for speedier estimation of the variance-covariance matrix of parameter estimates as well as
for relative ease in checking the global probability of likelihood-maximizing parameter sets using Gan
and Jiang’s (1997) suggested method.

3  The 1.638 value is computed using the difference of the variance and the mean of the total number of
discretionary trips across households, divided by the squared mean.  This is simply the solution using the
negative binomial’s variance formula: σ µ αµ2 2= + .  This no-information dispersion-parameter
estimate for each of the Xi’s individually produces alphas of 2.4, 3.4, 5.0, and 10.0; in contrast, a solution
involving explanatory variables in a Type 3 model specification (with cross-equation parameter
constraints in effect) produces estimates of 1.5, 2.2, 2.8, and 7.4, all of which are statistically significantly
lower.

4 Note that the no-information situation models each ,niX  as a constant across all households,
independent of time and budget information. In contrast, a full-information model for this particular data
set produces a log-likelihood value of -32,749.  The full-information’s likelihood-maximizing case occurs
when each ,niX  is set to equal the observed number niX ,   and variance is minimized (i.e., the over-
dispersion factor “a” is zero).

5 The three additional restrictions on the constrained model are that the correlations are perfect between the
unobserved gamma errors terms of the first and the second, third, and fourth demands (implying perfect
correlation across all six distinct pairings of these demands’ unobserved gamma terms).

6 The pseudo-R2’s for the other, comparable models estimated in this chapter are: 8.41% for the modified
translog without intercepts (whose results are provided in Tables 4-2a and 4-2b), and 9.51% for the
modified translog with intercepts estimated on the tour data (whose results are shown in Tables 4-4a and
4-4b).

7  Observations of zero translate to full-information, Poisson rates of zero; and, since the probability one
observes zero trips if the rate is zero is one, the log-likelihood is zero (rather than negative) for these
observations.

8  When the four equations are estimated separately, three more µo’s are estimated than previously, six more
βij’s are estimated and nine more γiT’s are estimated.

9 The hypothesis that the cross-equation demand-parameter constraints are valid, assuming that the model
allowing total independence is valid, produces a p-value of 9.1e-27, which is certainly less than any
meaningful cut-off level for insignificance.

10 The estimates of “α” terms associated with the no-information cases of individual demands (denoted by i)
were computed using the following equation: ( )$α σ µ µi i i i= −2 2

.
11  The elasticities of demand with respect to wage also may be negligible because the wage data are

inferred (and assumed to be zero for households with no workers), so the variation in this variable may
not be really capturing wage differences.  Moreover, workers may have relatively little choice over total
hours worked; their decision may be largely discrete in that they choose to work full- or part-time and
their hours are largely fixed from that decision.

12 The values shown in the table of value-of-time quartiles for the second model type considered come from
a first-order approximation, where estimates of the marginal utility of time and income are simply
substituted into the ratio for a value of time; this is the method used for all of the measures provided,
unless otherwise noted.  A more refined, second-order estimator of the value of time in this model



107

                                                                                                                                                
accounts for the positive correlation between the marginal utilities (which is estimated to range from +.10
to +.41 for the sample) and produces the following quartiles: $0.22, $8.05, $13.33, $21.86, $156.46.  One
observes that even though there is significant correlation, the first-order value-of-time estimates lie close
to these second-order estimates.

13  Standard errors of these value-of-time estimates were computed (using the methods described in the
Appendix, section A-6); and all the value-of-time estimates for this model are highly statistically
significantly different from zero, assuming the model specification and data are correct.

14 To add flexibility through additional identifiable terms, a model which added the terms log(Td)
2,

log(Y)log(Td)
2, and log(Y)2log(Td) to Equation 3-17’s indirect utility specification was also estimated.  It

was hoped that this model would produce value-of-time results more consistent with expectations;
however, while the log-likelihood value rose significantly (from -46,218 to -46,012), all value of time
estimates across the 10,834 BATS households remained negative, with a median value of -$6.49.  Thus,
the problem may lie outside the specification of the time-based demand system, which can only identify
effects that interact with travel times and available time.

15 While quite reasonable, the estimates for the fifth model are probably too high.  The average pre-tax wage
for working households in the BATS survey (for the 1989 tax year) was estimated to be $20.17; across all
households it was $16.99.15  Post-tax values are likely to be from 20 to 35 percent less, and there may be
a bias (estimated to be a positive nine percent, in Chapter Three) for not allowing income and
discretionary-time budgets to be endogenously determined.

16 Gan and Jiang (1997) have recently devised a relatively simple test for assessing the globalness of one’s
likelihood maxima; however, it relies on one’s estimation of the likelihood’s matrix of second derivatives,
which is rather tedious to compute for this particular model and thus was not used.

17 Poisson and gamma probabilities are not valid with negative means; for example, if λ were negative,
probabilities would be negative for odd values of “k”, and the function Γ(x) requires a positive argument.
Besides, there is no such thing as negative counts of activity participation.

18 If one were to add no new parameters by imposing the same over-dispersion term on each of the
independent negative binomials, the log-likelihood value for this particular data set is -42,981.  This
results in a difference of log-likelihoods (from that of the constrained model) of over 3,000, representing
a very significant freeing of the model with no added parameters.
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Chapter Five:  Hypothesis Testing and Cost-Benefit
Estimation

One can test a multitude of hypotheses with the model results.  For example, given

fixed income and discretionary-time levels, is total travel time by a household

independent of the travel-time environment?  Is the total number of trips independent of

income or travel times?  And are the time and budget constraints binding?  One can also

measure the impacts of changes in access to opportunities in both time and money units,

by inverting estimated indirect utility functions with respect to both constraint levels.

These hypotheses are tested and disbenefits estimated using the Type-Two model’s

parameter estimates (shown in Tables 4-2a and 4-2b) and structure (illustrated by

Equations 3-15 and 3-16).  This particular model was chosen for these tests and

computations because of its apparent agreement with theory relative to many of the other

models’ results (i.e., its positive value of time and marginal utility of income) and its

inclusion of the discretionary-time and income variables, which are an explicit part of

several of the hypotheses posed and which produce the desired measures of disbenefits.

  Hypothesis Testing using the Type Two Model

Stated in equation form, the hypotheses described in this chapter’s introduction and

tested here are the following:



109

Hypothesis
d Total Discretionary Travel Time

d Travel Time

d X t

dt
j

Hypothesis
d Discretionary Activity Participation

d Income

d X

dY
j

Hypothesis
d Discretionary Activity Participation

d Travel Time

d X

dt

Hypothesis Marginal Utility of Discretionary Time
dv

dT

Hypothesis Marginal Utility of Income
dv

dY

j

i i
i

j

i
i

j

i
i

j

d

1 0

2 0

3 0

4 0

5 0

:
( )

( )
,

:
( )

( )
,

:
( )

( )
,

: ,

: .

*

*

*

=







= ∀

=







= ∀

=







=

= =

= =

∑

∑

∑

  Hypothesis 1

After studying a variety of aggregate data sets of travel-time expenditures across

regions and across countries, Zahavi and others (Zahavi 1979a & b, Zahavi and Talvitie

1980, Zahavi and Ryan 1980, Zahavi et al. 1981) have proposed that total travel time

expenditures are inelastic with respect to travel-time costs.  However, Zahavi’s

observations and conclusions (Zahavi 1979a & b, Zahavi and Ryan 1980, Zahavi and

Talvitie 1980, Zahavi et al. 1981) tend to be based on aggregate data and simple

correlations; so this hypothesis is particularly interesting to test here, where the

explanatory model is disaggregate, behaviorally based, and quite complex.  However,

since the Type Two model data consider only discretionary-activity participation and

assume round-trip travel from one’s home (without the chaining of trips into tours), the

test of this first hypothesis is somewhat different from Zahavi et al.’s proposition.

The results of the test of Hypothesis 1 are shown below, in Table 5-1a.
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Table 5-1a

Quartiles of the Estimates of the Derivative of Total Travel Time
for Participation in Discretionary Activities
with respect to Activity Access/Travel Times (units are dimensionless)

Derivative Based on Travel Time to the following Zone:
Quartiles: Immediate Near Moderate Far

Minimum 0.14 0.03 -0.90 -0.330
25% 1.02 0.20 -0.21 -0.088

Median 1.62 0.34 -0.15 -0.065
75% 2.32 0.50 -0.10 -0.046

Maximum 8.87 2.35 -0.023 -0.014

Evidently, total travel time to access discretionary activities increases when the travel

times to access the closer opportunities increase, indicating a dependence on these nearby

activities.  But the derivatives tend to fall when the more distant opportunities become

more time-consuming to access, suggesting that people substitute nearer, less travel-time-

costly activities for those far activities.  The effects are probably strongest for the nearer

activities since the data indicate greater rates of activity participation in the closer iso-

opportunity contours: the mean rates across the observed set of households are: 1.09,

0.617, 0.234, and 0.189, for trips to the immediate through the far zones, respectively.

There is always uncertainty in estimates.  These particular derivatives involve ratios

of random variables (the parameter estimates); and, using first-order Taylor series

approximations to the variance of the derivative functions (as described in Appendix

section A-7), the quartiles of the standard errors for these total-travel-time-derivative

estimates are provided in Table 5-1b.
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Table 5-1b

Quartiles of the Standard Error Estimates of the Derivative of Total Travel Time
for Participation in Discretionary Activities
with respect to Activity Access/Travel Times (units are dimensionless)

Standard Errors of Based on Travel Time to the following Zone:
Derivative Quartiles: Immediate Near Moderate Far

Minimum 0.006 0.003 0.002 0.002
25% 0.028 0.018 0.009 0.007

Median 0.044 0.028 0.015 0.012
75% 0.062 0.042 0.024 0.017

Maximum 0.246 0.172 0.116 0.076

These results lead to the following T-statistics for this hypothesis test:

Table 5-1c

Quartiles of the T-Statistics of the Derivative of Total Travel Time
for Participation in Discretionary Activities
with respect to Activity Access/Travel Times

T-Statistics of Based on Travel Time to the following Zone:
Derivative Quartiles: Immediate Near Moderate Far

Minimum 19.6 6.4 -15.0 -10.3
25% 35.9 11.3 -11.6 -6.6

Median 37.1 11.8 -9.7 -5.6
75% 37.7 12.4 -8.8 -5.0

Maximum 39.0 14.0 -7.4 -3.8

Interestingly, all household observations call for a rejection of Hypothesis 1, so the

results are not consistent with the hypothesis.  Moreover, an ordinary least squares

regression of total travel time per household (using reported travel times from the BATS

data set) consistently produces statistically significant coefficients on three of the four

iso-opportunity access times, after controlling for household income and total time

availability1.
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  Hypothesis 2

The estimated quartiles across the 10,834-household population for the derivative of

total daily discretionary-activity participation ( X T
* ) with respect to income are the

following:

Table 5-2a

Quartiles of the Estimates of the Derivative of Total Discretionary-Activity
Participation with respect to Income (units are daily activity number per dollar)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: -5.34E-04 -1.44E-05 -8.52E-06 -5.31E-06 -3.95E-07

While the results are negligible for this model, their consistently negative sign

suggests that total discretionary trip-making does not go up when income rises, ceteris

paribus.  Note that Meurs’s models (1990) using the Dutch Mobility Panel data set

indicate that cross-sectional income elasticities of demand tend to be biased high (in the

positive direction), so actual, derivatives may even more negative.  Some possible

explanations for this result are that high-income households work so hard that they are

too tired to take as many discretionary trips as others, they access higher-quality

opportunities to accomplish many demands at once, and/or they use their wealth to

purchase goods and services that enable them to avoid making trips.

The quartiles for these estimates’ T-statistics are the following:

Table 5-2b

Quartiles of the T-Statistics of the Derivative of Total Discretionary-Activity
Participation with respect to Income (units are daily activity number per dollar)

Quartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: -23 -0.61 -0.36 -0.23 -0.02
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Few of the estimates are significant enough for us to reject the hypothesis, suggesting

that income plays little role in a household’s rate of discretionary trip-making/out-of-

home activity participation.  This is a remarkable result, given how influential one might

assume income is.  However, this result does not speak to income’s role in the

consumption of other, more material goods; it is in this other consumption, not modeled

here, that income is likely to substantially influence choice, as has been indicated in

results of the more typical system-of-demands analysis (see, e.g., Deaton 1987, Pollack

and Wales, 1978 & 1980, and Stone 1954).

  Hypothesis 3

The quartiles for the derivatives of total discretionary-activity participation with

respect to the four different travel times sets are shown below, in Table 5-3a.

Table 5-3a

Quartiles of the Estimates of the Derivative of Total Activity Participation
in Discretionary Activities with respect to Activity Access/Travel Times
(units are daily participation rate per minute change in travel time)

Derivative Based on Travel Time to the following Zone:
Quartiles: Immediate Near Moderate Far

Minimum -0.157 -0.142 -0.096 -0.030
25% 0.005 -0.021 -0.017 -0.010

Median 0.039 -0.015 -0.008 -0.007
75% 0.092 -0.010 -0.004 -0.005

Maximum 0.917 0.048 0.011 -0.001
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The T-statistics for these estimates are as follows:

Table 5-3b

Quartiles of the T-Statistics of the Derivative of Total Activity Participation
in Discretionary Activities with respect to Activity Access/Travel Times

Quartiles of Derivative Based on Travel Time to the following Zone:
T-Statistics: Immediate Near Moderate Far

Minimum -70.4 -40.4 -29.7 -27.0
25% 2.0 -11.2 -12.3 -11.1

Median 12.2 -8.4 -8.3 -9.4
75% 19.2 -6.0 -5.2 -7.9

Maximum 34.8 3.3 2.5 -3.0

With the exception of household response with respect to the immediate zone’s

travel times, it appears that the total discretionary-activity-participation response may be

largely negative, in a statistically significant sense.  However, the magnitude of net

response for most travel times is quite minor when compared with mean activity-

participation frequencies of 1.09, 0.62, 0.27, and 0.19 (for the four contours,

respectively), suggesting quite stable activity-participation rates.  Thus, the results are

consistent with previous work, discussed in Chapter Two, in which trip frequency is

found to be insensitive to supply-side variables.

Additionally, Golob, Beckmann, and Zahavi (1981) reference works (e.g., Smith &

Schoener 1978 and Zahavi 1979b) which cause them to conclude that “when travel

speeds increase, travelers prefer to trade-off saved time for longer trips, rather than for

more trips,” and “(w)hen incomes increase, travelers tend to purchase higher speeds (such

as by transferring from bus to car travel) and travel longer distances, instead of generating

more trips.” (p. 378)  These characterizations suggest that one should expect to find

nearly constant activity participation levels, regardless of travel times and/or costs, which

is consistent with the results found here.
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In a related test (but one that work-trip travel time as given), Kitamura (1984) applies

models of non-work activity choice and time allocation to estimate the effect of work-trip

travel time, with data from the 1977 Baltimore Travel Demand Data set.  Kitamura finds

this variable to not be statistically significant, in contrast to the other explanatory

variables considered, such as cars per driver, work duration, and gender.  In some

contrast, Purvis et al. (1996) use work-trip duration in ordinary-least-squares models of

home-based shop/other and social/recreational trip generation, and their results indicate

an inverse relationship between work-trip duration and non-work home-based trip

frequencies (using a 1990 data set), suggesting a binding total-time budget.2

  Hypothesis 4

The quartile estimates for the derivative of indirect utility with respect to

discretionary time budget are the following:

Table 5-4a

Quartiles of the Estimates of the Derivative of Indirect Utility
with respect to Discretionary Time (units are utility per daily hour)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: 0.117 0.439 0.616 0.914 1.558

As expected, these estimates of the shadow price of this constraint are strictly

positive.  One cannot effectively comment on the magnitude of these derivatives or their

range of estimated values, given that utility is an ordinal measure and uniquely identified

only up to a monotonic transformation.  However, one can estimate their T-statistics, and

the quartiles of these are the following:

Table 5-4b

Quartiles of the T-Statistics of the Derivative of Indirect Utility
with respect to Discretionary Time (units are utility per daily hour)
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Quartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: 7.1 8.7 9.1 9.3 10.2

Fortunately, the standard errors are sufficiently small for these estimates that one can

be confident that the true marginal utilities of time are strictly positive, assuming the

model has been specified correctly.

  Hypothesis 5

The quartiles for the marginal utility of income estimates are the following:

Table 5-5a

Quartiles of the Estimates of the Derivative of Indirect Utility
with respect to Income (units are utility per annual dollar of income)

Derivative Minimum 0.25 Median 0.75 Maximum
Quartiles: 2.45E-05 8.86E-05 1.25E-04 1.86E-04 3.11E-03

Recall that this particular model was chosen in large part because it is one of the few

that has a positive value of time (thanks to its positive marginal utility of income3).

While the marginal utilities of income appear small in magnitude, indirect utility is not

scaled to any known dimension, so one cannot assume that the marginal utilities are

relatively small.  The quartiles of the T-statistics for these estimates are a better way to

assess the magnitude of the marginal utility estimates, and they are provided below, in

Table 5-5b.
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Table 5-5b

Quartiles of the T-Statistics of the Derivative of Indirect Utility
with respect to Income (units are utility per annual dollar of income)

Quartiles of Derivative Minimum 0.25 Median 0.75 Maximum
T-Statistics: 4.9 6.6 7.2 7.6 9.7

 These values call for a rejection of the null hypothesis that the marginal utility of

income is zero or negative.  Note that the sign of this result is not consistent with the

results of two of the other translog-based models, where marginal utilities of income were

estimated to be negative; but that discrepancy is likely to have much more to do with an

incomplete indirect utility specification than with the true shadow price on this constraint.

  Cost-Benefit Analysis using the Type Two Model

Thanks to the microeconomic rigor of the model developed in this research, one also

can estimate the benefits and costs associated with a variety of policies.  For example,

what are the equivalent variations in units of time and money of a policy which causes

travel times to all opportunity contours to rise 50 percent?  For purposes of illustration,

this particular environmental change is considered here for all sampled households – and

for a “typical” household facing different time and income budgets.  The method is

illustrated using the estimation results of the Type 2 model.

In order to apply the method of equivalent variation (as discussed in Chapter Three’s

section on Estimating Benefits and Costs), one must invert the indirect utility function

with respect to the budget level.4  In the model developed in this research, there are two

budget levels, providing more information to policy-makers than strictly money-budget

models.  However, one should be aware that the effects of unidentified, isolated income

terms which exist in the full, true indirect utility specification are not captured by the
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single time-setting system of demand equations estimated in this research.  Thus,

inversion of the indirect utility function’s time-interacted, identified effects with respect

to the income variable may not tell the whole story.  However, the equivalent variation

estimates in terms of time units are theoretically sound in this regard.

For the Type 2 model defined in Chapter Three (Equations 3-15 and 3-16), inversion

with respect to the time and income budgets produces the following expenditure

functions:
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Note that the quartiles of the expenditure functions for these sampled households at

their current indirect utility and travel-time levels are just the observed levels of income

and discretionary time (since one inverts the estimated indirect-utility formula with

respect to these two variables).  Using the Type 2 model parameter estimates (shown in

Table 4-2a), the quartiles of the first-order estimates of optimized utility levels for the

sample households are as follows:
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Table 5-6a

Quartiles of Indirect Utility Estimates

Quartiles of Indirect Utility Estimates Minimum 0.25 Median 0.75 Maximum
across Household Sample: -52.5 17.9 30.9 39.3 76.8

The quartiles of the changes in indirect utility level estimates, following a 50-percent

increase in all travel times for all households are as follows:

Table 5-6b

Quartiles of Indirect Utility Changes Following 50% Increase in Travel Times

Quartiles of Indirect Utility Drop Minimum 0.25 Median 0.75 Maximum
(following 50% travel-times increase): -19.0 -8.4 -7.0 -5.8 -1.5

Since utility does not enjoy an understood scale or dimension, it is generally more

useful to look at the equivalent variation associated with a change; this is the amount of

money or time lost (or gained) that the change would be equivalent to, under existing

price/travel-time conditions.  The quartiles for equivalent variation in units of money and

time are as follows:

Table 5-6c

Quartiles of Equivalent Variation, in Money and Time Units

Equivalent Variation Quartiles in Minimum 0.25 Median 0.75 Maximum
Dollars per Day: (409.18)$   (119.81)$   (85.30)$     (59.03)$     (4.23)$       

Equivalent Variation Quartiles in Minimum 0.25 Median 0.75 Maximum
Hours per Day: -51.5 -13.3 -9.8 -7.1 -2.6

All are negative changes, as expected, since everyone has to engage in some level of

activity participation outside the home and travel is almost always viewed as a cost; so

having to spend more time to participate in the same types of activities is expected to be a

disbenefit.  The disbenefits are estimated to be substantial; the median equivalent

variation in daily income is negative $85.30, which means that the median amount a
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household would be willing to spend per day just to avoid travel-time increases of 50

percent is $85.30!  This translates to over $31,000 per year or a roughly $300,000

premium for a home location5 which provides such access, over one that faces 50 percent

longer travel times.

Moreover, the median amount of discretionary time such a change represents to the

sampled households is estimated to be 9.8 hours per day!  In contrast to the same policy

being imposed in a money-expenditures environment, this level of equivalent variation is

much more than one would expect the household’s travel time to increase.  If monetary

prices were to increase by 50 percent, one would need a proportional increase in income

to remain at the same level of utility.  But, for the sample of 10,834 households, the

median of round-trip travel times multiplied by observed activity participation is just 47.3

minutes per day (with a mean of 1.42 hours).  So, even if households were to continue

making the same number of trips to the same zones, the expectation is for a median

travel-time increase of just 24 minutes – which is nowhere close to the 9.8 hours of

equivalent variation.  From these results it seems clear that how one experiences one’s

time is of great import (e.g., traveling versus leisure).  And access to opportunities is

highly valued by households; households appear willing to spend a great deal of money

and/or time in order to avoid increases in travel times.

If one wishes to consider a specific set of household characteristics, for example a

low-income household versus a high-income household facing the same set of travel

times, one can get a feeling for the differences in these households’ valuations of changes

in access to opportunities.  As an illustration of this, consider four households which face

the median set of travel times for the San Francisco Bay Area region to the four iso-
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opportunity contours modeled: two of these households have the same, sample-median

amount of discretionary time, but face very significant differences in their income

constraint, while the other two face the same, sample-median income constraint but not

the same discretionary-time constraint.  How do their valuations of a fifty-percent

increase in all travel times differ?  The set of median travel times for the region along

with the different income and discretionary time constraints considered specifically here

(i.e., the tenth and 90th percentiles, as well as the median) are shown below.

Table 5-6d

Median Travel Times and Low, Median, and High Budget Levels for Sample

Median Travel Times to Access the Four Iso-Opportunity Contours:

Immediate Near Moderate Far
   (in minutes) 9.78 17.02 27.37 42.67

Levels of Income and Discretionary Time Used:

Income: 10% 17,500$    
   (1989 pre-tax $/year) Median 42,500$    

90% 87,500$    

Discretionary Time: 10% 17.93
   (hours/day) Median 38.83

90% 73.63

The equivalent variation estimates which result from a 50-percent increase in travel

times are shown below.  As expected, lower-income and lower-time households are less

able to place a high equivalent value on such a change.
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Table 5-6e

Comparison of Equivalent Variation Changes for Specific Household Types

Comparison of Equivalent Variation Estimates for Low/High-Income and -Time Households:
   (following a 50% increase in all travel times):

Low Income Household: (35.18)$     per day
High-Income Household: (165.00)$   per day
Low-Discretionary-Time Household: -5.21 hours per day
High-Discretionary-Time Household: -16.45 hours per day

It is interesting to note that the differences in the measure of indirect utility estimated

for these different households are greater for the low-income and low-time households

(i.e., -7.3 and -8.0 are the utility differences for the low-income and low-time households

considered, versus -6.4 and -5.9 for the high-income and -time households).  Since any

measure of utility is only unique up to an order-preserving/monotonic transformation, we

actually cannot tell if the low-income and low-time households “suffer” more from such a

change, but it is possible.  These results may suggest that, even with similar utility or

welfare differences, the ability to place a monetary or time value on such changes can be

very different.  As a point of comparison, the values of time which correspond to these

households are shown below; the results imply that time availability, rather than solely

money availability, plays a substantial role in time valuation.

Table 5-6f

Comparison of Time Valuation for Specific Household Types

Comparison of Value-of-Time Estimates for
  Low/High-Income and -Time Households ($/hour):

Low Income Household: 5.00$        
High-Income Household: 26.79$      
Low-Discretionary-Time Household: 31.78$      
High-Discretionary-Time Household: 5.96$        

Before leaving this chapter, the stochastic nature of the presented estimates deserves

some serious discussion.  It is very rare that the first-order estimates of functions of
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variables, such as indirect utility and expenditures as functions of estimated parameters,

are the “best” estimates of these functions’ mean values.  For the benefit measures

considered here, this result can be written in the following form:
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Expectation is not equal to the first-order estimates here thanks to correlation

between variables and non-linear transformations of variables; the biases these relations

create in such an estimate arise in important policy variables like equivalent variation and

should be accounted for wherever possible.  McFadden (1996) discusses this general

estimation difficulty, which tends to be overlooked in the literature, and he suggests a

bounding of the typical cost/benefit measures generated by logit model estimates.
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ENDNOTES:

                                                
1 The parameter estimates are positive for the first and third contour’s times, negative for those of the

second and fourth contour.  The p-values which result from tests of the hypotheses that the true
parameters equal zero are 0.004, 0.632, 0.108, and 0.000 for the coefficients on access times to the first
through fourth contours, respectively.

2 Purvis et al. also point out that Goulias and Kitamura’s work (1989) has found “a significant inverse
relationship between work trip frequency and shopping trip and social trip frequency” (Purvis et al. 1996,
pg. 3), a result also supported by Golob and McNally's work (1997).

3 All models were estimated maintaining the marginal utility of discretionary time positive, so it was only
this second condition of the sign on marginal utility of income that produces the sign on the value of time
estimates.

4 If a model is insufficiently specified with respect to one of the constraints, the expenditure function will
obviously be incomplete.  This is a concern for the inversion of indirect utility with respect to the income
variable here, since all income effects may not be identified when applying Roy’s Identity exclusively in a
time setting.  For example, the marginal utility of income was estimated to be negative in the Type 3
model of discretionary activity participation.  Thus, those results lead to an estimate of the income
expenditure function whose value falls as utility rises; this is a clearly unreasonable result.

5 The present value of a stream of 30 payments of $31,000 per year at a personal discount rate of ten
percent per year is just over $292,000.
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Chapter Six:  Limitations and Extensions

There are a variety of ways in which the models described here can be enhanced and

extended.  For example, more specific demand types should prove useful and allowance

could be made for differences in preference structures as well as more flexible stochastic

specifications.  Additionally, use of longitudinal data, recognition of intra-household

dynamics in choices, and incorporation of scheduling constraints may prove useful.

These extensions are discussed here now.

  Data Deficiencies

In their review of activity-based travel models, Bowman and Ben-Akiva (1996)

remark, “The fundamental problem facing the activity based travel modeler is

combinatorial.”  In other words, the high dimensionality of choice sets – particularly

when the dimensions of time and space are involved – can quickly lead to

computationally impractical models.  The system-of-demand equations approach creates

the same problem: every consumption item of interest must be identified distinctly and

with a unique price; therefore, adequate incorporation of the time and space dimensions

can be difficult.

Since their purpose is primarily one of illustration, the models estimated here are

inherently limited in their scope.  Of course, more detailed demand sets can be studied,

such as different trip types by different modes, different members of the household, and

different times of day to more, distinct zones.  However, highly detailed demand studies

may be limited by the data.  For example, existing travel data tend to be general in nature.

Many travel surveys divide discretionary trips into only six categories: social, personal

business, food shopping, non-food shopping, dining, and recreation.  These and other
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categories lack information on the quality of activity.  Moreover, employment and

interzonal travel time data are merely rough approximations – in addition to being highly

correlated across different job types, activity types, and mode types.  Finally, there is the

problem of sample size: more demand types means more than quadratic increases in the

number of parameters requiring estimation for second-order-flexible functional forms –

creating less confidence in the resulting parameter estimates.

  Modeling Expanded Choice Sets

Notwithstanding the described limitations, the research presented here can be

extended in several ways.  Actual wage and unearned-income data would be very

beneficial for the models described here because they allow the work-time and total-

income decisions to be endogenously determined without relying on coarse estimates (as

done here, in model Type 4).  Data on activity-participation prices should also prove

useful, because their incorporation may substantially strengthen marginal-utility of

income estimates by allowing more model details in a system of demand equations

developed within a price context.  And the simultaneous estimation of two systems of

demand equations (developed from the time and price versions of Roy’s Identity) should

be helpful for estimation of an entire indirect utility function and its resulting estimates of

income’s marginal utility and a monetary expenditure function.

The use of a panel data set, where households are surveyed at various points in time,

may also prove useful, particularly if there is variation observed over time in households’

travel-time environments.  Chapter Five presents this issue, citing arguments by Kitamura

(1996), Goodwin et al. (1990), and Becker (1965) against the use of cross-sectional data.
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While data availability may place practical limitations on analysis of detailed demand

systems, the model presented here is highly applicable in ways requiring far less data.

For example, an experiment across a set of locations differing only in their access costs to

a few specific activity types (e.g., access to different sizes or qualities of shopping centers

and/or parks) can, through the use of the methodologies described here, lead to an

analysis of the choices of households in a microeconomically rigorous way.  The same

holds true for incorporating other types of demands, such as expenditures on in-home

entertainment equipment, telecommunications, or other personal goods.  The system of

demand equations are derived as before, but the error-structure assumptions and

likelihood specification for these more continuous demand types should require more

flexibility.

  Inclusion of Automobile Ownership in the Model

A difficulty with the stochastic specification used here (a multinomial distribution

conditioned on a negative binomial) is that many consumption choices, like car

ownership, are very distinct from trip-making decisions.  Consider summing up cars

(long-life capital goods1) with short-run decisions (like the number of trips per week) and

assuming that the relative probabilities of optimal choices represent the relative means;

intuitively, this distributional assumption may seem highly unlikely.2

However, one can always include automobile ownership and other, non-activity

demand types in the system of demand equations; the basic model structure described

here is sufficiently flexible to accommodate these, as long as one can identify the demand

level (by either observing variation in its “price” across observational units or by being

able to assume that no variations in its price occur across observations).  It is the desire to
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incorporate correlation in unobserved heterogeneity which complicates the specification;

however, model estimation using simulated likelihoods should allow for such

correlations.

  Location Choice Decision

Location choice is also a decision which should be accommodated to achieve a more

complete model.  In this research’s present formulation, location is given so travel times

are taken as exogenous in the activity-participation decision.  However, households

choose locations based partly on accessibility and expected travel expenditures3.  In other

words, different travel-time and travel-cost environments lead to different residential

location decisions and thus different activity participation choices; for long-run

predictions, one should consider travel costs’ impacts on both the location decision and

activity participation (given location) in order to consistently estimate full travel-time

elasticities and welfare impacts of policies.

One may choose to model location choice in great detail (for example, over the

thousand-plus census tracts one typically encounters in a major metro area) or more

coarsely, with far fewer zones employing general access/travel cost information.  Since

travel costs faced are conditional on location choice and virtually all households choose a

single location, the entire problem may be described as in the following equation.
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Note that the set-up described in the above equation is not suitable for the system-of-

demand-equations approach taken in this research since disaggregate parallels to Roy’s

Identity can only identify optimal levels of continuous choices (where price variation is

observed across observations).  Instead, one will probably need to model the location

choice decision using a random-utility discrete-choice model (e.g., McFadden 1974,

Quigley 1976, Lerman 1977), conditioning the current model on this decision and

maximizing the likelihood simultaneously.  One possible set-up, based on a multinomial

logit for location choice, is illustrated by Equation 6-2. The optimal activity choices in

this likelihood (
v
X ) cannot be identified without conditioning on location, but they can be

assumed to follow the model described in this dissertation, once location is given.
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  Modeling Activity-Participation Times

Duration modeling in a strict system-of-demand-equations context, allowing

integration back to an indirect utility specification and all the information that it provides

(e.g., expenditure functions and welfare measures), requires identifiability of demands via

an exogenous price or constraint.  But when duration is a continuous variable facing no

binding constraints, the optimal level is not identifiable (using parallels to Roy’s Identity).

Without such identifying information, this research’s modeling paradigm is insufficient

for strict estimation of this dimension of activity demand.  The modeling of activity

durations has been studied using a system of Tobit regressions linked to binary logits

(e.g., Damm and Lerman 1981, Kitamura 1984) and is currently being analyzed with

hazard models of individual activities (e.g., Bhat 1996, Ettema et al. 1995b), but these

approaches typically lack flexibility and economic underpinnings and tend to be limited

in their predictive scope.  Certainly, there is much study to be done in this area.  Ideally, a

single model can be developed which acknowledges the simultaneity of the various

decisions and permits estimation of all such choice variables.

  Incorporating Different Preference Structures

Allowance for preference differences across households is another possible area of

extension.  Many variables, such as day of week surveyed and age distribution of

household members, may provide good measures of such differences.  Techniques known

as demographic scaling and translating (Pollack and Wales 1980) shift or scale

parameters according to functions of the demographic variables.  These are likely to be

useful, even when estimating homogeneity- or summability-constrained models.

However, demographic scaling and translating can add substantially to the parameter set;
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more flexible techniques of incorporating demographic information are feasible when

such theory-imposed constraints do not apply, such as in the time-identified system of

demands studied here.

The techniques of permitting random variation in the parameters themselves, as used

by Train (1996), McFadden and Train (1996), and Mehndiratta (1996), and more flexible

correlation in the compounded error structure, as used by Yen et al. (1998), may also

prove useful by allowing additional unobserved heterogeneity across observations.

However, these methods require a simulation-of-likelihoods technique for parameter

estimation.  Another possibility for consideration is the specification of tractably

integrated compounded error structures within ordered-choice models, such as that used

by Bhat and Singh (1998) in a full-information maximum likelihood estimation of a logit

and two probits – all related through errors in the latent response variables.

  Recognition of Other Constraints on Behavior

Intra-household dynamics and activity scheduling constraints were not addressed in

this model, though a suggestion was made for incorporating time-of-day effects by further

disaggregating the demand types.  A household can spread its income among its different

members, but time cannot be traded except by making certain members perform specific

tasks; the balancing of the competing needs and preferences of a household’s distinct

members is an interesting problem and has been investigated by Golob and McNally

(1997).  Since household members often coordinate their day-to-day activity

participation, short-period observations of demand will contain many short-term

dependencies; a flexible latent error structure may accommodate these effects.
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Certain constraints are likely to be critical in the choice and timing of activities.  For

example, most shops close shortly after the end of the working day, so workers cannot

participate in the same range of weekday activities enjoyed by non-workers.  The models

developed here can provide the input necessary for scheduling models like HAPP (Recker

1995), STARCHILD (Recker et al. 1986a, 1986b), and SMASH (Ettema et al. 1993,

1995a), where coupling, authority, and capability constraints (Hägerstrand 1970) are

accommodated explicitly.  Alternatively, explicit incorporation of such constraints in the

utility-optimization problem and their characteristics in the resulting indirect utility

function is yet another possible extension to these models.
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ENDNOTES:

                                                
1 High-value, long-life capital goods (i.e., stocks, rather than flows) can be thought of as contemporaneous

decisions with other, short-life goods if rental markets for such stocks exist and are perfectly competitive
(Dubin and McFadden 1984, p. 347).  Thus, where the auto-leasing market is significantly competitive
with the auto-purchase market, one can reasonably incorporate auto ownership into the system of demand
equations.

2 If one assumes that the number of vehicles owned is distributed as a Poisson with mean equal to the
population mean (given a set of explanatory variables) times the same unobserved gamma-distributed
error term that trip-making depends on (for unobserved heterogeneity), one ends up with a system that
looks just like a multinomial conditioned on a negative binomial.  The assumption of the same gamma
term does not seem too unreasonable if one believes that more trip-making typically means more
dependence on personal vehicles and probably a close-to-proportional increase in vehicle miles traveled.
Making this assumption produces the following likelihood:
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This model structure was attempted, but it soon became clear that the dispersion property of the auto
ownership decision is very different than that found in the discretionary trip-making/activity-participation
observations.  After controlling for travel time and budget variables using a reasonably flexible model
structure (e.g., that of the modified translog), it was estimated that the variance of auto ownership is less
than the mean; so the assumption of a negative binomial appears implausible.

A different, but related, assumption for the incorporation of the auto-ownership decision which still
permits correlation in unobserved information may be that the number of autos owned is distributed as a
binomial and that as the number of trips made deviates from the average, so does the long-run, optimal
number of autos to own.  The binomial’s scale and probability parameters could be defined as TX  and

Autop , conditioned on the negative binomial of total number of trips (TX ), with Autop  specified as

tripsTotalAuto #λλ .  However, this specification actually permits Autop  to be greater than one, and it
requires that the observed number of cars be less than or equal to the observed number of trips.  These are
unreasonable requirements, unless one is surveying for a sufficiently long period that all households will
be making many trips.

3 It is of interest to note that following a survey of residents of five San Francisco Bay Area neighborhoods,
Kitamura et al. (1994) conclude that attitudinal characteristics explain most of the variance they observe
in respondents’ travel behaviors, rather than the demographic and the simple, rather subjective
neighborhood characteristics they attempt to control for.  One could argue, however, that attitudes are



134

                                                                                                                                                
substantially shaped by one's environment – in addition to the authors' point that people choose their
environments according to their preferences for travel and the like.
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Chapter Seven:  Conclusions

It is axiomatic that there would be no travel absent demand for participation in

geographically separate activities.  Yet, few existing models of travel behavior explicitly

accommodate the derived nature of travel demand.  Moreover, there is a need for a

simultaneous-equations approach to a household’s choice of out-of-home activity

participation while maximize household utility, subject to both time and money

constraints.  In a review of activity-based travel demand research, Kitamura (1988) writes

that a full analysis of household travel demands “is an overwhelming problem.  In fact no

model has been constructed that determines activity patterns on the sole basis of the

utility maximization principle.” (1988, pp. 20-21)  The research presented here offers a

highly flexible and systematic approach to these problems, making use of utility theory as

a basis for behavior.

This research allows for illumination of travel-related trade-offs by households.  The

results include estimates of out-of-home-activity generation and distribution; income,

time, own- and cross-“price” elasticities; the variability of travel-time budgets and total

trip-making; and responses to changes in a variety of transportation-supply, land use, and

demographic variables.  The research also provides a working statistical methodology for

simultaneous, closed-form estimation of cardinally ordered integer behaviors possessing

unobserved heterogeneity.  These behaviors that are subject to time and income

constraints, within a rigorous microeconomic structure, and their estimation readily yields

estimates of benefits and costs in units of both time and money.

The empirical results of this dissertation suggest that income has little effect on

manifest demand for discretionary activities (after controlling for travel times and a
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household’s time budget); this particular result does not imply, however, that income

does not exert a significant effect on the specific class of activity chosen or on monetary

expenditures while engaging in activities.  The results also indicate that available time

exerts a strong, positive effect on all demands; yet the time-budget effects of travel-time

changes are sufficiently strong that cross-travel-time elasticities are often estimated to be

negative.  The sections describing hypothesis tests and welfare analyses suggest that total

travel time expenditures (to access discretionary activities) fall with increasing travel

times and a household’s time budget, not just its income, is an important determinant of

its value of time.

The methodologies developed and the results demonstrated here are not merely of

theoretical interest, but are meaningful to practitioners of transportation planning.  They

theoretically and statistically advance the modeling of travel demand, and are shown here

to be empirically practical, relying on data sets typically available to metropolitan

planning organizations (MPOs).  The methodologies also are applicable to common

policymaking situations because their inputs are both the travel times and costs that

distinguish opportunities for activity participation and the discretionary-time and money

budgets faced by households.

The models can be made more specific or general as desired.  For example, the goods

considered can be distinguished not only by distance and opportunity type but by travel

mode and time of day.  The application also can be local or regional.  The methodology is

quite flexible (though data limitations may require aggregation of some goods where

more flexible functional specifications of demand are desired).
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At their most elementary level, the models require information about interzonal

travel times, zonal opportunity levels, income or wages, household sizes, and workers per

household – information common in forecast inputs for metropolitan planning.

Additional information about an area’s resources and its population’s demographic

qualities can also be examined, to distinguish across travel modes or to anticipate

preference differences based on observed characteristics.  Promising extensions of the

methods illustrated in this dissertation include likelihood simulation – to allow more

flexible patterns of unobserved heterogeneity, inclusion of the residential location choice

– so this decision can be endogenously determined, and simultaneous estimation of a

second system of demand equations, derived using price variation.

In summary, the methods developed in this research are of theoretical interest and

practical use; they advance the art and science of travel-demand modeling while

providing insight into human preferences and the prediction of household activity-

participation and travel choices.  The flexibility and behavioral rigor of the methods make

them a promising direction for travel demand theory and application to follow.
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  A-1: List of Possible Functional Form Specifications

  Cobb-Douglas:
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While satisfying regularity conditions globally (e.g., monotonicity/non-satiation of
preferences and strict quasiconvexity (implying that the matrix of cross-elasticities
is negative semi-definite), this form is highly inflexible for systems of 3 or more
goods; it implies homothetic and additive preferences and thus restricts all
elasticities of substitution to equal one (Deaton 1974, Christensen et al. 1975).

  Stone’s Linear Expenditure System (LES, 1954):
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This system implies constant marginal expenditures (and demand) with respect to
income.  Zero-degree homogeneity of demands and Slutsky symmetry are
automatic.  Note that this functional form comes from a utility function which can
be written in linear logarithmic form, and is thus both additive and homothetic;
these properties imply that all resulting expenditure portions are constant, all
elasticities of substitution equal one* (Christensen et al. 1975), and
uncompensated price derivatives of demand are symmetric.  The number of
parameters requiring estimation is 2I-1 (where I is the number of distinct good
types being modeled).

*  Note: An elasticity of substitution is the dimensionless version of the derivative of the ratio of two goods
with respect to their marginal rate of substitution (MRS).  The MRS is a utility-constant measure of
substitution between two goods.  The following equations illustrate this definition:
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  Howe, Pollack, and Wale’s Quadratic Expenditure System (QES, 1977):
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Note that the LES is a special case of the QES and the QES does not impose
constant marginal budget shares.  In both the LES and QES the number of
parameters is a linear function of the number of good-classes considered (i.e., 2I-1
& 3I-1).

  Barten (1964) and Theil’s (1965) Rotterdam Model:

Starting from X Y P

onecan arriveat

w d X d Y d P

whered Y w d X

w w

Notethat Income Elasiticity of i th good

Uncompensated Compensated Cross Price Elasticities

Summability

Homogeneity Symmetry

i i Y i i j j
j

i i i ij j
j

j j
j

i i Y i ij i ij

Y i

ij ij

j
j

ij
i

ij
i

ij ji

:log( ) log( ) log( ),

:

log( ) log( ) log( ),

log( ) log( ),

,& .

’ ,&

& & .

: & ,

: ,& : .

, ,

,
*

,

*

= + +

= −

=

= =
=

= −

= =

= =

∑

∑

∑

∑ ∑

∑

α η η

β γ

β η γ η
η

η η

β γ

γ γ γ

1 0

0

The primary equation is estimated after replacing the differentials with finite
approximations and treating the parameters as though they are constants. (Deaton
& Muellbauer, 1980a)  As noted by McFadden (1964), the Rotterdam model with
constant parameters is consistent with utility maximization only if the utility
function can be written in linear logarithmic form, which then, like the LES, is
both additive and homothetic.  As with the LES, these properties imply that all
resulting expenditure portions are constant and all elasticities of substitution equal
one (Christensen et al. 1975), cross-price elasticities equal one, and own-price
elasticities equal negative one (Deaton & Muellbauer 1980a).
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  Johansen’s (Very) General Additive Utility Function:
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Number of parameters requiring estimating is on the order of 4I.  This
specification is almost never used in practice, although specializations of this
function (e.g., Direct Addilog & LES) are used.

  Leser (1941), Somermeyer et al. (1962), & Houthakker’s Direct Addilog (1960):
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  Christensen et al.’s Indirect Transcendental Logarithmic Utility Function:
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  Diewert’s Generalized Leontief:
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Note: This formulation is very general and comes from Caves and Christensen
(1980); Diewert generally appears to have used less complex forms (e.g., Diewert
1974).  Note that the constraint α i i= ∀0  implies homothetic preferences here.

  

  Deaton and Muellbauer’s Almost Ideal Demand System:
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Note: In the typical set-up, AIDS aggregates “perfectly” (without requiring
parallel expenditure expansion paths of different consumers/households) and
expenditure shares ( )[ ]w X P Yi i i= can be estimated in a linear fashion (except for

the price index, P* ), subject to linear constraints.  In practice, “econometricians
typically use an arbitrary price index to calculate the (Y P* ) terms” (Varian 1992,
pg. 213) and estimate the remaining parameters via a linear system.
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  A-2: Derivation of Roy’s Identity

Roy’s Identity (1943) derives from constrained maximization of a direct utility
function and can be generated for a general two-exogenous-constraints situation by
beginning with the following:
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This problem formulation results in the following Lagrangian equation and first-
order conditions for maximization:
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With some minor manipulations of the above, one has the following relation as the
optimal number of times to participate in activity i:
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Note that dv dP dv dPA trvl ii
= , , so there are only two distinct ratios in the above

relation; nevertheless, this relationship imposes many more constraints across parameter
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sets than would a single equality for each demand in a traditional, money-based system-
of-equations set-up.  However, the above relationship may not be very rigorously applied
in its entirety because the purchase prices of activities ( PAi

) and the travel prices ( Ptrvl i, )

are not known/provided in most data sets, so many cross-equation parameter constraints
are concealed by unknown price levels and one may end up having to rely on many
constant terms, rather than the more interesting interactions of variables for explanatory
information.

Furthermore, the use of Roy’s Identity in identifying the optimal amount of time to

be spent in each activity i (Ti
* ) is not feasible when there are not clear “prices” attached

to each time expenditure or clear minimum-time constraints, such as those DeSerpa
invokes (1971).  For this reason, the question of optimal time expenditures was not
considered in this research.
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  A-3: Description of Data Set Used

  Bay Area Travel Surveys (BATS)

Usable Sample Size: 10,834 households, ~21,300 individuals

Types of Information Asked:
Demographic:

Age, gender, household income, education, employment, driver’s license, ...
Location:

Census tract of residence and work
Tenure of dwelling unit (own vs. rent)

Travel Diaries:
1, 3, and 5-day activity diary on all household members age five and over;

~9,400 households surveyed for a single day, and ~1,400 households
surveyed for three or five days

16 trip purposes, trip durations, travel modes and times and fares, parking at
destination)

Vehicle ownership

Other Data for Use:
Interzonal travel times & zonal land-use and employment characteristics.
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Other Data Set Possibilities: 1994/1995 Portland Area Activity Surveys

Sample Size: 4,451 households, 10,048 individuals

Types of Information Asked:
Demographic:

Age, gender, income, education, employment, driver’s license, ...
Location:

Census tract of residence and work
Tenure of dwelling unit (own vs. rent)

Activity Participation:
2-day activity diary on all household members (24 activity types,

durations, inter-activities travel modes and times and fares, parking
at destination)

All out-of-home activity durations and all in-home activities of duration ≥
30 minutes

Vehicle ownership

Other Data for Use:
Interzonal travel times & zonal land-use and employment characteristics.

Advantages:
Provides some weekend data (approximately 2,000 of the household-days surveyed

were a Saturday or Sunday, while close to 7,000 were weekdays).
Availability of land-use and travel-time data for the region.

Weaknesses:
29% of the reported trips lack either origin- or destination-zone infomration, so over

50% of the surveyed households have incomplete activity-location information,
essentially rendering them unusable.
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Other Data Set Possibilities: 1990 U.K. RAC Data (RAC 1995)

Sample Size: 392 Adults, 280 Households, 13 Different Towns/Areas
Types of Information Asked:

Demographic:
Age, Gender, Income, Education, Employment, Driver’s License, ...

Location:
How long living at current location; where lived previously & why moved
#Dwelling units in structure; Tenure & mortgage/rent/...
#Bedrooms, bathrooms, kitchens, ...;  Nearby friends, relatives, ...

Activity Participation:
7-day activity diary on all household members (9 activity types, durations, inter-

activities travel modes and times and fares, parking at destination)
Hours per week in work & school
Household chores, types & hours/day
Child care, hours/day and trip needs for children

Travel Modes & Expenditures:
Vehicle ownership, parking availability at home location, ...
Expenditures on each vehicle (for insurance, maint., parking, & road taxes)
VMT per vehicle for one week
Primary travel modes to work, school, shop, ... & travel times
Availability of alternative modes (other than primary mode used)
Employer provision of parking & parking costs
Amount spent per week on transit
Distance, usual mode, & travel time to local newsagent, food store, doctor’s

office, rail station, & bus stop
Bus frequency to main shopping center

Non-Travel Expenditures:
Costs of groceries, rent/mortgage, & utilities per month

Information:
Knowledge of transit supply locally

Attitudes:
Toward driving, traffic, transit, & the environment
Toward personal-vehicle attributes (for car purchases)
Toward possible public travel-related policies

Advantages:
Covers a week’s worth of activity participation and trip-making for individuals.
Provides information that is likely to indicate taste differences among the

households, as well as information on dwelling-unit choice and other significant
consumption.

Weaknesses:
Very limited sample size.
Lack of local land-use and interzonal travel-time data.
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  A-4: Description of Negative Binomial Distribution

In addition to its usefulness as the result of mixing a Poisson with a gamma
distribution, a negative binomial represents the number of failures (“N”) before “m”
successes are achieved in a series of independent Bernoulli trials where the probability of
success is “p* ”.  Thus, the distribution has the following properties:
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Note that the mean and variance equations of this distribution are quite similar to
those for a (positive) binomial, except that “Q”=1+P (vs. q=1-p). Recognize that negative
binomials do not require an integer “m”, so the likelihood functions specified here
incorporate gamma functions, rather than factorials, for their combinatorials.  Thus,
“k+m-1 choose k” can be written as the following:
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To show that the mean and the variance of the result of mixing a Poisson with a
gamma are the same as those for the negative binomials used in this research, the
following formulae are helpful:
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  A-5: Examples of the Estimation Algorithms, as programmed in SPlus3.3

COMMAND FILE FOR MAXIMUM LIKELIHOOD ESTIMATION:
source("readData.s")
source("likelihood.s")

# starting values for estimation:

startPars <- list(
  a = 1,
  a1 = -1,
  a2 = -1,
  a3 = -1,
  a4 = -1,

  b11 = 0,
  b12 = 0,
  b13 = 0,
  b14 = 0,
  b22 = 0,
  b23 = 0,
  b24 = 0,
  b33 = 0,
  b34 = 0,
  b44 = 0,

  g1 = 1,
  g2 = 1,
  g3 = 1,
  g4 = 1,

  g1T = 1,
  g2T = 1,
  g3T = 1,
  g4T = 1) # gTY is fixed to equal +1 (for identifiability of other parameters)

cat("dim data is ",dim(dataMU),"\n")

# calculate the MLE’s
origFitorigMU <- ms(
~negLogLikelihoodMU(x1,x2,x3,x4,t1,t2,t3,t4,dta,Y,days,a,
  a1,a2,a3,a4,b11,b12,b13,b14,b22,b23,b24,b33,b34,b44,g1,g2,g3,g4,
  g1T,g2T,g3T,g4T,gTY),
  data = dataMU,
  start = startPars,
  control = list(maxiter = 400, scale=c(0.1,rep(100,22)), maxfcalls = 800, tol=1e-4, rel.tol=1e-5),
  trace=T)

#report the parameter estimates and derivatives
start <- unlist(startPars)
final <- origFitorigMU$par
source("dLikelihoodMU.s")
vcov <- dLogLikelihoodMU(origFitorigMU$par,dataMU)
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pvals <- 2*(1-pnorm(abs(origFitorigMU$par/sqrt(diag(vcov)))))
round(cbind(start,final,sqrt(diag(vcov)),pvals),digit=5)
cat("TOTAL final function value:",origFitorigMU$value,"\n")

___________________________________________________________________________________

NEGATIVE LOG-LIKELIHOOD FUNCTION SPECIFICATION
(this file sourced from Command file as “likelihood.s”, for the Type 2 Model specification):

BIG <- 1e10
SMALL <- 1e-10
pos <- function(x) {
  x[x<SMALL] <- SMALL
  x }

negLogLikelihood <- function(x1,x2,x3,x4,t1,t2,t3,t4,dta,Y,days,a,a1,a2,a3,a4,
  b11,b12,b13,b14,b22,b23,b24,b33,b34,b44,g1,g2,g3,g4,g1T,g2T,g3T,g4T,gTY,type=2) {

  n1 <- pos((-1/t1)*(a1+(b11*log(t1)+b12*log(t2)+b13*log(t3)+b14*log(t4))+g1*log(Y)+g1T*log(dta)))
  n2 <-pos((-1/t2)*(a2+(b12*log(t1)+b22*log(t2)+b23*log(t3)+b24*log(t4))+g2*log(Y)+g2T*log(dta)))
  n3 <-pos((-1/t3)*(a3+(b13*log(t1)+b23*log(t2)+b33*log(t3)+b34*log(t4))+g3*log(Y)+g3T*log(dta)))
  n4 <-pos((-1/t4)*(a4+(b14*log(t1)+b24*log(t2)+b34*log(t3)+b44*log(t4))+g4*log(Y)+g4T*log(dta)))

  v <- n1 + n2 + n3 + n4
  p1 <- n1/v
  p2 <- n2/v
  p3 <- n3/v
  p4 <- n4/v

  d <- (1/dta)*(g1T*log(t1)+g2T*log(t2)+g3T*log(t3)+g4T*log(t4)+gTY*log(Y))

  mask1 <- (n1<=SMALL)>0
  mask2 <- (n2<=SMALL)>0
  mask3 <- (n3<=SMALL)>0
  mask4 <- (n4<=SMALL)>0
  nFail <- (sum(nMask <- (mask1 & mask2 & mask3 & mask4)) > 0)
  dFail <- (sum(mask5 <- (d<=SMALL)>0))
  aFail <- (sum(mask6 <- (a<0)>0))
  if(nFail | dFail | aFail) {
    cat("hitting a forbidden value\n")
    if(nFail) {
      cat(sum(nMask),"individuals had all n’s <= 0\n")
      badList <<- c(badList,list(c(1,counter,(1:length(nMask))[nMask])))
    }
    if(dFail) {
      cat(sum(mask5),"of d’s were <= 0\n")
      badList <<- c(badList,list(c(5,counter,(1:length(mask5))[mask5])))
    }
    if(aFail) {
      cat("a was <= 0\n")
    }
    if (sum(bigMask <- (nMask|mask5|mask6)) <= 10) {
      index <- (1:length(bigMask))[bigMask]
      cat("Maybe you should drop rows ",index,"\n")
    }
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    .value <- BIG
  } else {
    xTstar <- v/d
    xT <- x1+x2+x3+x4

# Negative Binomial’s Specification
    m <- 1/a
    pStar <- 1/(days*xTstar*a+1)
    logpStar <- log(pStar)

   A0 <- lgamma(x1+1)+lgamma(x2+1)+lgamma(x3+1)+lgamma(x4+1)
    A <- -x1*log(p1) - x2*log(p2) - x3*log(p3) - x4*log(p4)
    B <- lgamma(m) - lgamma(xT+m)
    C <- -xT*log(1-pStar) - m*logpStar
    .value <- A0+A+B+C
  }
.value
}

___________________________________________________________________________________

ESTIMATION OF VARIANCE-COVARIANCE MATRIX OF PARAMETER ESTIMATES
(this file sourced from Command file as “dLikelihood.s”, for the Type 1 Model specification):

source("psi.s")
SMALL <- 1e-10
pos <- function(x) {
  x[x<SMALL] <- SMALL
  x }

# estimate is a vector of the parameter estimates,
dLogLikelihoodMU <- function(estimate,myData) {
  N <- dim(myData)[1]
  P <- length(estimate)
  deriv <- data.frame(matrix(0,N,P))
  names(deriv) <- names(estimate)

  attach(myData)
  xT <- x1+x2+x3+x4

  estimate <- data.frame(t(estimate))
  attach(estimate)
  n1 <- pos((-1/t1)*(a1+(b11*log(t1)+b12*log(t2)+b13*log(t3)+b14*log(t4))+g1*log(Y)+g1T*log(dta)))
  n2 <- pos((-1/t2)*(a2+(b12*log(t1)+b22*log(t2)+b23*log(t3)+b24*log(t4))+g2*log(Y)+g2T*log(dta)))
  n3 <- pos((-1/t3)*(a3+(b13*log(t1)+b23*log(t2)+b33*log(t3)+b34*log(t4))+g3*log(Y)+g3T*log(dta)))
  n4 <- pos((-1/t4)*(a4+(b14*log(t1)+b24*log(t2)+b34*log(t3)+b44*log(t4))+g4*log(Y)+g4T*log(dta)))

  d <- (1/dta)*(g1T*log(t1)+g2T*log(t2)+g3T*log(t3)+g4T*log(t4)+gTY*log(Y))

  x1Star <- n1/d
  x2Star <- n2/d
  x3Star <- n3/d
  x4Star <- n4/d
  xTstar <- x1Star + x2Star + x3Star + x4Star



161
  pStar <- 1/(days*a*xTstar+1)
  m <- 1/a

temp <- a*days*(xT/(1-pStar) - m/pStar)/(days*a*xTstar+1)^2 - xT/xTstar
  M1 <- (x1/x1Star + temp)
  M2 <- (x2/x2Star + temp)
  M3 <- (x3/x3Star + temp)
  M4 <- (x4/x4Star + temp)

  termA <- (psi(m) - psi(xT+m) - log(pStar))/a^2
  termB <- (days*xT/(1-pStar)-m/pStar)*xTstar*days*pStar^2
  deriv["a"] <- (termA + termB)
  deriv["a1"] <- -(M1/(t1*d))
  deriv["a2"] <- -(M2/(t2*d))
  deriv["a3"] <- -(M3/(t3*d))
  deriv["a4"] <- -(M4/(t4*d))
  deriv["b11"] <- -(M1*log(t1)/(t1*d))
  deriv["b12"] <- -(M1*log(t2)/(t1*d))-(M2*log(t1)/(t2*d))
  deriv["b13"] <- -(M1*log(t3)/(t1*d))-(M3*log(t1)/(t3*d))
  deriv["b14"] <- -(M1*log(t4)/(t1*d))-(M4*log(t1)/(t4*d))
  deriv["b22"] <- -(M2*log(t2)/(t2*d))
  deriv["b23"] <- -(M2*log(t3)/(t2*d))-(M3*log(t2)/(t3*d))
  deriv["b24"] <- -(M2*log(t4)/(t2*d))-(M4*log(t2)/(t4*d))
  deriv["b33"] <- -(M3*log(t3)/(t3*d))
  deriv["b34"] <- -(M3*log(t4)/(t3*d))-(M4*log(t3)/(t4*d))
  deriv["b44"] <- -(M4*log(t4)/(t4*d))
  deriv["g1"] <- -(M1*log(Y)/(t1*d))
  deriv["g2"] <- -(M2*log(Y)/(t2*d))
  deriv["g3"] <- -(M3*log(Y)/(t3*d))
  deriv["g4"] <- -(M4*log(Y)/(t4*d))

  termA <- (M1*x1Star + M2*x2Star + M3*x3Star + M4*x4Star)/(d*dta)
  termB <- log(dta)/d
  deriv["g1T"] <- -(termA*log(t1) + M1*termB/t1)
  deriv["g2T"] <- -(termA*log(t2) + M2*termB/t2)
  deriv["g3T"] <- -(termA*log(t3) + M3*termB/t3)
  deriv["g4T"] <- -(termA*log(t4) + M4*termB/t4)

detach("estimate")
  detach("myData")
  deriv <- as.matrix(deriv)
  scale <- apply(deriv,2,sum)
  deriv <- deriv / matrix(rep(scale,N),N,P,byrow=T)
  vInv <- (t(deriv) %*% deriv)
  diag(1/scale) %*% solve(vInv) %*% diag(1/scale)
}
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  A-6: Example Algorithm for Travel-Time Cost Calculations, as programmed in
Matlab

ms = numzones; %%%  Numer of Zones (TAZs) in Region
empl = alljobs; %%%  Vector of Opportunities per Zone
time = freeflowtimematrix; %%%  Interzonal Travel Times

totTime = zeros(ms,1);       %%%  Total Time Vector from Origin Zones to Furthest
%%% Contour in Iso-Opportunity Contour

totEmp = zeros(ms,1); %%%  Total Employment Vector
avgTime = zeros(ms,1); %%%  Average Time to Access Contour Vector

maxTotEmp=200000;

for i=1:ms
   while totEmp(i) < maxTotEmp
while totEmp(i) < maxTotEmp
      mnIndx = min(find(dist(i,:)==min(time(i,:))));
      if (totEmp(i)+empl(i,mnIndx)) < maxTotEmp
         totTime(i) = time(i,mnIndx);
         totEmp(i) = totEmp(i) + empl(i,mnIndx);
         avgTime(i) = avgTime(i) + empl(i,mnIndx).*dist(i,mnIndx);
         empl(i,mnIndx) = 0;
         time(i,mnIndx)=inf;
      else
        pctZone = (maxTotEmp - totEmp(i))/empl(i,mnIndx);
        totTime(i) = totTime(i) + pctZone*(time(i,mnIndx)-totTime(i));
        avgTime(i) = avgTime(i) + pctZone.*empl(i,mnIndx).*time(i,mnIndx);
        empl(i,mnIndx) = empl(i,mnIndx)+totEmp(i)-maxTotEmp;
        totEmp(i)=maxTotEmp;
      end
   end
end
avgDst = avgDst./maxTotEmp;
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  A-7: Estimating the Variability in the Results

The results of most interest to researchers and policy-makers are the estimates of
elasticities, value of discretionary time, benefits and costs, and other transformations of
the underlying model’s parameter estimates.  Unfortunately, the variation of the output of
a non-linear function of variables is generally very difficult to compute exactly, so the
results provided in this paper are based on a Taylor Series approximation technique called
“Propagation of Error” or the “Delta Method” (Rice 1995) shown here:
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In the research undertaken here, the θi random variables represent various parameter
estimates of the models (i.e., the α’s, β’s, γ’s, and µ’s).  The estimates of means provided
in the research are based on a first-order Taylor series expansion around the mean (rather
than the more complex, second-order formula shown above), but the estimates of
variances as are shown above.
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Note that the variance and expectation of linear combinations of variables can be
estimated with more exact formulae, where an approximation arises only because one is
relying on one’s estimates of parameters and estimates of their asymptotic variances,
rather than their true values.

And the covariance of two linear combinations of variables can be computed using
the variance-covariance matrix of their combined vector.  The formulae for all these
relations are the following:
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