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Abstract

THE EFFECTS OF LOCATION ELEMENTS ON HOME PURCHASE PRICES AND RENTS:
Evidence from the San Francisco Bay Area

Author: Kara M. Kockelman

Land-market theory emphasizes travel savings as well as access to amenities as the underlying
determinants of land prices (e.g., von Thünen 1826 and Alonso 1964).  This research investigates
a series of hedonic models (which postulate a good's price to be a linear function of its multiple
attributes) for implicit estimation of land values, along with explicit estimation of median
housing price and monthly contract rent across the San Francisco Bay Area’s census tracts.  The
benefits and valuation of location are assessed by including a variety of travel-based explanatory
variables (including average trip characteristics and automobile ownership) as well as measures
of local land-use patterns - after controlling for a variety of the dwelling units’ structural
characteristics.  In many of the models, lot size is interacted with location attributes in order to
elucidate the direct dependence, if any, of land values on location.

The results indicate that changes in accessibility and travel costs affect land and dwelling-unit
values in highly statistically and economically significant ways.  For example, the coefficient
estimates associated with travel-time reductions suggest values of travel-time savings to be
roughly five dollars per hour across all adult-traveller trip types (in 1989$).  Furthermore, a high
proximity to industrial land uses and very local commercial activity depress land (and dwelling
unit) values, often substantially; and simple distance-to-CBD variables prove to be effective price
predictors.  The results also reveal that heteroskedasticity (a non-constant variance of the
dependent variables' mean values) plays an important role in consistent and efficient estimation
of model parameters and should thus be accommodated explicitly.
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INTRODUCTION:

Regional scientists, land economists, and transportation planners have long asserted that a

household’s location decision depends, to a large degree, on access to opportunity sites.   Subject

to budget, time, and other constraints, it is a common assumption that households maximize their

"utility" by locating in as desirable a home as possible - as near to necessary and desired activities

(such as work, shopping, and recreation) as possible.  The utility maximization is profoundly

complex, dependent on far more environmental attributes than those that can be observed and

quantified; for example, people often care about subtle neighborhood qualities (1), public

services (2, 3), proximity to relatives, and other "goods" a location and its environment offer. 

Rather than attempt to elucidate all determinants of location choice and home valuation, this

paper limits its focus to the variation of travel costs, accessibility, and land use patterns across an

urban region and how these are reflected in housing prices.

If access is a critical determinant of land prices by allowing people to reduce travel

expenses, then one may reasonably expect that reductions in travel expenses will be reflected in

higher bids for homes.  For example, John Holtzclaw (4) has argued that reduced automobile use

(as evidenced through odometer tabulations) for more population-dense environments should

translate to more income available for home purchases (and loan guarantees).  Holtzclaw

estimates that an "efficient location" like Nob Hill (in San Francisco) allows a household to save

$6,000 a year in transportation expenses relative to a similar household in a city such as San

Ramon.  The American Automobile Association (5) estimates that the daily fixed cost of owning

the average automobile is roughly ten dollars, representing over $3,500 a year - or a present value

of over $40,000 on a 30-year eight-percent loan.  However, in a study of so-called "wasteful"



Kara M. Kockelman 2

commuting, Giuliano and Small (6) conclude that factors other than location vis-a-vis

employment sites affect household location choice to a much greater extent.  And Wheaton (7)

argues that the evidence for location choice with respect to transportation amenities is not a

major factor in location decisions.  The research pursued here aims to explore and test some of

these conclusions.

It is well accepted that people value time and generally prefer to minimize delays in

accessing opportunities, ceteris paribus.  A great number of studies have been undertaken to

estimate travellers’ value of time (e.g., 8, 9, 10); these rely almost exclusively on discrete-choice

random-utility models where the ratio of coefficients estimated on time and fare variables is

expected to provide a value of time.  Applying this methodology, a varied assortment of value-

of-time estimates have emerged, with values ranging from six percent (11) to 86% of wage (12)

for inter-city car travelers and from 20% (13) to 180% (14) for auto commute trips.  The

variation in these estimates is one indication that the relationship is a highly complex one, not yet

well modeled.  However, the dependence of time valuation on income is widely accepted, given

that one’s opportunity cost in many cases may be based on income-producing pursuits.

This research’s methodology takes a very different tack in approaching travel-time

valuation, relying instead on home prices as a function travel costs, with time representing an

important dimension of travel expenses in many of the early models.  The general hypothesis

tested here - that home prices (and rental rates) fall with expected travel dis-benefits - is premised

on the underlying theories of location-choice models developed by economists such as Alonso

(15) and Anas (16): i.e., that there is a trade-off between land value and travel expenses.  The

basic model developed, the data used, and the analytic methods pursued - along with results and

conclusions - follow here.
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THE MODEL:

Despite the land market’s complexities and model limitations, many researchers have

attempted to estimate residential land values, often with respect to transportation provision

(e.g.,17, 18, 19, 20).  One of the functionally simplest methods of evaluating transportation’s

impact on land valuation is the hedonic price model, in which sales price is modeled as a

function of a good’s multiple attributes. (See Griliches [21] for a discussion of this method.)  This

is the method used here, but one should note that the coefficient estimates on individual

attributes cannot be directly interpreted as the marginal values of these attributes except under

highly restrictive assumptions (e.g., all households are identical in preferences and in income). 

Under substantially less restrictive assumptions, McMillan et al. (22) demonstrate that, for

households which do not vary too greatly in their tastes, the biases implied using these

coefficients as estimates of marginal value may be very minor.  In any case, our interest here lies

more in the general magnitude, rather than the exact value, of transport costs and locational

benefits as they are incorporated into housing prices.

DATA ANALYZED AND METHODS USED:

The Data:

In order to study the trade-off between housing costs and locational benefits, the data

used here are the following: the 1990 Census of Population and Housing data; 1990 Bay Area

Travel Survey (BATS) data (23); and 1990 Association of Bay Area Governments (ABAG) land-

use data (24).  The two dependent variables examined are median respondent-estimated price of

an owner-occupied dwelling unit (OODU) and the median monthly contract rent of renter-

occupied dwelling units (RODU), both provided in 1989 dollars in the 1990 Census.
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In terms of explanatory variables, the Census data provide some relatively basic and

aggregate information on dwelling-unit attributes across the region’s roughly 1,300 census tracts.

 Data such as number of bedrooms and rooms and median structure are available, along with

information on vehicle ownership, commuting times, and number of renter- and owner-occupied

dwelling units per tract.  Coupled with the Association of Bay Area Governments' data on

residentially developed land area by tract, dwelling-unit numbers allow one to estimate average

lot size.  Multiple computations are used to estimate the square footage of owner-occupied versus

renter-occupied dwelling units.1

Other explanatory variables tested in the models include BATS-based travel "costs",

Census Transportation Planning Package (CTPP)-based accessibility measures, and ABAG-

based land-use measures.  The BATS over-60,000 individual trip records were aggregated by

tripmakers’ home tracts to provide estimates of average travel time per trip, average vehicle

miles traveled (VMT) per trip2, and other travel-related variables.  By counting the number of

adults (19 years and over) and vehicles across surveyed households in each tract, one is able to

estimate the average number of vehicles per adult in each tract.  Note that the normalization of

travel characteristics with respect to adults and their trips is hoped to provide maximum

comparability across zones.  Per household normalizations, for example, would create difficulties

since household sizes and their composition change across tracts.

The CTPP data include jobs (by type) across the region's 1099 traffic analysis zones

(TAZs), and inter-zonal travel times (by car) were obtained by running the program MIN-UTP. 

Together, these data were used to construct a variety of accessibility-to-jobs indices, based on the

popular gravity model, as shown in Equation 1.  The functional form assumes that accessibility

exhibits a direct proportionality to the number of opportunities and an inversive relation relative
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to the cost of accessing those opportunities (with "cost" proxied by travel time).  The specific

indices were constructed in a number of ways, based on exponential time functions incorporating

coefficients estimated by Levinson and Kumar (25).  The form depended on trip type (work

versus non-work, for example) and mode used (SOV versus walk trips, for example).  Total jobs

as well as sales and service jobs per traffic analysis zone (TAZ) were used as measures of

attractiveness.

In addition to jobs-access measures, distance-to-CBD variables, in actual network miles

to the region’s three central business districts (in San Francisco, Oakland, and San Jose) were

computed using data provided by the region’s MPO, the Metropolitan Transportation

Commission (MTC).

Finally, the land-use explanatory variables come from ABAG’s hectare-level data set,

which classifies each of the region’s hectares (about the size of two football fields) as having a

"dominant" use.  The fractions of a tract’s developed land designated as "industrial",

"park/outdoor recreational", and "public/community" were computed from the hectare-level data,

and relatively sophisticated measures of land-use balance and mix (or dispersion) were computed

using Arc/Info on a geographical information system.  All variables used or considered in the

models are described briefly in Table 1.

Observe that land-use balance is quantified using the formula for entropy (as shown in

Equation 2), which was originally defined for the energy state of a system in the Second Law of

j.  to i  Zonefrom Time Travel=t andj   Zoneof nessAttractive=A  where
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Thermodynamics and proven by Ludwig Boltzmann in the 1870s.  It is normalized with respect

to the natural log of the number of distinct uses considered and thus varies between zero and one

(with one signifying "perfect" balance of the uses considered).  The six (J=6) land-use types

considered distinct and used in the computation of this index are the following: residential,

commercial, public, offices and research sites, industrial, and parks and recreation.  Furthermore,

to avoid bias against smaller tracts, in which there is relatively little area to allow for a variety of

land-use types and to more adequately represent the concept of "neighborhood," a "mean

entropy" was constructed (in contrast to a tract-bounded entropy measure).

As shown in Equation 2, the mean entropy is the average of neighborhood entropies

computed for all developed hectares within each census tract, where "neighborhood" is defined to

include all developed area within one-half mile of each, relevant, active hectare.

  While entropy helps quantify the degree of balance across distinct land uses, the degree to

which these land uses come into contact with one another is also expected to be of importance

since distances can be further minimized between distinct use types if they are more dispersed

within a given area.

The land-use mix index may also be called a "dissimilarity index" since it is based on

"points" awarded to each actively developed hectare based on the dissimilarity of its land use

Hectare. kth the ng SurroundiArea Developed of 

Radius Mile-Half a j within Type Use of Proportion = P and

Tract in Hectares DevelopedActively  of Number = K where
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from those of the eight adjacent hectares. (Equation 3)  The average of these point accumulations

across all active hectares in a tract is the dissimilarity or mix index for the tract.  (Please see

Kockelman [26] for further description and use of the land-use balance and mix variables in

models of traveller behavior.)

 ANALYSIS AND RESULTS:

Several stages of analysis were necessary for full model development.  Early models

relied on ordinary least squares (OLS) for estimation and tested a variety of explanatory

variables.  The use of the median price and rent statistics by tract introduces heteroskedasticity,

wherein the variance of observed prices (or rents) is not constant across different values of the

dependent variable.  Given tract-median price data, observations’ variances are approximately

inversely related to the number of observations per tract. (27)

Moreover, many housing attributes can be reasonably expected to give rise to additional

heteroskedasticity; for example, depending on how well a home is maintained and/or how flat its

parcel is, housing price can be expected to fluctuate more across older homes and those on larger

lots.  For these reasons, heteroskedasticity was investigated.  The null hypotheses of the ensuing

tests for homoskedasticity (i.e., constant variance) were soundly rejected, so the method of

feasible generalized least squares (FGLS) replaced simple ordinary least squares and was used to

obtain what are, under common assumptions, asymptotically efficient estimates with unbiased

.otherwise) 0 = X( Hectare gNeighborin a of that

from differs Type Use ectaresH Active Central if 1 = X and
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standard errors.  The detailed results of these stages of statistical analysis are more fully

described below.

Fundamental Models:

The first and most fundamental models tested rely on the hypothesis that the value of land

is an explicit linear function of "accessibility", as measured using variables characterizing

TABLE 1.  DESCRIPTION OF VARIABLES USED
Median Price OODU OODU Median Price for Census Tract (1989$)
Median Rent RODU RODU Median Rent (1990$)
#Bedrooms #Bedrooms/DU (OO or RO)
#Rooms #Rooms/DU (OO or RO)
Log(Age) Natural Logarithm of Median Age (for OODU or, in the case of

RODUs, all DUs)
Lot Size Estimate of Square Footage per DU parcel (OO or RO)
SF xTime/Trip Lot Size (sf) x Average Time per BATS trip (100ths of a minute)
SF xVehicles/Adults Lot Size (sf) x Average Number of Vehicles per Adult (19+ years)

across BATS Households
SF xAvg. Time to Work Lot Size (sf) x Average Commute Trip Time (minutes)
SF xWork Accessibility (30 min.) Lot Size (sf) x Accessibility to All Jobs within 30 minutes (uncongested

travel time by automobile)
SF xSales&Service Walk Accessibility Lot Size (sf) x Accessibility to Sales and Service Jobs by Walking
SF xIndustrial Fraction Lot Size (sf) x Fraction of Tract’s Developed Area in Industrial Use
SF xPublic Fraction Lot Size (sf) x Fraction of Tract’s Developed Area in Public &

Community Uses
SF xParkspace Fraction Lot Size (sf) x Fraction of Tract’s Developed Area in Park & Outdoor

Recreational Space
Land Use Balance Normalized Entropy across six distinct use types, averaged across 1/2-

mile radius neighborhoods
Mix of Land Uses Dissimilarity Index quantifying the number of dissimilar neighboring

hectare-defined land uses
Distance SF CBD Network (i.e., non-Euclidean) Miles to San Francisco’s City Hall
Distance SJ CBD Network Miles to San Jose’s City Hall
Distance Oakland CBD Network Miles to Oakland’s City Hall
Sales & Service Walk Accessibility Accessibility to Sales and Service Jobs using exponential decay function for

non-work trips with walk times
Work Accessibility (30 min.) Accessibility to All Jobs within 30 minutes using exponential decay

function for work trips
Time/Trip (100ths of hour) Mean Time per Trip Recorded by Tract Dwellers (from BATS data set,

in 100ths of an hour)
Avg. Time to Work Mean number of Minutes spent commuting to work
Vehicles/Adults Mean number (across BATS households) of vehicles in household per

household member age 19 years or more
VMT/Trip Mean number of Euclidean miles per Trip made by BATS surveyed

household members living in that Census tract
Industrial Fraction Fraction of Developed Area in Tract where Industrial Uses Dominate

(from ABAG data set)

Public Fraction Fraction of Developed Area in Tract where Public & Community Uses
Dominate (from ABAG data set)
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Parkspace Fraction Fraction of Developed Area in Tract where Park & Outdoor
Recreational Uses Dominate (from ABAG data set)

Vacant Fraction Fraction of Tract’s Dwelling Units that are Vacant
1/(#OODU) Inverse of Number of OODUs in census tract
1/(#RODU) Inverse of Number of RODUs in census tract

Other Variables Studied but found to be Insignificant and/or of "Incorrect" Sign:
SF xPay-Parking Fraction Lot Size (sf) xFraction of Trips taken by Tract Residents where one had

to Pay for Parking (from BATS)
SF xTransit Trips Lot Size (sf) x#Transit Trips per Person

Note:  OODU and RODU stand for Owner-Occupied and Renter-Occupied Dwelling Unit.

average trip costs and other locational qualities.  Much previous research incorporates only

purely additive models, with no interaction between parcel size and locational characteristics

(e.g., 17, 18, 19, 20, 28).  An improvement in these research efforts may arise through the

following set-up:

The constant C2 is expected to represent the value of minimally accessible land in the Bay

Area, something akin to the land’s agricultural value.  Note the interaction between parcel size

and all locational characteristics.  As long as Parcel Size and 2 are not correlated, the

introduction of a 3DUFHO�6L]H�� 2 term in the first equation should not create a situation where

OLS estimates are biased or inconsistent.

Investigation of Heteroskedasticity and Estimation Using Feasible Generalized Least

Squares (FGLS):

The presence of heteroskedasticity can be ascertained from OLS output, assuming that the

model’s residuals are consistent estimates of the underlying error terms.  By regressing the square

of these residuals on a set of variables expected to affect error-term variance (such as home age

ε
ε

22

11

 + sticsCharacteri Locational* + C = Land of Value where

, + Land of Value* SizeParcel + sticsCharacteri Structural* + C = Price

Γ
Β
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and lot size), one can test for the significance of such a regression (or the presence of

homoskedasticity).  The regression of the owner-occupied (OO) and renter-occupied (RO)

models’ squared residuals on a variety of explanatory variables, including the inverse of the

initial weighting strategy (i.e., the inverse of the number of OO and RO dwelling units [DUs] per

tract, respectively), produced (adjusted) R2's of 0.266 and 0.213, respectively - along with p-

values for model insignificance of 0.0000, allowing one to reject, in both cases, null hypotheses

of homoskedasticity.3

Fortunately, feasible generalized least squares is as asymptotically efficient in estimation

as is the method of maximum likelihood. (29)  Moreover, FGLS does not require any

assumptions as to the error terms' distribution (e.g., normal versus something else).  This method

uses the inverse of the fitted values (or estimates) of the variance model to weight the least-

squares regression of the primary model.  The results of the sample size-weighted OLS models

and their FGLS counterparts, both relying on interactions with parcel size, are shown in Tables 2

and 3.

In reviewing the model results, note the counteracting effects of bedrooms and rooms,

which appear in all hedonic home-price models that the author has tested here and previously;

rather clearly, people tend to prefer non-bedrooms to bedrooms, but both are valued overall

(since, in adding a bedroom, a "room" is also added, and the coefficient on the variable #Rooms

more than counteracts the negative coefficient of the bedroom variable).

One of the more striking results of the models is the change in estimates that results from

taking into account the significant heteroskedasticity that is neglected in the sample-size-

weighted OLS results.  Differences of 50 percent in estimates’ levels are not uncommon (e.g.,

#Bedrooms and Mix in the OODU models, and interactions with parcel size in the RODU



Kara M. Kockelman 11

models).

TABLE 2. OWNER-OCCUPIED DWELLING UNIT (OODU) PRICE REGRESSIONS
3ULPDU\�0RGHO�>\ ; @� OLS Coefficient (SE) & p-value FGLS Coefficient (SE) & p-value
Dependent Variable: Median Respondent-Estimated Home Price (1989$)

Explanatory Variables:
Constant -1.204e+5 (3.331e+4) .0003 -3.903e+4 (3.061e+4) .2027
#Bedrooms -7.710e+4 (2.355e+4) .0011 -4.752e+4 (1.176e+4) .0001
#Rooms +9.858e+4 (1.273e+4) .0000 +7.642e+4 (6.375e+3) .0000
Log(OO Age) +6.784e+3 (5.771e+3) .2401 -1.852e+4 (5.055e+3) .0003
Lot Size (sf) +5.541 (1.681) .0010 +7.595 (0.9930) .0000
SF xAvg.Time to Work (sf*min) -0.2792 (0.0721) .0000 -0.3428 (0.0415) .0000
SF xWork Accessibility (30 min.) +5.153e-5 (5.194e-6) .0000 +6.268e-5 (3.972e-6) .0000
SF xSales&Service Walk Access. -3.285e-3 (1.292e-5) .0112 -3.231e-3 (9.529e-4) .0007
SF xIndustrial Fraction -6.3482 (1.665) .0001 -6.040 (1.266) .0000
SF xPublic Fraction +8.597 (2.480) .0006 +8.943 (3.904) .0222
SF xParkspace Fraction -2.763 (2.493) .2681 -1.132 (1.671) .4982
Mix of Land Uses -2.076e+5 (4.426e+4) .0000 -1.062e+5 (3.635e+4) .0036

N=8644 R2= 0.506 R2=0.563
Weights=#OO DUs Weights=Inverse of Predicted

Values of Variance Model

9DULDQFH�0RGHO�> i
2=zi @�

Dependent Variable: Squared Residuals of Primary OLS Model

Explanatory Variables:
Constant  +5.363e+9 +4.213e+9 (6.288e+9) .5030
#Bedrooms n/a +8.865e+9 (1.305e+9) .0000
#Rooms n/a -3.109e+9 (7.452e+8) .0000
Log (OO Age) n/a -3.386e+9 (1.601e+9) .0347
Age (Median, of OODUs) n/a +1.773e+8 (7.736e+7) .0221
Lot Size (sf) n/a +0.2373 (0.4850) .6247
Vacant Fraction n/a +5.295e+10(9.454e+9) .0000
1/(#OODU) - +5.412e+10(1.472e+9) .0003
Sales & Service Walk Access.      n/a +8.153e+6 (1.001e+6) .0000
Work Accessibility (30 min.) n/a -1.098e+4 (8261) .1843
Distance SF CBD (mi.) n/a -2.363e+8 (3.975e+7) .0000
Dist. Oakland CBD (mi.) n/a +1.334e+8 (4.196e+7) .0015
Time/Trip (100ths of hour) n/a +3.106e+7 (3.711e+7) .4030
Avg. Time to Work (min.) n/a -9.397e+8 (8.524e+8) .3305
Vehicles/Adults n/a +7.669e+8 (8.524e+8) .3685
VMT/Trip (euclidean miles) n/a -1.671e+8 (1.668e+8) .3168
Industrial Fraction n/a -2.899e+9 (2.350e+9) .2176
Fraction of DUs Boarded Up n/a -1.300e+11 (6.403e+10).0427
Mix of Land Uses n/a -7.571e+9 (4.520e+9) .0944

R2=0.266 (variance model)

Notes: OODUs differed from RODUs for the following explanatory variables: #Bedrooms, #Rooms, Square Footage estimates (SF), and
Structure Age (where OO median age and all-structures median age were used, respectively).

The OLS model’s standard errors have been estimated using White’s robust estimator, under heteroskedasticity. 5

All R2's are adjusted for degrees of freedom.
Vehicle ownership (vehicles/adult) and average trip time (for all trip types) were rejected as explanatory variables due to a complete lack
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of  statistical significance in essentially all OODU models where commute times were already included.

TABLE 3. RENTER-OCCUPIED DWELLING UNIT RENT REGRESSIONS
3ULPDU\�0RGHO�>\ ; @� OLS Coefficient (SE) & p-value FGLS Coefficient (SE) & p-value
Dependent Variable: Median Contract Rent/Mo. (1989$)

Explanatory Variables:
Constant +390.9 (57.96) .0000 430.5 (49.29) .0000
#Bedrooms -217.2 (37.65) .0000 -85.11 (28.33) .0027
#Rooms +232.8 (23.68) .0000 160.8 (18.42) .0000
Log(Age) -62.89 (12.06) .0000 -68.93 (9.461) .0000
Lot Size (sf) -0.0044 (6.017e-3) .4647 -7.466e-4 (3.941e-3) .8498
SF xTime/Trip (sf*100ths of hr.) -9.346e-5 (7.722e-5) .2265 +4.858e-5 (6.409e-5) .4487
SF xAvg.Time to Work (sf*min) -2.775e-4 (2.024e-4) .1709 -5.106e-4 (1.396e-4) .0003
SF xWork Accessibility (30 min.) +1.370e-7 (2.693e-8) .0000 +1.782e-7 (1.323e-8) .0000
SF xSales&Service Walk Access. -6.333e-6 (4.198e-6) .1318 -9.827e-6 (2.956e-6) .0009
SF xVehicles/Adult +5.118e-3 (2.675e-3) .0561 +1.498e-3 (1.206e-3) .2145
SF xIndustrial Fraction -0.02441 (5.869e-3) .0000 -1.968e-2 (5.658e-3) .0005
SF xPublic Fraction +0.01731 (6.738e-3) .0104 +1.609e-2 (1.318e-2) .2223
Land Use Balance -76.64 (72.79) .2928 -80.92 (41.23) .0500
Mix of Land Uses -1.995e+2 (45.19) .0000 -105.5 (66.68) .1140

N=787 R2= 0.414 R2=0.530
Weights=#RO DUs Weights=Inverse of Predicted

Values of Variance Model

9DULDQFH�0RGHO�> i
2=zi @�

Dependent Variable: Squared Residuals of Primary OLS Model

Explanatory Variables:
Constant  +14,650 +35,036 (10,174) .0006
#Bedrooms n/a +17,581 (4,984) .0004
#Rooms n/a -10,399 (3,386).0022
Age (Median years of all DUs) n/a -225.9 (75.28) .0028
Lot Size (sf) n/a +1.399e-5 (1.509e-6) .0000
1/(#RODU) - +3.241e+5 (9.987e+4) .0012
Sales&Service Walk Access. n/a -2.080 (1.658) .2100
Distance SF CBD (miles) n/a -269.9 (51.65) .0000
Time/Trip (100ths of hour) n/a +163.6 (82.36) .0473
Avg. Time to Work (min.) n/a -284.1 (212.7) .1820
Industrial Fraction n/a -4,859 (5,266) .3565
Fraction of DUs Boarded Up n/a +3.478e+5 (1.347e+5) .0100
Vacant Fraction n/a +33,164 (21,200) .1181
VMT/Trip (euclidean miles) n/a -790.8 (368.9) .0324
Land Use Balance n/a +10,455 (5,980) .0808

R2=0.213 (variance model)

Notes: OO DUs differed from RO DUs for the following explanatory variables: #Bedrooms, #Rooms, Square Footage estimates (SF), and
Structure Age (where OO median age and all-structures median age were used, respectively).

The OLS model’s standard errors have been estimated using White’s robust estimator, under heteroskedasticity.  (Please see endnote
numbe 5 for further explanation.)

All R2's are adjusted for degrees of freedom.
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Here, the neglect of (non-sample-size) heteroskedasticity may lead one to erroneous

conclusions regarding magnitude, and even sign, of explanatory-variable effects (e.g., age in the

OODU model).  Observe that differing DU sizes (via number of rooms), ages, accessibilities,

land-use patterns, and population travel characteristics exert important effects on the perceived

variance in these models; the efficiency of estimates appears to be substantially compromised

when OLS is the method of analysis used.

Interestingly enough, VMT-per-trip and auto ownership do not come into statistically

significant play in the primary models. Yet, travel times to work consistently are economically

and statistically significant.  For example, if a person in an OODU makes an average of two one-

way work trips per weekday, 250 days per year, and there are two such time-valuing persons per

typical household living on the median OODU quarter-acre lot, the -0.3428 coefficient translates

to a net present value of $3.73 per yearly commute minute saved (or $224 for each commute hour

saved), over the entire course of the home ownership.  After accounting for future time benefits

(via discounting), this result translates to a value of time of roughly $20 per hour - a rather

sizable figure when compared with many of the results of studies cited at the beginning of this

report, particularly when one considers that the model already controls for two other measures of

accessibility.  However, the commute-time variable may be picking up time savings found in

other, non-work trips, causing the work-trip time to have a coefficient that is biased-high.  For

example, if all adult trips are valued the same (per minute spent) and the same time savings

found in the work trip is exhibited in all other trips made, the $20-per-travel-hour figure may be

closer to $5 per hour (assuming roughly three non-work trips for every commute trip).

In addition to travel times to work, the work-accessibility variable proves highly useful. 
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Plot 1 provides a view of owner-occupied-dwelling-unit price estimates across different work-

accessibility levels and at distinct work travel times.  Note the rather dramatic dependencies.

There is a positive, rather than negative, coefficient on vehicles-per-adult in the RODU

models; this somewhat unexpected result is likely an indication of the value to a renter of parking

provision by the landlord.  In many areas renters are required to pay $100 or more per month for

a single parking space, so this variable’s sign shouldn’t be taken too seriously as a measure of

travel costs.

To give one a better idea of the influence of explanatory variables, several of the elasticity

estimates are provided here:

TABLE 4.  ELASTICITY ESTIMATES FOR OO & RO DU MODELS
     OODU Price      RODU Rent/Month

With respect to:
#Rooms +1.71 +0.980
log(Age) -0.235 -0.331
Lot Size (sf) +0.321 -0.009
SF x Avg.Time to Work -0.343 -0.108
Mix of Land Uses -0.049 -0.019

Note:  Elasticities are computed at means.

From the elasticity estimates one may infer that the number of rooms (a proxy for home

size) is highly influential in its economic impact on home price and rent; and, while lot size

figures very prominently in the owner-occupied market, dwelling unit age is a more important

determinant of rental-market prices.  Note also the significant elasticity levels associated with the

travel time to work variable (interacted with parcel size); evidently, travel considerations can

impact a sizable share of home value (as well as rents).

Use of Purely Additive Models:
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The models based on the interactive model, discussed above, incorporate a variety of

interaction terms between trip costs (and accessibility indices) and square-footage estimates;

however, their adjusted coefficients of determination (R2) are substantially lower than those

achieved using purely additive models, whose results are shown in Table 5 (e.g., R2s of 0.56

versus 0.86).  The substantial goodness-of-fit differences may be suggestive of a marketplace for

dwelling units where the buyer (and/or seller) considers attributes as relatively marginal in their

impact on price (or rent).  This makes some sense considering the rigidities of the land market;

for example, parcel sizes are rather fixed over the near term (~10-25 years) thanks to zoning laws

TABLE 5.  GENERAL ADDITIVE MODELS’ FGLS RESULTS
Owner-Occupied Dwellings Renter-Occupied Dwellings

OODU RODU
3ULPDU\�0RGHO�>\ ; @� FGLS Coefficient (SE) & p-value FGLS Coefficient (SE) & p-value
Dependent Variable: Median Respondent-Estimated Median Contract Rent/Mo.

Home Price (1989$) (1989$)
Explanatory Variables:

Constant -1.189e+5 (2.450e+4) .0000 +506.2 (48.92) .0000
#Bedrooms -7.027e+4 (1.029e+4) .0007 -82.38 (22.67) .0003
#Rooms +1.128e+5 (5.317e+3) .0000 +189.5 (14.38) .0000
Log(Age) -1.605e+4 (3.012e+3) .0000 +189.5 (14.38) .0000
Square Feet of Parcel +2.441 (0.236) .0000 *
Dist.SF CBD (mi.) -7.502e+3 (213.2) .0000 -9.940 (0.5339) .0000
Dist. SJ CBD (mi.) -1.632e+3 (113.6) .0000 -3.280 (0.2083) .0000
Dist. Oakland CBD (mi.) +7.888e+3 (184.5) .0000 +9.958 (0.4798) .0000
Work Accessibility (30 min.) +0.3750 (0.0596) .0000 +8.603e-5 (1.167e-4) .4612
Sales & Service Walk Access. +7.770 (6.827) .2554 *
Vehicles/Adult -8,543 (3,867) .0275 *
Time/Trip (100ths of hour) -307.3 (156.4) .0499 *
Industrial Fraction -4.938e+4 (1.442e+4) .0007 *
Land Use Balance (Mean Entropy) +1.062e+4 (1.332e+4) .4254 *
Mix of Land Uses -9.957e+4 (2.426e+4) .0000 *

R2=0.865 R2=0.725
N=737 N=770
(Weights=Inverse of Predicted Values of Variance Models)

9DULDQFH�0RGHO�> i
2=zi @�

Dependent Variable: Squared Residuals of Primary OLS Model
Constant -3.258e+9 (2.149e+9) .1299 +18,383 (8,379) .0503
#Bedrooms +6.269e+10(6.148e+8) .0000 +1.814e+4 (4,114) .0000
#Rooms -3.056e+7 (4.702e+5) .0000 -1.091e+4 (2,783) .0000
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Log (Age) +2.663e+8 (3.432e+8) .4379 -3,179 (1,339) .0178
Lot Size (sf) * *
1/(#OODUs) +4.962e+10(6.143e+9) .0000 +8.459e+4 (7.434e+4) .2555
Work Accessibility (30 min.) +1.269e+4 (4,630) .0063 +.03872 (0.02482) .1192
Sales & Service Walk Access. +3.454e+6 (4.702e+5) .0000 -0.6045 (1.498) .6867
Dist.SF CBD (mi.) * -170.1 (97.11) .0803
Dist. SJ CBD (mi.) +3.921e+7 (3.017e+6) .0000 +69.21 (41.55) .0959
Dist. Oakland CBD (mi.) * +65.88 (86.17) .4448
Vehicles/Adult +5.609e+8 (4.083e+8) .1699 +2354 (1594) .1401
Time/Trip (100ths of hour) * +140.5 (68.05) .0393
Industrial Fraction +3.487e+9 (1.152e+9) .0025 +2,554 (4,364) .5585
Land Use Balance (Mean Entropy) -3.169e+9 (1.476e+9) .0321 +7320 (5901) .2151
Mix of Land Uses -3.140e+9 (2.564e+9) .2209 -1.543e+4 (9571) .1073

R2=0.280 (variance model) R2=0.0584 (variance model)

Notes: OODUs differed from RODUs for the following explanatory variables: #Bedrooms, #Rooms, Square Footage estimates (SF), and
Structure Age (where OO median age and all-structures median age were used, respectively).

* These variables were dropped early due to lack of significance and "improper" sign.

(e.g., density caps) and the durability of dwellings.  In other words, parcel sizes cannot adapt

quickly to changes in underlying land valuation, so the dwelling becomes a package of relatively

separable qualities.  Lot size may therefore, in the short run, be relatively separable from access

considerations.

From the additive models’ results, one observes substantial value associated with reduced

trip lengths and vehicle ownership needs in the OODU model, but these become negligible in the

RODU model.  Perhaps tracts with a significant sample of rental units (which are then heavily

weighted in the regressions) offer more than "threshold" levels of viable travel-mode choice

(such as rapid transit and high-frequency bussing) and within-walking-distance commercial uses.

 Such a situation is credible, given that most transit lines serve commercial centers and high-

density residential uses generally are zoned alongside commercial uses.  So, if travel-choice and

local-access threshold levels are met for most rental units, then at the margin the differences in

travel times, trip lengths, auto ownership, and walk accessibility across different rental units will

not appear as economically significant.  Additionally, collinearity across these explanatory
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variables (e.g., +0.36 between vehicle ownership and VMT-per-trip, and +0.47 between VMT-

per-trip and time-per-trip) can mask an individual variable’s contribution.

In both model types, it is rather clear that major premiums accompany proximity (in

miles) to downtown San Francisco; distances to San Jose and Oakland are influential as well. 

After controlling for five measures of regional accessibility in these models (i.e., two

accessibility indices and three distance-to-CBD variables), the estimated value of travel time for

a household making ten one-way trips per day, 365 days a year, yields a discounted value of time

of roughly just $1 per hour in the OODU additive model, across all trip types.  Clearly then,

access - not just observed behavior (i.e., time per trip) - is very important in location valuation. 

This relatively low value-of-time estimate is probably largely due to the fact that the already-

controlled-for variable of "access" allows greater choice within the same travel-time radius,

enabling more valued trip in high-access environments than those of similar travel time in lower-

access areas.

Note the positive coefficient for the log of Age in the additive RODU model - in contrast

to the negative (and influential) coefficient on this variable in the interactive RODU model.  A

change in model set-up, even after controlling for a variety of access measures here (which are

correlated with structure age, since the most central areas of the region are the oldest), has led to

an unanticipated result.

ADDITIONAL OBSERVATIONS:

Other observations and conclusions that may be drawn from the results of this research as

well as from the series of models that led to the final interactive and additive models' results are

the following:

• Local built-environment diversity does not seem to be appreciated in the housing
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and rental markets.  Coefficients on land use mix and local accessibility to sales

and service jobs were consistently negative6, after controlling for more regional

accessibility; and land use balance’s coefficient was almost always negative. 

Additionally, the fraction of a tract’s developed area that was industrial was a

highly statistically significant and negative-coefficient variable for these

regressions, and the fractions of park and public space were often not of statistical

importance.7  Such results suggest that single-use zoning may protect property

values.

• CBD distances, while highly simplistic, turn out to very effectively predict

housing prices and rents - even in the presence of far more sophisticated measures

of access and travel costs.  Models used elsewhere which rely on such simplistic

variables are perhaps not as weak as they may first appear, at least for predictive

(if not theoretical) purposes.

The consistently highly positive coefficients associated with distance to Oakland's

downtown, competing in absolute value with the (negative) coefficients on distance to

San Francisco's CBD, are probably indicating the relative abundance of land in the East

Bay, versus that on the peninsula, as well as the comparative dearth of strong cultural,

entertainment, shopping, and work attractions housed in Oakland's downtown - coupled

with relatively high crime rates.

• Work proximity appears to be very relevant in location valuation, diverging

somewhat from Guiliano and Small's wasteful-commuting conclusions (6).  The

coefficients on travel time to work and work accessibility measures were
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consistently of expected sign and highly statistically significant, in contrast to the

other measures of travel behavior and access.  This result suggests a great value

placed by households on locations close to their work; but it may also be an

indication of other land use types in competition with households for these

locations.8  For example, the economies to businesses and industry from

proximity to job hubs - which house buyer and supplier markets as well as skills

and information - can be sizable, so these locators are likely to bid high for such

locations.

• Also of note is the fact that the variable of lot size was not useful in the interactive

RODU model and was dropped in the additive RODU models, since its

coefficient appeared as statistically insignificant (and often with a negative sign). 

The levels of this variable may be suspect, since they had to be indirectly inferred

from the aggregate data; and/or the need for such a variable in RODU models may

be questioned, since renters do not control the land their units lie on and since the

square footage of a rented unit may be substantially independent of the structure's

footprint.  However, several interactions of parcel size with travel variables held

out as statistically significant and useful to the interactive RODU model.

• Lack of detail in dwelling unit attributes remains a problem, although the adjusted

R2's produced here in the additive models with distance-to-CBD variables are

actually higher than those in previous models run by the author for individual

Alameda County homes, controlling for a great variety of structural characteristics

(e.g., R2's of 0.86 versus 0.73).  Much of the rise in R2's may be attributed to the
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more varied data set, thanks to a far wider set of locations.9

Model Limitations:

Given that some of the FGLS model’s results were unexpected, as discussed in the above

sections, one may want to scrutinize the model and acknowledge its limitations as well as

weaknesses.  Many of these are discussed here.  They are:

• The reliance on purely additive models of home valuation, while offering a better

measure of model fit (R2), is not as theoretically "pure" as is, for example, an

explicit acknowledgement of the underlying market for land via interaction terms

with lot size.  Furthermore, interactions with household size for variables such as

the number of bedrooms, structure age, etc., may be relevant since the benefits

accrue to several individuals, perhaps additively over individuals (and/or with

declining returns), rather than in fixed, marginal amounts.

• A "true" equilibrium in the housing market is essentially impossible to achieve for

the following reasons: housing is a highly durable good, the costs of acquiring

information on homes for sale and the costs of moving are substantial, and local

entities impose zoning and other constraints on home construction.  For this

reason there may be relatively short-run excess demand and/or supply for different

housing attributes (including location) which will then impact the hedonic

"prices" of the model (i.e., the model coefficients).

• The BATS trip data are limited to weekday travel, when work travel is relatively

dominant; thus, only proxies of estimated travel savings have been constructed

here.  Moreover, the explanatory variables used come from sample zonal
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averages, which are not as precise for estimating impacts of marginal changes in

attributes.

• The reliance on per-trip (or per-adult) measures of travel costs avoids the

difficulty in interpreting total household travel expenditures, due to travel

minimizing behaviors (such as trip avoidance and trip chaining) present in low-

opportunity environments.  However, the use of per-trip and per-adult variables

makes the implicit assumption that the value of a trip (whose value arises from

purposes served at the trip destination) in one area of the region is the same as a

trip made in a very different environment.  For example, the value of a trip to a

large supermarket in the suburbs is implicitly taken to be the same as a trip made

in San Francisco’s Nob Hill to a mini-market.

An alternative to these types of normalizations is household trip-consumption variables;

for example, total travel time per household.  A major weakness of such models is that

foregone trip-making, wherein a household suffers some disutility by not making costly

trips or by chaining trips, is not observed.  Thus, if relatively constant travel time budgets

exist (such as those hypothesized by Zahavi [30] and others), they can mask the variation

in a location’s value to travelers.  Per-trip and per-person normalizations help avoid such

difficulties.

• Household tastes vary in unobservable ways which can dampen expected changes

in home valuation.  For example, those whose value of travel time is less

(because, for example, they enjoy driving) will tend to locate in more distant areas

and may bid up home prices more so than would be expected, even after
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controlling for income.  In contrast, people who feel they need to be near plenty of

activity or who dislike driving will tend to compete for more central locations.

Moreover, travel time and VMT estimates may be poor in tracts where the sampled

BATS households are in some way unusual, relative to the general population.  This may

occur through sorting (e.g., where people who love to drive place themselves in very

isolated tracts) or by interest and occupation (such as communities for the elderly or full

of college students).  It would be best to control for such factors in the analysis, perhaps

through interactions of travel behavior and population attributes.

CONCLUSION:

The implications of this research are many, although model limitations (as discussed

above) do exist.  First, non-constant error-term variance (i.e., heteroskedasticity) appears to play

an important role in the models of home and rental-units’ valuation and should not be neglected

in estimation, particularly since generalized least squares results can diverge substantially from

those of the OLS (as evidenced here).

Use of travel-cost variables, such as average trip time, car ownership, and per-trip VMT

do not negate the role and impact of other travel-related measures such as "accessibility" and

distance to major downtowns.   In fact, even after controlling for a variety of detailed travel

measures and accessibility indices, the rather simplistic distance-to-CBD measures are very

strong predictors of housing price and rental rates, as seen in the additive models presented here.

The importance of work access seems clear from the model results, while the coefficients

on other forms of access (such as park space and local sales and service access) and travel "costs"

(such as auto ownership) are often insignificant or of unanticipated sign.  Average commute-trip
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time was found to be highly economically and statistically significant in the theory-based lot size-

interactive OODU model, at a rate of approximately $20 per commute-trip hour, which may then

translate to $5 per hour across all trip types (1989$).  In the purely additive OODU home-price

model, the average trip time computed across all trip types was found to be statistically

significant - although not nearly as economically significant, due in large part to this model's

inclusion of a variety of accessibility measures.  In any case, these models suggest new methods

for arriving at value-of-time estimates, which can be critical in planning transportation

improvements.

Interestingly, local land-use diversity generally appears to reduce dwelling unit values,

lending credibility to a perception which has long fueled the implementation of single-use

zoning.  However, accessibility, land-use mix, and land-use balance do often appear to dampen

the variability inherent in expected values.  These land-use explanatory variables, like the

observed-travel-behavior variables, have been absent in the great majority of property valuation

models; yet their significance here suggests that they should be included in future planning

models and policy consideration.

Overall, given the variety of explanatory variables and heteroskedastic specifications

probed, the possibilities for model interpretation are many and their implications complex.  Yet

the models examined here do appear to offer many insights and hope for future regional land-

modelling efforts of this kind.
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ENDNOTES:
                                                
1.  For estimation of owner-occupied and renter-occupied dwelling-unit (OODU & RODU) mean
lot sizes, the total area used by the OODUs is assumed to equal the area covered by the lowest-
density DUs until all owner-occupied DUs are "used up."  All remaining DUs (i.e., those at
higher densities) are assumed to be renter occupied.

The "equivalent" number of single-unit detached DUs is estimated by assuming the
relative footprint sizes of moderate- and high-density dwelling unit types (by structure "size" -
i.e., #DUs in structure) as a percentage of the single-unit detached DU footprint and is shown
here:

Type Description Lot-Size%

  1 1-unit detached 100%
  2 1-unit attached 75%
  3 2-unit 65%
  4 3-4 units 50%
  5 5-9 units 40%
  6 10-20 units 15%
  7 20-50 units 5%
  8 50+ units 1%
  9 Mobile Homes 5%
 10 "Other" DU types1%   (expect ~dormitories here...)

The distributional and footprint assumptions translate to square foot estimates via the following
equations:

Install Equation Editor and double-
click here to view equation.

Note, for example, if the number of OODUs is less than n1 then all of these are of square
footage for Type 1.  After determining/estimating how many OODUs fall into each category, an
estimate of the average lot size per OODU is just the weighted average of the different lot sizes
estimated to occur across the OODU sub-population.

2.  A Euclidean version of VMT (i.e., "as the crow flies") was estimated using each trip's origin
and destination tracts' centroid coordinates and was adjusted for vehicle occupancy levels.  If a
trip's origin and destination census tract were the same, the trip was assigned a distance estimate
of 0.2 Euclidean miles (which typically translates to a quarter mile).

3.  Other parameterizations of the form of heteroskedasticity were investigated as well:  an
H[SRQHQWLDO��ZKHUH� i

2=exp(zi ����DQG�D�VTXDUHG�IRUP��ZKHUH� i
2=(zi �2) - both of which ensure

positivity of variance estimates.  These models performed substantially poorer than the original
heteroskedastic models (registering R2s of less than 0.10).  Thus, the initial parameterization of
KHWHURVNHGDVWLFLW\�� i

2=zi ��ZDV�PDLQWDLQHG���+RZHYHU��WKLV�IRUP�GRHV�QRW�HQVXUH�SRVLWLYLW\�RI
variance estimates; thus, four percent of the owner-occupied and 0.4 percent of the renter-
occupied variance estimates, being negative, were not of aid in the second stage of the FGLS
regression process.
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4.  The number of usable records ended well under the maximum number possible (i.e., the 1,382
census-tract population for the nine-county San Francisco Bay Area) because observations were
removed for the following reasons: 1) some census tracts had no OO and/or no RO dwelling
units; 2) median price and/or rent exceeded the census survey’s upper bounds/caps of $500,000
and $1,000, respectively; 3) no BATS data were available for the tract; and 4) lot-size
calculations gave unreasonable estimates.

5.  Note that when heteroskedasticity is present, the standard error results of the early OLS
regressions must be revised, because OLS error estimates are biased (downward) and may
HQFRXUDJH�LPSURSHU�PRGHO�LQWHUSUHWDWLRQ���:LWK�KHWHURVNHGDVWLFLW\��9&� ��QR�ORQJHU�UHGXFHV�WR

2(X’X)-1.  Instead, one must estimate (X’X)-1�;
 ;��;
;�-1��ZKHUH� �LV�WKH�FRYDULDQFH�PDWUL[�RI
the model’s error terms.  White’s robust estimate of the coefficient estimates’ covariance matrix
(31) can be computed independent of the underlying form of heteroskedasticity and relies on a
summation of variance estimates (i.e., the squared OLS residuals) times the outer product of
REVHUYDWLRQ�YHFWRUV����:KLWH¶V�HVWLPDWH�RI�;
 ;��680�ei

2xixi’) , was used here to robustly
estimate the true standard deviations of the OLS coefficients.

6.  Wheaton (7) observes a very similar result, where the coefficient for his measure of
accessibility, based on highly local employment, garners a negative - rather than the expected
positive - sign.

7.  Note, however, that the most valued sites are too expensive for industrial uses, and perhaps
for much park use or even public use.  So there is collinearity and possible error-term correlation
with explanatory variables occurring here.

8.  The lesser variability and reduced measurement error associated with the Census- versus the
BATS-based explanatory variables may be responsible for differences in statistical significance
as well.  For example, the average commute time variable is based on the long-form Census
questionnaire, which is distributed to between ten and fifteen percent of the region's households. 
In contrast, the BATS forms went out to under one percent of the region's households.

9.  The number of observations between the two data sets is roughly the same (~800+), but those
for this sample are averaged across essentially all homes in the census tract.  While the number
and detail of structural explanatory variables fell substantially in moving from TRW-collected to
Census data, the number of observed census tracts increased from under 300 in the Alameda
County regressions to over 800 here; thus, the number of distinct levels (or values) of tract-
averaged BATS-based explanatory variables (such as average trip time and VMT per trip)
increased dramatically here.
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