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ABSTRACT 

Numerous efforts have been devoted to investigating crash occurrence as related to roadway 

design features, environmental and traffic conditions.  However, most of the research has relied 

on univariate count models; that is, traffic crash counts at different levels of severity are 

estimated separately, which may neglect shared information in unobserved error terms, reduce 

efficiency in parameter estimates, and lead to potential biases in sample databases.  This paper 

offers a multivariate Poisson-lognormal (MVPLN) specification that simultaneously models 

injuries by severity.  The MVPLN specification allows for a more general correlation structure as 

well as overdispersion.  This approach addresses some questions that are difficult to answer by 

estimating them separately.  With recent advancements in crash modeling and Bayesian statistics, 

the parameter estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the 

Metropolis-Hastings (M-H) algorithms for crashes on Washington State rural two-lane highways. 

The estimation results from the MVPLN approach did show statistically significant correlations 

between crash counts at different levels of injury severity.  The non-zero diagonal elements 

suggested overdispersion in crash counts at all levels of severity.  The results lend themselves to 

several recommendations for highway safety treatments and design policies.  For example, wide 

lanes and shoulders are key for reducing crash frequencies, as are longer vertical curves. 
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INTRODUCTION 
Roadway safety is a major concern for the general public and public agencies.  Roadway crashes 
claim many lives and cause substantial economic losses each year.  In the U.S. traffic crashes 
bring about more loss of human life (as measured in human-years) than almost any other cause – 
falling behind only cancer and heart disease (NHTSA, 2005).  The situation is of particular 
interest on rural two-lane roadways, which experience significantly higher fatality rates than 
urban roads.  The annual cost of traffic crashes is estimated to be $231 billion, or $820 per capita 
in 2000 (Blincoe et al., 2000).  These costs do not include the cost of delays imposed on other 
travelers, which also are significant, particularly when crashes occur on busy roadways.  Schrank 
and Lomax (2002) estimate that over half of all traffic delays are due to non-recurring events, 
such as crashes, costing on the order of $1,000 per peak-period driver per year, particularly in 
urban areas.   Thus, while vehicle and roadway design are improving, and growing congestion 
may be reducing impact speeds, crashes are becoming more critical in many ways, particularly in 
societies that continue to motorize.   

Given the importance of roadways safety, there has been considerable crash prediction 
research (see, e.g., Hauer, 1986, 1997, and 2001; Abdel-Aty, and Radwan, 2000; Ulfarsson and 
Shankar, 2003; Kweon and Kockelman, 2000; Lord and Persaud, 2000; Lord et al., 2005; Ma 
and Kockelman, 2006; Karlaftis and Rarko, 1998; Shankar et al., 1998; Khattak et al., 2006).  
Crash frequencies are commonly collected by severity on relatively homogenous roadway 
segments, supporting the development of crash count models.  However, such research has relied 
on univariate count models; that is, traffic crash counts at different levels of severity are 
estimated separately.  The widely used univariate count data models ignore the following issues: 
interdependence due to latent factors is likely to exist across crash rates at different levels of 
severity for a specific segment of roadway.  Recently, Ma and Kockelman (2006) applied a 
multivariate Poisson (MVP) specification to model crash counts at different levels of severity 
simultaneously.  However, this MVP specification allows only for a common added Poisson 
error term, resulting in equal positive correlations across crash counts and a very specific data 
pattern where all counts are equally shifted.  In addition, this MVP specification does not allow 
for overdispersion. 

Using a multivariate Poisson-lognormal (MVPLN) specification, as well as Bayesian 
estimation techniques, this work models correlated traffic crash counts simultaneously at 
different levels of severity.   The MVPLN specification allows for a more general correlation 
structure as well as overdispersion.  This approach addresses some questions that are difficult to 
answer by estimating them separately.  With recent advancements in crash modeling and 
Bayesian statistics, the parameter estimation is done within the Bayesian paradigm, using a 
Gibbs Sampler and the Metropolis-Hastings (M-H) algorithms.  The data come from Washington 
State rural two-lane highways in 2002, using the Highway Safety Information System (HSIS) 
database.  The results lend themselves to recommendations for highway safety treatments and 
general design policies. 

This paper is organized as follows: Related research studies are reviewed first.  The 
model’s formulation and data sets are then discussed, followed by estimation results, concluding 
remarks, and future research directions.  

LITERATURE REVIEW 
Models of crash (or injury) counts can be classified into two major streams: (1) the conventional 
univariate Poisson and related models, such as the negative binomial (NB); (2) potentially more 
realistic specifications, like the MVP and MVPLN. The first stream has provided a means for 
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investigating associations between crash frequency and many crucial factors, such as traffic 
volume, access density, posted speed limit and number of lanes (see, e.g., Miaou et al., 1993; 
Miaou and Lum, 1993; Miaou 1994, 1996 and 2001;Fridstrøm et al., 1995; Johansson, 1996; 
Vogt and Bared, 1998; Vogt, 1999; Balkin and Ord, 2001; Zegeer et al., 2002; Pernia, 2004).  
There also has been considerable interest in models that allow for excessive zeros, such as zero-
inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) regression approaches (see, 
e.g., Lord et al. 2005; Shankar et al., 1997; Garber and Wu, 2001; Lee and Mannering, 2002; 
Kumara and Chin, 2003; Miaou and Lord, 2003; Rodriguez et al. 2003; Shankar et al. 2003; 
Noland and Quddus, 2004; Qin et al., 2004).  

Due to computational and statistical advances, panel data (in which   a cross-section of 
segments, intersections, etc. is observed over time) have become more amenable to rigorous 
analysis.  In traffic crash analyses, there are a great many unobserved explanatory variables that 
affect frequencies and severities.  Panel data can be used to deal with heterogeneity among 
individuals.  To address the heterogeneity, many recent studies have used (univariate) panel 
count data models, such as random-effect negative binomial (RENB) and fixed-effect negative 
binomial (FENB) regression models (Kweon and Kockelman, 2000; Karlaftis and Rarko, 1998; 
Shankar et al., 1998; Chin and Quddus, 2003).   

Such past research endeavors, however, have neglected the role of unobserved factors 
across different types of counts (e.g., the number of fatalities and the number of debilitating 
injuries).  Recognizing the need for such considerations, Ladron de Guevara and Washington 
(2004) investigated the simultaneity of fatality and injury crash outcomes.  Bijleveld (2005) also 
examined the correlation structure between crash and injury counts.  As expected, he found 
significant correlations.  However, he did not control for any covariates.  Multivariate models (of 
count data), like Ma and Kockelman’s MVP (2006) or Li et al’s MVZIP (1999), can help correct 
for this.  

This work models correlated traffic crash counts simultaneously at different levels of 
severity using a MVPLN specification, allowing for a very general correlation structure as well 
as overdispersion.  Such specifications are challenging to estimate.  Karlis (2003) developed an 
EM algorithm for an MVP model, and Ma and Kockelman (2006) used Gibbs sampling, as well 
as Metropolis-Hastings algorithms, within an MCMC simulation framework. 

In recent years, Bayesian methods have found several applications in traffic crash 
analysis.  Christiansen et al. (1992) and MacNab (2003) developed hierarchical Poisson models 
for crash counts and surveillance data.   Miaou and Song (2005) developed a Bayesian 
multivariate spatial generalized linear mixed model (GLMM) to rank sites for safety 
improvements using Texas’ county-level crash data.  And Liu et al. (2005) used a hierarchical 
Bayesian framework to estimate ZIP regression models and develop safety performance 
functions (SPFs) for two-lane highways.  Pawlovich et al. (2006) employed a Bayesian approach 
to assess impacts of road design measures on crash frequencies and rates.  And Washington and 
Oh (2006) developed a Bayesian methodology for incorporating expert judgment in ranking 
countermeasure effectiveness under uncertainty. 

Bayesian estimation methods generate a multivariate posterior distribution across all 
parameters of interest, as opposed to the traditional maximum likelihood estimation approach, 
which emphasizes and offers only the modal values of parameters (and relies on asymptotic 
properties to ascertain covariance). 

This paper introduces an MVPLN approach to simultaneously model injury counts by 
severity.  A Gibbs sampler and a Metropolis-Hastings (M-H) algorithm are used to estimate the 
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parameters of interest using Bayesian methods.  For comparison purposes, a series of 
independent (univariate) Poisson models for injury counts also are estimated.   

MODEL STRUCTURE AND ESTIMATION 
Mathematical Formulation 
Univariate Poisson regression models cannot account for correlations for different levels of 
severity; instead, one needs multivariate count data models.  For instance, in practice, omitted 
variables (such as driveway density and sight distances) may simultaneously affect all crash 
counts at different levels of severity for a particular roadway segment, thus introducing 
correlation. Several such models have been developed (see, e.g., Karlis, 2003; Arbous and 
Kerrich, 1951; King, 1989; Winkelmann, 2000; Kockelman, 2001; Tsionas, 2001).  However, 
these specifications support only a common unobserved error term among counts.  

Here, the focus is placed on the correlated counts within individual roadway segments.  
Crash counts across roadway segments are assumed to be independent (e.g., there is no spatial 
correlation1).  The variance-covariance matrix of y  can be expressed as below: 
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1

2
1nS

n

Var ×

Ω⎡ ⎤
⎢ ⎥Ω⎢ ⎥=
⎢ ⎥
⎢ ⎥Ω⎣ ⎦

0 0
0 0

y

0 0

L

L

M

L

        (1) 

where 

11 12 1

21 22 2

1 2

i i i
S

i i i
S

i

i i i
S S SS

ω ω ω
ω ω ω

ω ω ω

⎡ ⎤
⎢ ⎥
⎢ ⎥Ω =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M

L

 for 1, 2, ,i n= K       (2) 

Let ( )1 2, ,i i i iSε ε ε ′=εr K  denote the severity-level-specific unobserved heterogeneity for 
roadway segment i  [ 1, 2, ,i n= K , where n  is the number of roadway segments], s  denote the 

severity level [ 1,2, ,s S= K , where S  is the number of severity levels], and ( )1 2, , , n
′′ ′ ′=ε ε ε εr r r

K  
denote the severity-level-specific unobserved heterogeneity across roadway segments.   

Assume that crash counts isy , conditioned on iε
r , the severity-level-specific explanatory 

variables isx′  and their coefficients of sβ , are independent Poisson distributed. 

( ), , ~is i s is isy x Poissonβ λεr          (3) 

where ( )expis is s isxλ β ε′= + .  The unobserved heterogeneity terms iε
r  are assumed to be 

uncorrelated with the control (i.e., explanatory) variables.   
Let ( )i idiagΛ = λ

r
.  This is an S×S matrix, where ( )1 2, , ,i i i iSλ λ λ=λ

r
K  and is is isuλ ξ= .  

Let ( )expi i=u εr r , where ( )1 2, , ,i i i iSu u u ′=ur K .  Conditioning on β  and Σ , the mean and 
covariance matrix of the marginal distribution of iyr  can be obtained as follows: 

                                                 
1 In reality, spatial correlation may exist and be significant.  For example, zoning and design policies create 
correlation across sites within a city; access management and other policies may simply shift the location of certain 
crash types.  The former leads to positive correlation, the latter to negative. 
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( ) ( )( ) ( )( ), , , , ,
i ii ii i i i i i i iE x E E x E diagβ βΣ = Σ = =u uy uy y u ξ u λr rr r

r rr r r r     (4) 

( ) ( )( ) ( )( ), , , , , , , ,
i ii i i ii i i i i i i iVar x E Var x Var E xβ β βΣ = Σ + Σu uy u y uy y u y ur rr r r r

r r r r r  (Greene, 2003) 

( )( )( ) ( )( )i ii i i iE diag diag Var diag= +u uξ u ξ ur r

r rr r
 

( )expi i i′= Λ + Λ Σ − Λ⎡ ⎤⎣ ⎦11          (5) 

where ( )1 2, , , Sβ β β β ′= K , ( )1 2, , ,i i i iSx x x x ′= K  and ( )1 2, , ,i i i iSξ ξ ξ ′=ξ
r

K .  The length of β  is 

1 2 Sk k k k= + + +L , where sk  is the length of sβ .   
From Equation (5), the variance-covariance terms, across counts, can be obtained as 

follows: 
( ) ( ), 0 exp 1is il is sl ilCov y y λ σ λ= + −⎡ ⎤⎣ ⎦  

        ( ) ( ) ( )exp 2 exp 1 exp 2is ss sl il llξ σ σ ξ σ= −⎡ ⎤⎣ ⎦ , for s l≠     (6) 

( ) ( ), exp 1is is is is ss isVar y y λ λ σ λ= + −⎡ ⎤⎣ ⎦  
The correlation between crash counts within segments is obtained as follows: 
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 (7) 

where s l≠ .  
This correlation is unrestricted and can be positive or negative, depending on the sign of 

slσ , the ( ),s l  element of Σ .   Moreover, this specification implies overdispersion2, since 0ssσ >  
for 1,2, ,s S= K . 

Based on Equation (3), the likelihood of observation i  can be represented by the 
following equation: 

( ) ( )
1

, ,
S

i i i Poisson is is
s

P x f yβ λ
=

=∏y εr r         (8) 

where ( )expis is is is s isu xλ ξ β ε′= = + . 
Unfortunately, the marginal distribution of the crash counts iyr  cannot be obtained by 

direct computation.  Obtaining the marginal distribution requires the evaluation of an S -variate 
integral of the Poisson distribution with respect to the distribution of iε

r , 

( ) ( )
1

, , , ,
S

i i Poisson is is s is S i i
s

P f y x dβ ε φ
=

Σ = ⎡ Σ⎤⎣ ⎦∏∫y λ ε 0 ε
rr r r      (9) 

where Sφ  is the S -variate normal distribution.  This S -dimensional integral cannot be 
algebraically implemented in closed form for arbitrary Σ .   

Estimating Parameters via MCMC 
                                                 
2 Overdispersion refers to the situation in which variance is greater than mean. 
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In order to illuminate crash rate relationships, the MVPLN model’s unknown parameters need to 
be estimated.  Chib et al. (1998) showed how to estimate a posterior distribution of unknown 
parameters for their models of panel count data3, and Plassmann and Tideman (2001) developed 
a Gibbs sampler to estimate parameters in a univariate Poisson-lognormal model.   

Based on Press (1982) and Gelman et al. (2004), the Wishart distribution is commonly 
used as a conjugate prior for the inverse of variance-covariance parameters.  According to Press 
(1982), the Wishart and normal distributions are very helpful for multivariate analysis.  Suppose 
that the parameters ( ),β Σ  independently have the prior distributions: 

( )00~ ,k Vββ φ β , ( )1 ~ ,Wf Vν−
Σ ΣΣ         (10) 

where ( )0 01 02 0, , , Sβ β β β ′= K , 
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L

, ( ),Wf ⋅ ⋅ is the Wishart distribution 

with νΣ  degrees of freedom and scale matrix VΣ , and 
00 , ,Vββ νΣ  and VΣ  are known 

hyperparameters.  The prior distribution for sβ  can written as ( )00~ ,
s ss k s Vββ φ β  for 

1,2, ,s S= K . 
According to Bayes’ theorem ( posterior prior likelihood∝ × ), the posterior kernel can 

be written as follows: 

( ) ( ) ( ) ( ) ( )
00

1 1

, , , , , , ,
n S

k W Poisson is is s is S i i
i s

y X V f V f y x dβπ β φ β ν β ε φΣ Σ
= =

Σ ∝ Σ∏ ∏∫ ε 0 εr r  

Using data augmentation4, the latent effects ε  can be thought of as (“nuisance”) 
parameters to be estimated.  Therefore, the joint posterior density of Σ , ε , and β  is written as 
follows: 

( ) ( ) ( ) ( ) ( )
00

1 1

, , , , , , , ,
n S

k W Poisson is is s is S i
i s

y X V f V f y xβπ β φ β ν β ε φΣ Σ
= =

Σ ∝ Σ∏∏ε ε 0r   (11) 

Thanks to this technique, the parameters can be “blocked” as Σ , ε , and β , after which 
the joint posterior is simulated by iteratively sampling from the following three conditional 
distributions: 1pπ −⎡ ⎤Σ⎣ ⎦ε , , , ,p y Xπ β Σ⎡ ⎤⎣ ⎦ε , and , , ,p y Xπ β Σ⎡ ⎤⎣ ⎦ε , where ( )pπ ⋅ ⋅  denotes the 
posterior conditional density function. 

The draws are sampled sequentially using the most recent values of the conditioning 
variables at each step.   

Gibbs Sampler with Embedded M-H Algorithms 
After manipulating the posterior equation (11), the posterior of 1−Σ  conditional on data and other 
parameters can be written as 

                                                 
3 Estimation of β  in the panel count data models is similar to estimation of sβ  in the MVPLN model.  
4 Data augmentation views unobserved or latent variables as unknown parameters (to be estimated), in order to 
establish iterative algorithms. 
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( ) ( ) ( )1 1

1

, ,
n

W S i
i

f Vπ ν φ− −
Σ Σ

=

Σ ∝ Σ Σ∏ε ε 0r        (12) 

where Wf  denotes the Wishart density with νΣ  degrees of freedom and scale matrix VΣ .  
After manipulating Equation (12), this density can be written as a Wishart kernel with 

degrees of freedom n νΣ+  and scale matrix ( )
1

1

1

n

i i
i

V
−

−
Σ

=

⎡ ⎤′+⎢ ⎥⎣ ⎦
∑ ε εr r . In other words, 
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1
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1
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=

⎛ ⎞⎡ ⎤′Σ + +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
∑ ε εr r        (13) 

This is a known parametric distribution and thus can be sampled using a Gibbs sampler. 

In order to sample ε  from its posterior density ( ) ( )
1

, , , ,
n

i i
i

yπ β π β
=

Σ = Σ∏ε ε yr r , consider 

simply the ith posterior kernel density of iε
r , thanks to an assumption of no spatial correlation 

across segments. 

( ) ( ) ( ) ( )
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, , , exp , , ,is

S
y p

i i i i S i is is i i i i
s

x C C xπ β φ λ λ π β
=

Σ = Σ − = Σ∏ε y ε ε yr r r r r ,   (14) 

where ( )expis is s isxλ β ε′= + .  Draws from this conditional density can be obtained by developing 
an M-H algorithm, as described below. 

Following Chib et al. (1998), the multivariate t  distribution is used as the proposal 

density.  Let ( )ˆ ln , , ,arg max
i

p
i i i ixπ β⎡ ⎤= Σ⎣ ⎦

ε

ε ε y
r

r r r  and ( ) 1

i i
V Hε ε

−
= −  be the inverse of the 

Hessian of ( )ln , , ,p
i i ixπ β Σε yr r  at the mode ˆ

iε
r .  The mode ˆ

iε
r  and variance-covariance matrix 

i
Vε  can be obtained using the Newton-Raphson algorithm with the gradient vector 

( )1 exp
i i ixε β−= −Σ + − +⎡ ⎤⎣ ⎦i ig ε y εr r r r  and Hessian matrix ( )1 exp

i i iH diag xε β−= −Σ − +⎡ ⎤⎣ ⎦εr , where 
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M
.  Then, the proposal density is given by ( )ˆ , ,

iT i if Vε ενε εr , 

a multivariate- t  distribution with εν degrees of freedom (where εν  can be used as a tuning 
parameter in the M-H algorithms to make sure that the acceptance rate5 lies between 20 and 45 
percent6).  A proposal value *

iε
r  is drawn from ( )ˆ , ,

iT i if Vε ενε εr , and the chain moves to *
iε
r  from 

the current point iε
r  with probability 

                                                 
5 The acceptance rate is the fraction of proposed samples that is accepted.  If the proposal steps are too small, the 
chain will move around the space slowly and thus converge slowly on the true posterior density.  If the proposal 
steps are too large, the acceptance rate will be very low because the proposals are likely to land in regions of much 
lower probability density. 
6 Chib and Greenberg (1995) believe that an acceptance rate of 23 percent is desirable as the number of dimensions 
approaches infinity, and an acceptance rate of 45 percent is desirable for a one-dimensional random-walk chain. 
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( ) ( ) ( )
( ) ( )
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*
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If ( )*, , , ,i i i ixα β Σε ε yr r r  is greater than U  (where U  is uniformly distributed on [ ]0,1 ), the 

proposal value *
iε
r is accepted; otherwise, the current value iε

r  is kept as the new draw for the 
Markov chain.  

The samples of sβ , conditional on ε , y , X , Σ , and, sβ−  (where 

[ ]1 2 1 1, , , , , ,s s s Sβ β β β β β− − += K K ) are drawn from the posterior distribution, which is 
proportional to 

( ) ( ) ( )
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where ( )
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p
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j j s

C y Xπ β ε− ⋅ ⋅
= ≠

= Σ∏  (which does not involve sβ  and thus serves as a constant), 

and ( ) ( ) ( )
1

, , exp exp exp is
n y

s s s is is is is
i

p y X x xβ ε β ε β ε⋅ ⋅
=

′ ′= − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∏  is the probability mass 

function of ( )1 2, , ,s s s nsy y y y⋅ = K  given sβ , X  and ( )1 2, , ,s s s nsε ε ε ε⋅ = K .  Note that the sβ ’s 

( { }1, 2, ,s S∈ K ) are assumed to be independent of one another. 
A scheme similar to the one sampling iε

r  is developed here to sample sβ .  The 
multivariate - t  once again serves as the proposal density.  Let 

( )ˆ ln , , , ,arg max
s

p
s s s s sy X

β

β π β ε β⋅ ⋅ −⎡ ⎤= Σ⎣ ⎦  be the mode, and ( ) 1

s s
V Hβ β

−
= −  the inverse of the 

Hessian of ( )ln , , , ,p
s sy Xπ β β− Σε  at the mode ˆ

sβ .  The mode ˆ
sβ  and variance-covariance 

matrix 
s

Vβ  can be obtained using the Newton-Raphson algorithm with the gradient 

vector ( )
0

1
0s s s sVβ β β β−= − − +gr  ( )

1

exp
n

is is s is is
i

y x xβ ε
=

′− +⎡ ⎤⎣ ⎦∑  and Hessian matrix 
0

1
s s

H Vβ β
−= − −  

( )
1

exp
n

is s is is is
i

x x xβ
=

′ ′+⎡ ⎤⎣ ⎦∑ εr .  Then, the proposal density is given by ( )ˆ , ,
sT s sf Vβ ββ β ν , a 

multivariate- t  distribution with βν degrees of freedom (where βν  can be used as a tuning 
parameter in the M-H algorithms to make sure that the acceptance rate lies between 20 and 45 
percent).  A proposal value *

sβ  is drawn from ( )ˆ , ,
sT s sf Vβ ββ β ν , and the chain moves to *

sβ  

from the current point sβ  with probability 
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( )
( ) ( )
( ) ( )

*

*

*

ˆ, , , , , ,
, , , , , min ,1

ˆ, , , , , ,
s

s

p
s s T s s

s s s p
s s T s s

y X f V
y X

y X f V

β β

β β

π β β β β ν
α β β β

π β β β β ν

−

−

−

⎧ ⎫Σ⎪ ⎪Σ ⎨ ⎬
Σ⎪ ⎪⎩ ⎭

ε
ε

ε
   (17) 

If ( )*, , , , ,s s sy Xα β β β− Σε  is greater than U (where U  is uniformly distributed on [ ]0,1 ), 

the proposal value *
sβ is accepted; otherwise, the current value sβ  is kept as the new draws for 

the Markov chain.  

DATA DESCRIPTION 
The crash data sets used here were collected from Washington State through the Highway Safety 
Information System (HSIS).  In order to examine traffic crashes patterns on rural two-lane 
roadways, this research considers crashes in the Puget Sound region.  A random sample of 60% 
of all rural two-lane road segments in this region was used for model estimation.  A total of 
7,773 rural two-lane highway segments (with an average segment length of 0.0655 miles7 and a 
total of 510 miles) are available for analysis.  This sample contains 16 fatal crashes, 50 disabling-
injury crashes, 180 non-disabling-injury crashes, 175 possible-injury crashes and 532 property-
damage-only (PDO).  Table 1 reports summary statistics for the dependent and independent 
variables employed in the analysis.  A variety of readily available variables are controlled for in 
the model, including design features, traffic intensity, location information, and roadway 
functional classification. 

MODEL ESTIMATION AND RESULTS 
Model Estimation 
The MVPLN regression model was estimated using a Bayesian approach.  The starting values 
for β  came from distinct univariate Poisson models (using the method of maximum likelihood 

estimation (MLE)).  The starting values for Σ  are 5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

I

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.  The MLE estimates 

for the five univariate Poisson models can be found in Ma (2006).  A Gibbs sampler and two M-
H algorithms were coded in the R language (an open-source statistical computing environment 
described at http://www.r-project.org/).  The prior distributions for the estimation are defined by 

the hyperparameters νΣ =10, 1
5V I−

Σ = , ( )0 0,0, ,0sβ ′= K , and 
0 14100

s
V Iβ = × .  The Gibbs sampler 

was implemented to obtain M = 8,000 draws for Σ .  The two M-H algorithms were implemented 
to obtain M = 8,000 draws for each of the 70145 =×  s'β  and each of the 865,385773,7 =×  
ε ’s, respectively.  The initial 1,000 draws were discarded as “burn-ins.”  An adequate burn-in 
period eliminates the influence of the starting values.  To help ensure chain convergence, the 

                                                 
7 It is quite possible that very short segments do not  faithfully represent the actual location of crashes, since police 
officers may locate crashes only to the nearest tenth of a mile.  Cluster analysis, wherein similar segments/conditions 
are merged (providing higher crash counts) can address some of this bias in reporting.  Ma and Kockelman (2006) 
conducted such an analysis with Washington State data. 
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Gibbs sampler and the two M-H algorithms were implemented using two sets of starting values8 
and both converged at the same posterior distribution of parameters.  Estimation results are 
presented in Tables 2 through 6. 

Based on the posterior density of Σ , positive correlations between crash counts at 
different levels of severity within the segment do appear to exist, in a statistically significant way.  
The univariate models are a special case of the MVPLN, with off-diagonal elements of Σ  equal 
to zero.  Given the MVPLN predictions’ added flexibility to represent such pattern, it is expected 
that they offer somewhat better predictions.   

Interpretation of Results 
The following discussion of results emphasizes disabling and fatal injuries (Tables 5 and 

6), since these arguably are of greatest concern to agencies and policymakers.  Moreover, the 
data on such outcomes are more likely to be reported and more reliably recorded than that for 
other crash outcomes (Blincoe et al., 2000).  Tables 2 through 4 provide crash count model 
estimates for the other three severity levels.  The signs of most coefficients are consistent 
throughout the models, indicating robust directions of effect for most control variables. 

Parameter estimates shown in Tables 2 through 6 suggest that roadway design plays an 
important role in predicting crash counts.  For example, holding all other factors fixed, more 
severe injury crashes are expected on sharper horizontal curves, while wider shoulders tend to 
reduce rates of less severe crashes (perhaps by offering added maneuverability space for crash 
avoidance).  Based on an average road segment’s attributes and the MVPLN model’s average 
parameter estimates, Table 7 provides estimates of percentage changes in crash rates as a 
function of various design details.  For example, a 5-feet increase in (average) right shoulder 
width (from 2 to 7 feet) is predicted to result in 7.04% fewer crashes (total) per 100 million VMT.  
A 26.6% higher average annual daily traffic level (rising from 3757 to 4757 vehicles) is 
predicted to increase total crash count by 16.4% — while reducing the total crash rate by 5.51%.  
In this way, the MVPLN model results offer statistically (and practically) significant insights into 
crash counts’ dependence on roadway design.  

The magnitudes of the parameter estimates for the MVPLN specification are not directly 
comparable to those of univariate Poisson models (shown in Ma, 2006) or those of univariate 
negative binomial (UVNB) models (also shown in Ma, 2006).  The reason for this is that the 
MVPLN model accounts for correlations across crash counts (by severity), and is therefore 
somewhat different from the univariate cases.  However, a comparison of parameter signs shows 
that sharper curves are associated with more fatal crashes in all three models (MVPLN, UVP, 
and UVNB).  The rest of control variables are not statistically significant in both the UVP and 
UVNB models; however, some of these control variables remain showing a statistically 
significant effect on fatal crash occurrence in the MVPLN model.  For example, speed limit is 
not statistically significant in the univariate models but is expected to increase fatal crash rates in 
the MVPLN model.  Vertical curve length and segment grade show the same pattern of effects 
on disabling-injury crashes in all three models.  For example, long vertical curves are predicted 
to reduce disabling-injury crashes, but steeper segments are associated more disabling-injury 
crashes.  The coefficient signs for remaining control variables are not in agreement across all 
three models, indicating that specification choice is important to a proper understanding of crash 
count relationships. 

                                                 
8 Zeros were used as the starting values for β  in the second chain.  
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Based on the description of the correlation effects earlier in the paper, we should expect 
the MVPLN specification to yield a superior crash prediction model because the crash counts by 
severity on the same segment of roadway are found to be correlated with one another as shown 
in Table 8.  Note that this is not a theoretical point, but rather an empirical one: in other words, 
where potential correlation exists, it should be modeled.  Like the MVNB approach, our 
approach allows for overdispersion.  The correlations may be caused by omitted variables (such 
as pavement quality, sight distance, driveway density, and surrounding land use), which can 
influence crash occurrence at all levels of severity.  Essentially, higher crash rates of one type are 
associated with higher crash rates of other types.  Negative correlations are not likely in models 
of crash prediction since crash likelihood for all crash types is likely to rise due to the same 
deficiencies in roadway design, or other unobserved factors. 

In addition, out-of-sample predictions from both univariate and multivariate models are 
compared for the different groups.  Table 9 suggests that the MVPLN model with MCMC draws 
predicts better than the univariate models (UVP and UVNB).  This is because the MVPLN 
model addresses the issue of unobserved heterogeneity and allows for correlations among crash 
counts at all levels of severity.   

CONCLUSIONS 
Roadway safety is a major concern for the general public -- and its transport agencies.  Roadway 
crashes claim many lives and cause substantial economic losses each year.  The situation is of 
particular interest on rural two-lane roadways, which experience significantly higher fatality 
rates than urban roads.  There have been numerous efforts devoted to investigating crash 
occurrence as related to roadway design features, environmental conditions and traffic levels.  
However, almost all such research has relied on univariate count models; that is, traffic crash 
counts at different levels of severity have been estimated separately.  The widely used univariate 
count data models neglect the interdependence of crash counts at different levels of severity for a 
specific segment of roadway. 

This research simultaneously models correlated crash counts at different levels of 
severity using an MVPLN regression specification, which allows for a rather general correlation 
structure as well as overdispersion.  With recent advancements in crash modeling and Bayesian 
statistics, parameter estimation is achieved within the Bayesian paradigm, using a Gibbs Sampler 
and Metropolis-Hastings algorithms. 

Crash counts for over 7,773 homogeneous segments of rural two-lane Washington State 
roadways in the Puget Sound region in 2002 were used to estimate the model.  Thanks to MCMC 
simulation techniques, the marginal posterior distributions of all parameters of interest were 
obtained, and estimation results from the MVPLN approach offered better predictions than those 
from univariate Poisson and negative binomial models.   

As anticipated, the results lend themselves to several recommendations for highway 
safety treatments and design policies.  For example, adding shoulder width is predicted to be 
highly cost-effective, in terms of the crash cost reductions over the long run. 

The current MVPLN specification assumes no spatial correlation across roadway 
segments.  Various unobserved variables may play very similar roles in determining crash 
frequency on adjacent roadway segments.  The assumption of no spatial correlation is actually 
too strong in this case.  These uncontrolled (or simply unobserved) factors may also render 
significant spatial correlations over time (see, e.g., Meliker et al., 2004; Miaou et al., 2003; 
Pawlovich et al., 1998.)  Additionally, the high level of correlation between PDO and disabling 
crashes may indicate some ambiguity or weakness in severity classification schemes, if one 
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believes that unobserved heterogeneity in omitted variables should generate significant 
correlation (e.g., in data sets with relatively few control variables available). 

The framework of this research is established in its parametric assumptions.  Parametric 
methods can be implemented using assumptions of underlying distributions and relationships.  
Misspecification of the distribution may lead to serious errors in subsequent data analysis.  Semi-
parametric and nonparametric regression analysis relaxes these assumptions9 (see, e.g., Gurmu et 
al., 1999; Wooldridge, 1999; Alfò and Trovato, 2004).  For example, Gurmu et al. (1999) 
developed a semiparametric approach to investigate overdispersed count data using a Laguerre 
series expansion of an unknown density function for unobserved heterogeneity.   

The cost of relaxing such assumption requires more computation and, in some instances, 
a more difficult-to-understand result.  The benefits of nonparametric methods include a 
potentially more accurate estimate of the regression function and often “exact” probability 
statements, regardless of the shape of the population distribution from which the random sample 
was drawn (Damien, 2005).   

The MVPLN model estimated here incorporates the safety effects of several roadway 
design and traffic features of interest to traffic and transportation engineers.  However, several 
features of interest that are not available have been omitted from the model, including, for 
example, driveway density and sight distance.  In addition, the model generally treats the effects 
of individual geometric design features as independent of one another and ignores potential 
interactions among them.  Such interactions may exist (such as combinations of horizontal and 
vertical curvature on the same segment), and these should be examined in the future endeavors of 
this type.   
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Table 1  Summary Statistics of Variables 

 
Variable Name Mean Std. Dev. Min Max 

Dependent Variables 
Number of fatal crashes 0.002058 .04533 0 1
Number of disabling injury crashes 0.006433 .07995 0 1
Number of non-disabling injury crashes 0.02316 .1587 0 3
Number of possible injury crashes 0.02251 .2045 0 11
Number of PDO crashes 0.06844 .3345 0 12

Independent Variables 
Segment length (miles) 0.0655 .08689 .00 1.92
Horizontal curve length (feet) 247.6 475.4 .00 4715
Degree of curvature (°/100feet) 2.337 5.462 .00 100.5
Vertical curve length (feet) 302.7 376.0 .00 3200
Vertical grade (%) 1.805 1.991 .00 16.13
Average shoulder width on each side (feet) 2.087 1.298 .00 16.50
Surface width (feet)10 24.00 4.461 16.0 73.0
Posted speed limit (miles/hour) 49.62 8.163 25.0 60.0
Posted speed limit squared (miles2/hour2) 2528 715.5 625 3600
Average annual daily traffic (AADT) 3757 2,729 254 28,624
Indicator for principal arterial: 1=yes, 0=otherwise 0.48 0.499 0 1
Indicator for minor arterial: 1=yes, 0=otherwise 0.28 0.451 0 1
Indicator for collector: 1=yes, 0=otherwise 0.24 0.430 0 1
Indicator for level terrain: 1=yes, 0=otherwise 0.36 0.482 0 1
Indicator for rolling terrain: 1=yes, 0=otherwise 0.60 0.491 0 1
Indicator for mountainous terrain: 1=yes, 
0=otherwise 0.04 0.194 0 1

Vehicle miles traveled (VMT) in 2002 88,106 142,830 .00 2,679,710
The natural logarithm of VMT 10.45 2.737 -22.35 14.80
Number of observations 7,773

 

                                                 
10 Surface width does not include the width of shoulders (paved or unpaved). 
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Table 2  PDO Crash Frequency MVPLN Model Results 

 
Variable definition Mean Std. Err. The 95% (2.5-97.5%) 

sample-based credible sets 
Constant -12.64 0.4562 -13.38 -11.88
Horizontal curve length (feet) 2.09E-05 1.35E-05 -1.31E-06 4.27E-05 
Degree of curvature (°/100feet) 0.1241 6.31E-03 0.1136 0.1344
Vertical curve length (feet) -2.05E-04 1.97E-05 -2.37E-04 -1.73E-04
Vertical grade (%) 0.1377 0.01441 0.1134 0.1609
Average shoulder width (feet) -0.01125 3.54E-03 -0.01694 -5.28E-03
Surface width (feet) -0.01520 5.25E-04 -0.01607 -0.01434
Posted speed limit (miles/hour) 0.01493 2.89E-03 0.01014 0.01972
Posted speed limit squared 
(miles2/hour2) -1.53E-04 8.64E-05 -2.97E-04 -1.33E-05

Average annual daily traffic (AADT) 4.79E-05 2.03E-06 4.46E-05 5.13E-05
Indicator for minor arterial: 1=yes, 
0=otherwise -0.01112 0.01631 -0.03759 0.01568 

Indicator for collector: 1=yes, 
0=otherwise -0.009441 0.01872 -0.04049 0.02080 

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.03929 0.01439 0.01526 0.06240

Indicator for mountainous terrain: 
1=yes, 0=otherwise 0.6120 0.04687 0.5355 0.6888

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically significant way, based 

on the 95% (2.5-97.5) sample-based credible sets. 
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Table 3  Possible-Injury Crash Frequency MVPLN Model Results 
 

Variable definition Mean Std. Err. The 95% (2.5-97.5%) 
sample-based credible sets 

Constant -15.85 0.8120 -17.22 -14.53
Horizontal curve length (feet) 2.90E-05 2.37E-05 -8.46E-06 6.90E-05 
Degree of curvature (°/100feet) 0.1031 7.09E-03 0.09136 0.1147
Vertical curve length (feet) -2.97E-04 1.30E-05 -3.18E-04 -2.76E-04
Vertical grade (%) 0.1616 9.20E-03 0.1465 0.1766
Average shoulder width (feet) -8.71E-03 9.48E-04 -0.01027 -7.17E-03
Surface width (feet) -0.01258 7.16E-04 -0.01371 -0.01139
Posted speed limit (miles/hour) 0.03116 5.25E-03 0.02238 0.03970
Posted speed limit squared 
(miles2/hour2) -1.40E-05 1.57E-05 -4.02E-05 1.19E-05 

Average annual daily traffic (AADT) 1.08E-04 3.28E-06 1.03E-04 1.13E-04
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2257 0.02809 0.1799 0.2729

Indicator for collector: 1=yes, 
0=otherwise 0.4971 0.03114 0.4448 0.5478

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.2344 0.02530 -0.2756 -0.1934

Indicator for mountainous terrain: 
1=yes, 0=otherwise -0.3552 0.1301 -0.5677 -0.1452

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically significant way, based 

on the 95% (2.5-97.5) sample-based credible sets. 
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Table 4  Non-disabling Injury Crash Frequency MVPLN Model Results 
 

Variable definition Mean Std. Err. The 95% (2.5-97.5%) 
sample-based credible sets 

Constant -15.37 0.9321 -16.89 -13.81
Horizontal curve length (feet) -2.01E-05 2.41E-06 -2.41E-05 -1.61E-05
Degree of curvature (°/100feet) 0.1576 6.04E-03 0.1477 0.1676
Vertical curve length (feet) -2.04E-04 1.12E-05 -2.22E-04 -1.85E-04
Vertical grade (%) 0.1850 0.01532 0.1602 0.2110
Average shoulder width (feet) -4.69E-03 9.17E-04 -6.22E-03 -3.22E-03
Surface width (feet) -0.01079 1.25E-03 -0.01287 -8.72E-03
Posted speed limit (miles/hour) 0.01335 1.73E-03 0.01051 0.01621
Posted speed limit squared 
(miles2/hour2) -2.30E-04 1.56E-04 -4.82E-04 3.38E-05 

Average annual daily traffic (AADT) 2.37E-06 3.55E-06 -3.46E-06 8.24E-06 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.2489 0.02867 0.2025 0.2963

Indicator for collector: 1=yes, 
0=otherwise 0.4896 0.03679 0.4292 0.5508

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.1341 0.02343 0.09553 0.1733

Indicator for mountainous terrain: 
1=yes, 0=otherwise -0.1685 0.1100 -0.3428 0.01523 

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically significant way, based 

on the 95% (2.5-97.5) sample-based credible sets. 
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Table 5  Disabling Injury Crash Frequency MVPLN Model Results 
 

Variable definition Mean Std. Err. The 95% (2.5-97.5%) 
sample-based credible sets 

Constant -16.73 2.182 -20.37 -13.12
Horizontal curve length (feet) 6.49E-05 3.97E-05 3.70E-07 1.30E-04
Degree of curvature (°/100feet) 0.02029 6.64E-03 9.62E-03 0.03097
Vertical curve length (feet) -3.69E-04 3.63E-05 -4.28E-04 -3.10E-04
Vertical grade (%) 0.1431 0.01101 0.1255 0.1607
Average shoulder width (feet) 6.27E-03 0.01656 -0.02102 0.03334 
Surface width (feet) -9.85E-03 1.47E-03 -0.01226 -7.41E-03
Posted speed limit (miles/hour) 0.01040 1.81E-03 7.42E-03 0.01344
Posted speed limit squared 
(miles2/hour2) 3.48E-04 3.22E-04 -1.94E-04 8.64E-04 

Average annual daily traffic (AADT) 5.34E-04 5.78E-05 4.38E-04 6.30E-04
Indicator for minor arterial: 1=yes, 
0=otherwise 0.3470 0.04676 0.2700 0.4243

Indicator for collector: 1=yes, 
0=otherwise 0.4106 0.05675 0.3171 0.5033

Indicator for rolling terrain: 1=yes, 
0=otherwise 0.2814 0.04212 0.2133 0.3498

Indicator for mountainous terrain: 
1=yes, 0=otherwise 167.6 115.3 -24.93 355.2 

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically significant way, based 

on the 95% (2.5-97.5) sample-based credible sets. 
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Table 6  Fatal Crash Frequency MVPLN Model Results 
 

Variable definition Mean Std. Err. The 95% (2.5-97.5%) 
sample-based credible sets 

Constant -24.46 6.780 -35.61 -13.63
Horizontal curve length (feet) -3.56E-05 5.67E-06 -4.47E-05 -2.63E-05
Degree of curvature (°/100feet) 0.02080 1.23E-03 0.01868 0.02274
Vertical curve length (feet) 3.67E-05 1.07E-05 1.93E-05 5.39E-05
Vertical grade (%) -0.05849 0.02737 -0.1032 -0.01380
Average shoulder width (feet) 0.01766 0.03147 -0.03503 0.06981 
Surface width (feet) 0.05338 0.02102 0.01937 0.08909
Posted speed limit (miles/hour) 0.01463 2.27E-03 0.01073 0.01835
Posted speed limit squared 
(miles2/hour2) 1.78E-04 9.08E-04 -1.34E-03 1.64E-03 

Average annual daily traffic (AADT) 1.64E-05 1.30E-05 -4.62E-06 3.83E-05 
Indicator for minor arterial: 1=yes, 
0=otherwise 0.1532 0.09024 3.70E-03 0.3053

Indicator for collector: 1=yes, 
0=otherwise 0.4176 0.1206 0.2263 0.6169

Indicator for rolling terrain: 1=yes, 
0=otherwise -0.1714 0.07712 -0.2997 -0.04648

Indicator for mountainous terrain: 
1=yes, 0=otherwise 1.801 0.2251 1.436 2.172

Number of observations 7,773
Note: Smaller, lighter font is used for parameters that do not differ from zero in a statistically significant way, based 

on the 95% (2.5-97.5) sample-based credible sets. 
 
 

Table 7  Expected Percentage Changes in Crash Rates Corresponding to Changes in 
Variables 

 
Percentage change in crash rates (per 100 million VMT) 

Variables Averages 
Changes 

in 
Variable Fatal Disabling Non-

disabling Possible PDO  Total 

CURV_LGT 248 (ft) +100 -0.36% 0.65% -0.20% — — 0.30%
DEG_CURV 2.3 (°/100ft) +2 4.08% 3.98% 27.04% 18.63% 21.98% 18.58%
VCUR_LGT 303 (ft) +100 0.37% -3.76% -2.06% -3.01% -2.08% -2.52%
PCT_GRAD 1.805 +2 -12.41% 24.88% 30.93% 27.62% 24.07% 24.86%
SHLDWID 2.1 (ft) +5 — — -5.54% -6.49% -7.89% -7.04%
SURF_WID 24 (ft) +5 -12.52% -58.65% -5.36% -6.49% 4.76% 0.04%
SPD_LIMT 50 (mi/h) +10 28.97% 38.56% -12.72% 25.64% -1.95% 12.99%
AADT 3757 +1000 — 41.37% — 10.24% 4.68% 16.42%
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Table 8  Correlation-Coefficients of iε
r  

 

 Fatal Disabling Non-Disabling Possible injury PDO 
Fatal 1 0.04207 0.01777 0.02191 0.02718 
Disabling 0.04207 1 0.05061 0.06100 0.4328 
Non-Disabling 0.01777 0.05061 1 0.08071 0.1304 
Possible injury 0.02191 0.06100 0.08071 1 0.3552 
PDO 0.02718 0.4328 0.1304 0.3552 1 

 
 
 

Table 9  Comparisons of Crash Predictions from Univariate and Multivariate Models 
 

 PDO Possible Non-
disabling Disabling Fatal 

Observed 981 331 287 83 23 
Prediction 1050 432.6 384.3 120.8 30.44 
Difference 69.24 101.6 97.32 37.77 7.444 UVP 
Percentage Difference 7.06% 30.70% 33.91% 45.51% 32.37% 
Prediction 1039 396.5 345.4 104.8 29.91 
Difference 58 65.5 58.4 21.8 6.91 UVNB 
Percentage Difference 5.91% 19.79% 20.35% 26.27% 30.04% 
Prediction 1013 358.2 310.1 96.8 27.13 
Difference 32 27.2 23.1 13.8 4.13 MVPLN111 
Percentage Difference 3.26% 8.22% 8.05% 16.63% 17.96% 
Prediction 1005 348.3 306.4 97.17 26.52 
Difference 24 17.3 19.4 14.17 3.52 MVPLN212 
Percentage Difference 2.45% 5.23% 6.76% 17.07% 15.30% 

Note: A total of 13,050 rural two-lane road segments in the Puget Sound region were used for model prediction. 
 

 
 

                                                 
11 The MVPLN1 predictions were computed as follows: (1) 1,000 samples of all severity-specific parameters were 
taken from a multivariate normal distribution with the posterior distribution’s mean and correlation correlations; (2) 
1,000 samples of nuisance parameters (error terms) were drawn from a multivariate normal with zero and correlation 
coefficients shown in Table 8; (3) expected crash counts for each segment were calculated, for all 1,000 samples. 
12 The MVPLN2 predictions were obtained as follows: (1) 7,000 samples of nuisance parameters (error terms) were 
drawn from a multivariate normal with zero mean and correlation coefficients shown in Table 8; (2) 7,000 expected 
crash counts were computed for all segments using these 7,000 draws along with the 7,000 draws from the MCMC 
simulation. 
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