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ABSTRACT:
This research explores the idea that weather conditions and driver- and vehicle-

population characteristics affect a homogenous roadway segment’s flow-versus-density
relationship.  Third-order-polynomial regressions of flow on powers of density interacted with a
variety of explanatory variables suggest that driver, vehicle, and environmental attributes
significantly influence the flow-density relation and conform in substantial part with intuitive
expectations.  For example, higher flows are predicted across most densities for more mature and
more male traveler groups, as well as for non-rainy conditions with fewer long vehicles and
trucks.  Moreover, under highly congested conditions, braking is associated with slightly higher
flows than those predicted for accelerating vehicles.
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INTRODUCTION:
A critical assumption of many continuum models of traffic behavior is the uniqueness of

a flow-density relationship for any homogenous section of roadway, under stationary flow
conditions.  A generally unstated qualification of this assumption is that the drivers and their
environment are held constant.

Yet, if one considers the influence of, for example, trucks and other large vehicles on
flow conditions, one may expect, a priori and ceteris paribus, that increased vehicle lengths
constrict flow due to such things as reduced sight distances and diminished opportunities for
maneuvering.  So, even though the count density of vehicles may remain the same, flow is
inhibited.  One can test this hypothesis by acquiring data on vehicle lengths in traffic and
including these descriptors as explanatory variables in a flow-versus-density regression.

Environmental conditions, such as sunny versus rainy and dawn/dusk versus midday-sun
versus nighttime, and other explanatory variables can be controlled for as well.  Simple tests of
significance on these variables’ coefficients help indicate whether such factors influence traffic
flows, and the resulting elasticity estimates suggest strength of influence.

This research will explore the idea that weather conditions and driver- and vehicle-
population characteristics affect a homogenous roadway segment’s flow-versus-density
relationship.  After a discussion of research related to this topic and a description of the data sets
used, statistical examinations of multiple hypotheses based on a wide range of flow-density data
are performed and conclusions are made.

RELATED RESEARCH:
The best-known early descriptions of the bivariate relationships assumed to underlie

traffic density “k” (vehicles per length of lane), space-mean speed “vs”, and flow “q” come from
Greenshield’s 1935 linear density-speed and parabolic flow-density and flow-speed models (1).
Although based on minimal data, Greenshield’s models offer strong first-order approximations to
the actual relationships.  In fact, the 1965 version of the Highway Capacity Model uses the
parabola to define roadway flow conditions.  Over the past 30 years, researchers have proposed a
variety of functional forms and have fitted these to data (see, e.g., 2, 3, 4, 5, 6, 7, 8), yet there
remains significant debate as to the form and even the continuity of the relations (e.g., 9, 10, 11).

Notably missing from the debate on the shape of the bivariate relations are effects on the
shape due to variations in drivers, their vehicles, and their environment.  May (12) comments on
how capacity may change with merging or incidents, and the Highway Capacity Manual (9)
quantitatively acknowledges the effects of very general driver and vehicle factors (e.g., commuter
vs. non-commuter and heavy-vehicle fraction) on capacity.  However, no mention is made of the
fact that these and other factors may affect the entire flow-density-speed relation.  When flow,
speed, and density data are plotted and when a single relationship is sought to link these, there is
an implicit assumption that other factors have not changed.  In fact, there are plenty of non-
random factors that may be varying across observations and adding scatter − and one can control
for several of these.  This is the purpose of this research.

MODEL CONCEPTION:
There are a variety of manners in which one may approach a statistical analysis of the

flow-density relation; the results then imply flow-speed and density-speed relations by way of
Lighthill and Whitham’s equation (flow equals density times space-mean speed, 13).  A linear-
in-parameters regression model of flow versus density interacted with other, measurable and
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continuous explanatory variables is the model applied here; but it is worth first mentioning what
a behaviorally-based hypothesis would imply for function form.  One hypothesis is that the
observed flow-density relationship is just a weighted average of the different drivers’ individual
flow-density curves.  In fact, such a hypothesis makes considerable sense under uncongested
conditions when vehicle interaction is not so important and each driver picks his or her own
comfortable speed.  Under such a situation a regression of flow on density interacted with
proportions of distinct driver/vehicle classes is likely to yield strong estimates of free-flow
speeds for such classes.  Equation 1 illustrates this relation.
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Under uncongested conditions, traffic data suggest that speeds are relatively constant (i.e.,
the flow-density relation is linear, as illustrated in Figure 1 and in data presented in 2, 3, 4, 5, 6,
and 7), so modeling total flow as a linear function of density interacted with proportions appears
to be quite reasonable.  However, as one moves to analysis of traffic data under congested
conditions, speeds are no longer constant for differing densities and the relationship becomes
more complex.  One hypothesis is that under a congested regime, a class of driver’s spacing is a
linear function of the speed of all vehicles.  Scatterplots of the inverse of density (i.e., average
spacing) versus speed using the data at hand and elsewhere (e.g., 14) suggest such a simple
relation is reasonable for the congested regime.  Unfortunately, the resulting functional form for
flow versus density is highly non-linear in class proportions.  Equation 2 describes this situation.
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Eq. (2)

Notice how a given vehicle/driver mix implies a linear (negatively sloped) congested
flow-density relation, which is consistent with much of the data and theory (e.g., the “inverted
lambda” hypothesis).  However, this function is non-linear in the proportions data making it
more difficult to estimate than that of the uncongested case just described.  And the sharp
contrast in expected behavior and, therefore, functional form across the congested and
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uncongested traffic regimes effectively implies two distinct regression models, which are
difficult to statistically link in a continuous and relatively flexible fashion.  Moreover, there is
richer information available for use as explanatory variables than just the proportions of broad-
based traveler types.  For these reasons, the models described in Equations 1 and 2 are not strictly
followed here.  The following section provides a description of the data used, and the sections on
statistical methodology and results describe the actual analysis employed.

DATA:
The data set analyzed for this research consists of freeway traffic observations from loop

detectors, characteristics of automobile users by time period, and levels of precipitation in the
vicinity of the freeway section studied.  The set of variables is provided in Table 1, and the data
are discussed in more detail here.
Traffic Data:

Count, occupancy, and speed data were obtained from the Freeway Service Patrol Project
(15) for paired induction-loop detectors on Interstate Highway 880’s five-lane northbound
section in Hayward, California, about 20 minutes south of Oakland.  All data made publicly
available come from weekdays in February and March of 1993, between the hours of 5 and 10
am and 2 and 8 pm; however, only a couple days’ data for Lane 2, the second innermost lane of
the five in this section, are analyzed here.  This second lane is thought to be substantially
shielded from merging effects from upstream and downstream ramps while not being as
specialized and exclusive as Lane 1 (which is an HOV lane during the rush hours, from 6 to 9 am
and from 4 to 7 pm).  Of the five lanes, Lane 2 is not too unusual, except that it is the most
heavily used (in total number of vehicles) of all five lanes.  This lane carries vehicles typically at
high speeds, with 50% of the data points exhibiting speeds over 100 kph.

A quick look at the flow-density data for Lane 2 gives one a very good idea of the
minimum speed which can be considered as “free flow” in these data; 77 kph forms a lower
boundary for the distinctly straight and dense band of uncongested observations, as visible in
Figure 1.  There are not many data points falling below this speed; in fact, only 14% of the 24
days’ data exhibit unstable flow/congestion.

So that the regression models would not depend too greatly on uncongested data, the first
two days in the data set which have distinct weather patterns and a significant share of congested-
flow data points were chosen for analysis.  These two days represent a rainy Friday and a dry
Thursday, and 24% of their roughly 2,600 observations exhibit congested conditions.

The explanatory variable of density was derived very carefully, without dividing flow by
space-mean speed.  Inconsistent coefficient estimates would be the result of using explanatory
variables calculated using the model’s dependent variable (i.e., flow in these models).  Duncan
(16, 17) warns of this statistical difficulty.  To avoid this, occupancy and speed data, along with
covariance of speed and vehicle length, were combined to determine density, as illustrated in
Equation 3.
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As indicated, the covariance between lengths and the inverse of speeds of individual
vehicles is negligible here, exhibiting a sample correlation of just -.00375 over the 24-day study
period.  For lanes with a greater truck population, this relation is expected to be stronger as well
as positive, since, for example, trucks face lower speed limits than passenger cars and may
generally travel at lower speeds, in order to avoid braking.

In addition to density, other explanatory variables were computed from the traffic data.
Individual vehicle-length data (computed from continuous occupancy pulses and inter-detector
times and distance, 18) produced length distribution information.  The mean, 20th-percentile, and
80th-percentile vehicle lengths per 30-second interval were computed as explanatory variables,
as was the fraction of an interval’s vehicles that were presumed to be trucks, i.e., those over 6.1
meters in length.  However, less than one percent (0.895%) of the vehicles counted in Lane 2
happen to meet this length-based definition of trucks.

Additionally, researchers have observed and hypothesized traffic to exhibit a hysteresis
effect of denser conditions upon braking, versus looser/less dense traffic upon acceleration − for
a given speed − in the congested regime. (19, 20, 21)  To examine the effects of braking versus
accelerating under congested conditions, two dummy variables were defined.  If the speeds
across adjacent 30-second observations in the congested region differed by more than 4.0
kilometers per hour, a binary variable of congested-acceleration or congested-deceleration
(depending on the direction of speed change) is given a value of one.  For example, if one 30-
second observation’s space mean speed is 60 kph and the next observation’s is 65 kph, the first
observation is assigned a congested-acceleration value of one because the vehicles appear to be
accelerating in the congested zone.  In the two-day data set used here, 7.4% and 8.4% of the
observations are able to be labeled as congested-acceleration (CongAcel) and congested-
deceleration (CongDecel), respectively.  These two dummy variables may help distinguish
different types of driver behavior in unstable traffic streams, if they exist, although the choice of
4.0 kph for determining inclusion of an observation under this definition is somewhat arbitrary.

Traveler Population Characteristics and Precipitation:
The San Francisco Bay Area’s Metropolitan Transportation Commission surveyed over

9,000 Bay Area households in its 1990 Bay Area Travel Surveys.  All households’ members age
five and over completed detailed travel diaries for a single weekday and these data were
compiled here to determine many characteristics of travelers taking relatively long personal-
vehicle trips (with “long” defined here to be over 4.0 Euclidean kilometers).  By time of day, one
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can estimate the percentage of long personal-vehicle trips by purpose, the age and gender
distributions of trip-makers, and the vehicle availability for these travelers.

Weather data were taken from a variety of sources, including newspaper reports and
NOAA reports (22, 23).  A dummy variable called “Rain” describes observations that occurred
during rainfall.

STATISTICAL METHODOLOGY:
The intent of these models is predictive in nature; thus, the explanatory variables (e.g.,

density) do not need to be strictly exogenous.  In reality, density is more reasonably considered to
be a function of flow, since typically drivers “demand” space on a roadway and the density at
which they have to drive is a function of how many are trying to occupy the same roadspace.
However, if no conclusions are to be drawn with respect to causation, a predictive model for flow
is appropriate.  This direction of modeling is particularly suitable in the flow-density relationship,
because a density vs. flow relation is not one-to-one and thus creates a duality of possible values,
rendering ordinary least squares (OLS) regression useless and calling instead for much more
sophisticated methods, such as a “switching model” (24).

Researchers have suggested a variety of functional forms to describe flow-density
relations, such as a parabola (1) and non-linear-in-parameters multiplicative logarithmic and
exponential forms (25, 26, 27).  And, as discussed in the model-conception section of this paper,
the modeling of uncongested and congested flows as linear and non-linear functions,
respectively, of density and driver/vehicle class proportions appears to be very reasonable.
However, the a priori partitioning of the available and largely continuous data into distinct
classes may not be wise, given the loss of information that can result (e.g., drawing a line
between “old” and “young” drivers).  And, the piece-wise analysis of the two “regimes” neglects
a very possible continuity in the flow-density relation (11).

To take advantage of the continuous nature of many of the explanatory variables and
accommodate functional continuity, while providing adequate parametric flexibility and utilizing
the relatively simple method of OLS estimation, different third-order-polynomial models were
analyzed here. The base model incorporates explanatory variables suspected to influence the
actual flow-density (q-k) relation and its functional structure is shown in Equation 4.

q k k k
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o

i ij j
j

= + + + +
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β β β β ε

β β
1 2

2 3
3 ,

.       Equation (4)

Note that the parameters giving the flow-density (q-k) curve its shape, the βi’s, are
defined to be linear functions of exogenous, explanatory variables “xj”.  The variables described
in Table 1 were used as the xj’s in all initial models.  A variety of variations on this general
model were studied.

The term “Basic” models refers to the category of models analyzed initially; these
included only a constant as the intercept term, rather than allowing βo to be a function of more
interesting traffic characteristics, such as traveler age and vehicle lengths.  This was done in an
effort to minimize any spurious correlation between flow and traffic characteristics from
influencing the coefficient estimates.  Such correlation may arise in a variety of ways.  For
example, congested conditions from high demand exceeding downstream bottleneck capacities
generally do not occur outside of commute hours, so a coefficient on WorkFraction (i.e., the
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fraction of travelers making work trips) may be biased low.  The bias is due to the correlation of
some variables with the error term, which includes all unobserved information affecting the
curves.

Due to the concern for spurious correlation, a set of “Modified-Variables Models” was
also examined, wherein explanatory variables suspected of providing such correlation were
regressed on the dependent variable of “flow” (i.e., count in a 30-second period) and the residuals
of these simple linear regressions were used in the formal models in lieu of these variables.
Thus, there is no simple linear correlation to be found in these modified variables with the
dependent variable.  The modified variables are the following: Age, Male, RecrTrip,
WorkFraction, CongAccel, and CongDecel.

Note that theoretically there should be no intercept term, βo, under the third-order-
polynomial structure studied here, because at zero density there can be no flow.  The inclusion of
a simple intercept term provides more degrees of freedom for estimating a curve through the
scatter of observations, so the (unadjusted) R-squared values of these regressions are naturally
higher.  However, models without any intercept term whatsoever are also analyzed and provide a
convenient reference to the initial models.

RESULTS:
Due to space constraints, only the results for the “full” and “reduced” forms of the

Modified Variables models are shown in Tables 2 and 3; “reduced” models are those whose
variables are all highly statistically significant following a process of stepwise deletion.  The
signs on the estimated coefficients in both the Basic and Modified models are similar and
generally correspond to expectations.  For example, Density, Density2, and Density3 have
positive, negative, and positive coefficients, respectively.  However, some of the other variables’
coefficients are not as anticipated.

For example, the variable of vehicle ownership (VehOwn) exerted a very strong positive
influence on flow even though its variation is rather minimal (VehOwn falls between 0.97 and
1.01 over the ten hours of observations); moreover, vehicle ownership was suspected of causing
estimation problems due to collinearity with the work-fraction variable (correlations are +0.63
for VehOwn and WorkFraction, and +0.61 for VehOwnResid and WorkFractionResid).  For
these reasons a series of Modified-Variables models were run without this variable, and the
reduced version of this set of models is shown in Table 3.

In Tables 2 and 3’s tabulated results, notice how the models explain a large fraction of
variation found in count levels.  R-squareds are consistently above 0.77 for the modified-
variables models, and they are above 0.86 for the “basic” models (though these results are not
shown).  In contrast, the R-squared for a regression of flow on just a constant and the three
powers of density is 0.66.  Moreover, most of the variables are found to be highly statistically
significant for purposes of flow/count prediction, suggesting that more than simple density is at
work in determining the level of flow − and thus the shape of flow-density relation (and,
therefore, the flow-speed and speed-density relations).

Since most variables appear in a slightly different form three or more times in a model
(i.e., multiplied by different powers of density), a single measure of a variable’s influence proves
useful.  Elasticities estimated at mean values of the variables are provided in Table 4 − along
with elasticities that incorporate the capacity values of flow and density.  Capacity runs around
2,500 vphpl (20.8 vehicles in a 30-second interval) and critical density (k*) is about 28
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vehicles/kilometer; this “critical” traffic condition is actually found to occur with significant
frequency in the two days’ data.

The sign on the elasticity estimate for Male changes when one moves from the Basic to
the Modified Variables Models.  The author’s a priori expectation for a positive sign on this
variable seems supported by the Modified Models, suggesting benefits of having removed simple
linear correlation with count in this variable.

While most of the models’ results are plausible for most of the explanatory variables
used, several deserve closer inspection.  For example, one may believe that workers travel more
aggressively so that WorkFrxn should have a positive flow elasticity associated with it, instead of
the consistently negative one shown; its elasticity remains negative even after removal of simple
correlation with flow, as evidenced by the modified-variables models.  One may also believe that
recreational travelers drive less aggressively, leading to a negative flow elasticity for RecrTrip
(and RecrTripResid), rather than the positive elasticities computed.  The modified-variables
results suggest that travelers may not travel in accordance with such expectations; perhaps
workers are not in a great rush or are not very attentive and alert when they travel – relative to
recreational travelers?  However, the recreational-travel variable (RecrTrip) exhibits minimal
range in the data set, varying between 0% and 1.1%, so not much extrapolation should be
performed using this variable.  And, the final model examined, which leaves out VehOwn to
diminish its collinear effect on WorkFraction causes WorkFraction’s elasticity to drop to a
effectively negligible level of roughly -2.2%.

The vehicle-ownership variable (VehOwn) produces very high elasticity estimates
consistently, suggesting that network planners in regions of high-vehicle ownership, where
travelers are likely to be more familiar with driving cars, can design their region’s roadway
networks less generously than their counterparts in less auto-intensive regions.  However, the
range of this variable in the data set (from an average 0.97 to 1.01 vehicles per household
member over five years of age) is minimal, so one should be wary of estimates using values
outside this range.

Also of interest is the fact that several of the length-related variables did not turn out to be
statistically significant.  The variables describing variable length were particularly weak and
often excluded from the reduced models (which require statistical significance).  Primary reasons
for the lack of significance are the variety of variables available which provide this information
(i.e., MeanLength, 20%Length, 80%Length, and TruckFraction) and the lack of much length
variation in Lane 2’s observations; recall that trucks make up less than one percent of the vehicle
population observed in the sample.  As expected, however, length contributes negatively to the
flow-density relation, with the sum of the length elasticities consistently negative.

Table 4’s elasticity estimates for the congested-conditions speed-change variables
(CongAcel and CongDecel) do not appear to conform with expectations of braking offering
higher flows at a given speed.  However, given that these two types of observations only occur
under congested conditions, their elasticity estimates should not be based on mean or capacity
levels of density and flow.  When values of 1,400 vphpl and 62 vehicles/km. − representing
congested conditions − are used for flow and density, the relative elasticities on CongAcel and
CongDecel meet expectations by being estimated to be -2.97% and -1.19%, respectively.  Thus,
under situations where this behavior is possible, the relative magnitudes conform to expectations,
lending support to Newell’s (19, 20) and Edie’s (21) conjectures.  However, the magnitudes of
these elasticities are not so high that the difference can be confidently presumed clear or
pronounced.
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To provide additional illustration of how the models predict flow, Figures 2 and 3 plot
predicted flows versus density for the reduced, no-intercept modified model without the vehicle-
ownership variable.  Plots are provided for mean conditions, as well as for 75% males vs. 35%
males, travelers with average ages of 35 and 45, rain vs. no-rain conditions, and 10% trucks vs.
no trucks scenarios.  The implications of these variables seem reasonable as plotted, and these
graphical results are generally shared across all models studied.  However, while it may be
intuitive that rainy conditions and high numbers of long vehicles or trucks are associated with
lower flow levels (as evidenced in Figure 3), the implications of Figure 2 – that older, males
drive/travel more aggressively (e.g., at shorter headways) – is not as obvious and requires more
careful consideration.

Also, in interpreting these plots one should recall that the fitted models are third-order
polynomials; so these results will imply negative flows over certain density ranges (e.g., at
negative densities), and at sufficiently high densities the plots show flows increasing towards
infinity.  These results are an outcome of the functional form, so one should not predict flows for
traffic conditions outside the actual ranges of observed data.  By the same token, one should not
interpret every part of every plot literally.  For example, Figure 2’s plot of 35-year average
traveler age only intersects the density-axis once, while, in reality, flow would have to go to zero
a second time; the difficulty in interpretation here may be due to the fact that the age data
available only vary between 38 and 44 years.  And estimates for a 100% or 0% male traveling
population or 50% truck population are likely to lead to highly implausible estimates of flow.
Much more variation in the actual data used is needed for a researcher to confidently estimate the
flow effects of such conditions.

AREAS FOR IMPROVEMENT:
While the research conducted here offers valuable information and represents a

significant departure from much of the research in this area, there are a variety of ways in which
the data and analytical methods can be improved.

For example, better information on roadway-section users − particularly drivers − would
be useful, rather than the averages for an entire hour across the region’s long-trip personal-
vehicle users that were used here.  However, such data can be quite costly to acquire, particularly
if one needs to survey the actual users observed in the data set.

Models run across all lanes’ data and/or information on nearby lanes’ users should prove
useful, since most modeling is done at the roadway-section level (rather than lane by lane) and
flow variation may be better explained since information on variables affecting more than a
single lane (e.g., presence of trucks) would be included.  Also, lanes experiencing greater
volumes of trucks would be of interest; the Lane 2 data analyzed here show minimal truck
presence.

CONCLUSIONS:
The research methodology and results presented here offer insight into fundamental

traffic relations, suggesting that the flow-density curve can be substantially influenced by
roadway users, their vehicles, and weather conditions.  As shown here, a flow-density model’s
predictive power rises significantly when one supplements density data with other relevant
information, and most variables examined produce results that are highly statistically significant
and intuitively acceptable.
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Models of this form promise to refine the debate on the form of the flow-density relation
and improve the modeling of traffic flows.  With more information about the effects travelers,
their vehicles, and weather conditions have on traffic flows, planners and engineers can better
design roadways, estimate service levels, and advocate policy.  For example, corridors which
attract younger travelers, travelers owning fewer vehicles, and/or travelers with longer vehicles
may need to be designed more generously to achieve desired service levels; and congestion tolls
can be more appropriately set for trucks and other vehicle and driver types which constrain flow.
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TABLE 1.  Description of Variables

Dependent Variable:
Flow (q) Count of Vehicles in a 30-second interval

Explanatory Variables:
Density (k) Density (vehicles per lane-kilometer)
Density^2 (k2) Density Squared
Density^3 (k3) Density Cubed

MeanLength Average Vehicle Length in 30-second interval (meters)
20%Length 20th Percentile for Vehicle Lengths in 30-second interval (meters)
80%Length 80th Percentile for Vehicle Lengths in 30-second interval (meters)
TruckFraction Fraction of Counted Vehicles with Length > 6.1 meters

WorkFraction Fraction of Personal-Vehicle Users on “Long” Work-Related Trips
(i.e., work is the trip purpose at either the origin or destination zone)
(“Long” is defined as ≥ 4.0 Euclidean kilometers in distance between origin and destination tract)

RecrTrip Fraction of Personal-Vehicle Users on “Long” Recreational Trips
Male Fraction of Personal-Vehicle Users on “Long” Trips who are Male
AutoOwn Avg. #Personal Vehicles per Household Member for PV Users on “Long” Trips
Age Avg. Age of Personal-Vehicle Users on “Long” Trips

Rain Rain falling in the vicinity during the hour

CongAccel Speeds increasing during Congested Conditions
CongDecel Speeds falling during Congested Conditions

varnameResid Residuals of Linear Regressions (with constant terms) of Variable “varname” on Count
(Used to remove simple linear correlation between non-density variables and flow.)
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TABLE 2.  Regression Results of Modified-Variables Models
– with Intercepts

Dependent Variable = Count of Vehicles in 30-second Interval
Full Model, with Intercept Reduced Model, with Intercept

Adjusted R-Squared: 0.9864 0.9863

Variable: Beta T-Statistic P-Value Beta T-Statistic P-Value

Intercept 368.55 17.297 0.000 368.74 20.46 0.00

Rain 2.999 8.031 0.000 2.832 12.11 0.00

AgeResid 0.058 0.463 0.643

MaleResid -63.907 -11.737 0.000 -68.856 -14.45 0.00

VehOwnership -378.93 -17.556 0.000 -384.72 -21.05 0.00

RecrTripResid -1675.63 -10.568 0.000 -1705.79 -13.77 0.00

WorkFrxnResid 56.913 15.221 0.000 59.420 23.07 0.00

AvgLength -1.962 -1.197 0.232

20%Length 2.719 2.697 0.007 0.964 2.45 0.01

80%Length -0.924 -1.032 0.302

TruckFraction 7.648 1.840 0.066

CongAccelResid 4.431 3.150 0.002 4.240 3.19 0.00

CongDecelResid 3.717 2.022 0.043 3.091 1.75 0.08

Density -31.17 -15.888 0.000 -31.11 -20.88 0.00

k*Rain -0.286 -8.356 0.000 -0.263 -17.50 0.00

k*AgeResid 0.001 0.077 0.939

k*MaleResid 7.454 14.202 0.000 7.915 16.49 0.00

k*VehOwnership 32.93 16.676 0.000 33.40 22.19 0.00

k*RecrTripResid 132.4 8.577 0.000 133.4 12.45 0.00

k*WorkFrxnResid -4.870 -14.435 0.000 -5.079 -27.83 0.00

k*AvgLength 0.296 1.826 0.068 0.122 4.47 0.00

k*20%Length -0.317 -3.065 0.002 -0.132 -3.84 0.00

k*80%Length 0.115 1.239 0.215

k*TruckFraction -1.099 -2.241 0.025 -0.380 -3.43 0.00

k*CongAccelResid -0.647 -7.346 0.000 -0.630 -7.74 0.00

k*CongDecelResid -0.604 -5.190 0.000 -0.561 -5.08 0.00

Density^2 0.468 8.660 0.000 0.467 13.79 0.00

k2*Rain 4.24E-03 4.856 0.000 3.51E-03 18.68 0.00

k2*AgeResid 1.02E-03 2.641 0.008 1.23E-03 16.69 0.00

k2*MaleResid -0.238 -15.181 0.000 -0.250 -17.21 0.00

k2*VehOwnership -0.488 -8.983 0.000 -0.499 -14.64 0.00

k2*RecrTripResid -0.731 -1.607 0.108 -0.691 -2.52 0.01

k2*WorkFrxnResid 0.0641 6.970 0.000 0.0687 25.54 0.00

k2*AvgLength -7.27E-03 -1.730 0.084 -2.77E-03 -4.94 0.00

k2*20%Length 6.89E-03 2.457 0.014 1.92E-03 3.78 0.00

k2*80%Length -4.83E-03 -1.840 0.066 -1.95E-03 -4.40 0.00

k2*TruckFraction 2.48E-02 1.753 0.080 6.91E-03 3.59 0.00

k2*CongAccelResid 1.62E-02 9.243 0.000 1.58E-02 9.87 0.00

k2*CongDecelResid 1.53E-02 6.622 0.000 1.44E-02 6.66 0.00

Density^3 -7.00E-04 -1.596 0.111 -6.54E-04 -2.95 0.00

k3*Rain -5.97E-06 -0.926 0.355
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k3*AgeResid -2.14E-05 -6.604 0.000 -2.38E-05 -20.47 0.00

k3*MaleResid 2.31E-03 16.438 0.000 2.41E-03 18.77 0.00

k3*VehOwnership 6.84E-04 1.556 0.120 7.16E-04 3.25 0.00

k3*RecrTripResid -2.02E-02 -5.050 0.000 -2.09E-02 -9.41 0.00

k3*WorkFrxnResid 2.33E-05 0.303 0.762

k3*AvgLength 3.41E-05 1.076 0.282

k3*20%Length -3.67E-05 -1.676 0.094

k3*80%Length 5.11E-05 2.389 0.017 3.32E-05 5.07 0.00

k3*TruckFraction -1.22E-04 -1.142 0.253

k3*CongAccelResid -1.07E-04 -9.848 0.000 -1.05E-04 -10.51 0.00

k3*CongDecelResid -1.00E-04 -7.060 0.000 -9.45E-05 -7.23 0.00
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TABLE 3.  Regression Results of Modified-Variables Models
– without Intercepts

Dependent Variable = Count of Vehicles in 30-second Interval
Reduced Model, w/out Intercept Reduced Model, w/out Intercept

                 without Intercept & w/out VehOwnership

Adjusted R-Squared: 0.8291 0.7718

Variable: Beta T-Statistic P-Value Beta T-Statistic P-Value

Density -2.717 -4.635 0.000 1.148 135.874 0.000

k*Rain -0.0526 -4.869 0.000 -0.0408 -9.398 0.000

k*AgeResid 0.0128 3.393 0.001

k*MaleResid 2.271 15.208 0.000

k*VehOwnership 4.034 6.785 0.000 na na na

k*RecrTripResid -24.94 -6.026 0.000 -30.82 -10.579 0.000

k*WorkFrxnResid -0.2298 -2.298 0.022 0.2633 4.785 0.000

k*AvgLength -0.0291 -4.065 0.000

k*20%Length

k*80%Length

k*TruckFraction

k*CongAccelResid -0.2023 -8.281 0.000 -0.1472 -10.827 0.000

k*CongDecelResid -0.1932 -7.197 0.000 -0.2732 -9.563 0.000

Density^2 -0.1707 -6.161 0.000 -0.0123 -18.946 0.000

k2*Rain -1.01E-03 -2.267 0.023

k2*AgeResid 6.96E-04 3.370 0.001 1.19E-03 15.196 0.000

k2*MaleResid -0.1140 -14.570 0.000 0.0169 7.320 0.000

k2*VehOwnership 0.1542 5.464 0.000 na na na

k2*RecrTripResid 3.6851 17.386 0.000 2.6741 18.878 0.000

k2*WorkFrxnResid -0.0444 -9.364 0.000 -0.0181 -7.249 0.000

k2*AvgLength -9.16E-04 -4.156 0.000

k2*20%Length

k2*80%Length -5.91E-04 -2.983 0.003

k2*TruckFraction

k2*CongAccelResid 4.72E-03 5.870 0.000 2.04E-03 9.199 0.000

k2*CongDecelResid 4.08E-03 4.462 0.000 6.12E-03 6.511 0.000

Density^3 3.49E-03 12.180 0.000

k3*Rain 2.71E-05 6.713 0.000 5.90E-06 5.793 0.000

k3*AgeResid -1.72E-05 -7.871 0.000 -1.64E-05 -13.751 0.000

k3*MaleResid 1.37E-03 14.868 0.000 -2.17E-04 -5.611 0.000

k3*VehOwnership -3.49E-03 -11.928 0.000 na na na

k3*RecrTripResid -5.45E-02 -21.473 0.000 -3.30E-02 -21.363 0.000

k3*WorkFrxnResid 7.44E-04 14.255 0.000 1.69E-04 6.623 0.000

k3*AvgLength

k3*20%Length

k3*80%Length 1.32E-05 13.655 0.000

k3*TruckFraction

k3*CongAccelResid -2.47E-05 -3.835 0.000

k3*CongDecelResid -1.61E-05 -2.164 0.031 -2.99E-05 -4.069 0.000
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TABLE 4.  Estimated Elasticities
Basic Models

Primary Model No-Intercept Model
Mean Capacity Mean Capacity

Variable:
Rain -3.09% -2.26% -3.13% -2.29%
Age 210.68% 163.70% 222.87% 174.00%
Male -9.34% -12.99% -17.30% -17.62%
VehOwnership 353% 253.8% 404.2% 279.3%
RecrTrip 19.65% 15.85% 20.44% 16.75%
WorkFraction -29.59% -22.59% -27.64% -21.12%
AvgLength -7.9% -7.34% -7.59% -7.09%
20%Length na na na na
80%Length -10.00% -10.73% -10.00% -10.11%
TruckFraction na na na na
CongAccel -2.81% -1.75% -2.50% -1.58%
CongDecel -3.06% -1.88% -2.77% -1.72%

Models with Modified (“Residual”) Variables
No-Intercept and

Primary Model No-Intercept Model No-VehOwn Model
Mean Capacity Mean Capacity Mean Capacity

Variable:
Rain -5.71% -4.29% -5.61% -4.00% -3.43% -2.43%
AgeResid 5.30% 3.85% 6.54% 4.61% 6.54% 5.03%
MaleResid 5.11% 3.06% 3.50% 1.35% 3.46% 2.68%
VehOwnership 1078.6% 828.3% 1038.3% 745.3% na na
RecrTripResid 20.94% 16.25% 19.94% 15.72% 9.18% 8.04%
WorkFractionRes
.

-26.88% -20.74% -23.99% -17.85% -2.24% -2.23%

AvgLength 41.25% 25.08% -22.37% -16.33% -17.41% -14.37%
20%Length -31.91% -22.42% na na 0.00% 0.00%
80%Length -23.11% -17.27% na na -5.38% -3.72%
TruckFraction -0.42% -0.28% na na na na
CongAccelResid -6.70% -4.40% -5.07% -3.30% -4.87% -3.31%
CongDecelResid -6.69% -4.32% -4.93% -3.23% -6.77% -4.42%

Notes:
Elasticities are provided for estimates from “reduced”, rather than “full” models; thus, all are statistically

significant estimates.
Mean elasticities are computed at variables’ basic mean values (e.g., flow = 1,614 vphpl = 13.45 veh./30

sec., density = 24.73 vpkm) for all variables except those of estimated residuals (following a linear regression on
flow).  Since the means of residuals are necessarily zero and would cause an elasticity-at-mean to be zero, one
standard deviation was used as the level at which to estimate the elasticity of these variables.

Capacity elasticities are essentially mean elasticities, but with the values of flow and density taken as the
(approximate) capacity conditions in Lane 2 of the roadway section studied; the capacity values used here are 2,500
vphpl and 28 vehicles/kilometer.
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FIGURE 1: Plot of Observed Counts vs. Density
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FIGURE 2: Plot of Predicted Flow vs. Density
over Different Traveler Characteristics,

for the Modified No-Intercept, No-Vehicle-Ownership Model
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FIGURE 3: Plot of Predicted Flow vs. Density
over Different Vehicle & Weather Conditions for the

Modified No-Intercept and No-Vehicle-Ownership Model
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