CE 365K Hydraulic Engineering Design, Spring 2014

Review for First Exam

The material is classified according to *Bloom's Taxonomy of Educational Objectives*:

Level	Title	Meaning
1	Knowledge	Definitions, facts, formulas
2	Comprehension	Explanation of definitions, formulas, problem solving procedures
3	Application	Know how to use a formula or procedure to solve simple problems
4	Analysis	Break down a complex problem and solve by steps
5	Synthesis	Derivation of basic formulas, design of new systems
6	Evaluation	Advantages and limitations of alternative approaches

Lectures

Lecture	Торіс	Level
1	Urban drainage	2
2	Open channel flow	2
3	Hydraulic engineering design and digital campus	3
4	Hydrodesign process	4
5	University closed by weather conditions	
6	Rational method for a single area	5
7	Flooding at the national scale	2
8	Flooding in New York City. Flow in streets	3
9	Flow in gutters and inlets. LIDAR elevation data and TINs	4
10	Flow in a storm sewer	4
11	Consultant overview (Scott Edelman, AECOM)	2
12	Rational method for multiple drainage areas	5
13	Urban water quality and low impact development (Dr Barrett)	2

Readings

Торіс	Level	
CAEE Strategic plan	2	
Low Impact Development Manual Chapters 1 and 4	3	
Hydrodesign and digital campus	2	
Austin Drainage Criteria Manual, Chapter 2	5	
Biggert-Waters 2012 Senate Hearing (Video) (Min 18-45)	3	
TR-55 Manual, Chapter 3	4	
Applied Hydrology, Chapter 15, Section 1		

Expected Knowledge

1. What is hydraulic engineering design and how is it similar to or different from other forms of civil engineering design?

- 2. At what spatial scales does hydraulic engineering design operate, and how do problems differ across those scales?
- 3. What are the steps in a hydraulic engineering design?
- 4. What role does GIS play in representation of the physical environment for hydraulic engineering design? What are the different forms in which data can be presented in GIS?
- 5. What is the time of concentration and how is this determined for flow in a small urban watershed?
- 6. How is the velocity and discharge of flow determined
 - a. For a unit width of flow on a street
 - b. For flow in a gutter
 - c. For flow in a storm sewer pipe
- 7. Determine the design discharge by the Rational Method
- 8. Determine the pipe sizes in a storm sewer network using the Rational Method
- 9. Calculate the spread of flow on a street and compare to maximum criteria
- 10. Calculate the flow into a storm sewer inlet and the proportion of flow that bypasses it.

You may bring a review sheet $8/5 \ge 11$ inches with you with anything on it on both sides of the paper that you want.