# Introduction to Bentley FlowMaster CE 365K, Hydraulic Engineering Design, Spring 2015

Prepared by Cassandra Fagan

# Contents

| Goals of the Tutorial                | 1 |
|--------------------------------------|---|
| Procedure                            | 1 |
| (1) Opening Bentley FlowMaster       | 1 |
| (2) Using Bentley FlowMaster         | 1 |
| (3) Creating a Rating Curve          | 6 |
| (4) Creating a Channel Cross-Section | 7 |

## **Goals of the Tutorial**

This tutorial will introduce you to the capabilities of the Bentley FlowMaster Program. This includes hydraulic design and analysis of pipes, channels and other flow elements, creating rating curves, and creating channel cross-sections.

## Procedure

## (1) Opening Bentley FlowMaster

Open the program by double-clicking the FlowMaster icon, seen below, on your desktop or click **Start > All Programs > Bentley > FlowMaster, and select FlowMaster**.



## (2) Using Bentley FlowMaster

Once you are in the program, you should see the welcome window pictured below.

| Sentley FlowMaster V8i (SELECTseries 1)               |                                                             |
|-------------------------------------------------------|-------------------------------------------------------------|
| Eile Edit Analysis View Tools Window Help             |                                                             |
| = 🗋 • 🚵 🗟 😓 🖻 📕 = % 🖻 🖻 + 6 📲 = 🏟 🤅                   |                                                             |
| Tabular Reports * Detailed Report Rating Table Rating | g Curve 🔛 Cross Section 🔄 GVF Profile 🔄 GVF Profile Table 💂 |
| Project Explorer 7 X                                  |                                                             |
| 🖹 🛨                                                   |                                                             |
| 🖻 -                                                   |                                                             |
| <u>■</u> -                                            | Welcome to Bentley FlowMaster V8i (SELECTseries 1)          |
| <b>∞</b> •                                            | Welcome to benney how waster vol (see ensents 1)            |
|                                                       | Introduction to FlowMaster                                  |
|                                                       |                                                             |
|                                                       | Tutorials                                                   |
|                                                       | Create New Project                                          |
|                                                       |                                                             |
|                                                       | Create Worksheet                                            |
|                                                       | Open Existing Project                                       |
|                                                       |                                                             |
|                                                       | Show This Dialog at Start 11/4/2009 [08.11.01.03]           |
|                                                       | Close                                                       |
|                                                       |                                                             |

In the welcome window, select **Create New Project**. A project titled **Untitled1.fm8** should appear under the Project Explorer Panel on the left. Right click on the project and choose **Save As**. **Navigate to the folder** you will be using to save your files, **enter a filename** and choose **Save**.



Before starting an analysis, it is important to check the default unit system for the project. Go to **Tools** on the top menu bar, and select **Options.** To change the unit system from US to SI, select **Reset Default-SI**, and click **Okay.** For this tutorial SI units will be used.

| 👌 🗟 🗞 Opti         |                                 |                 |                      |               |
|--------------------|---------------------------------|-----------------|----------------------|---------------|
| oular Reports Flex | Units ProjectWise               |                 | _                    |               |
| Tutoria            |                                 | t Defaults - SI | 🏷 Reset              | Defaults - US |
| Defa               | ult Unit System for New Project |                 | JS                   | •             |
|                    | Formatter                       | Unit            | Display<br>Precision | Format        |
| 1                  | Angle                           | radians         | 2                    | Fixed Point   |
| 2                  | Active Grate Weir Length        | m               | 2                    | Fixed Point   |
| 3                  | Adjusted Weir Coefficient       | SI              | 2                    | Fixed Point   |
| 4                  | Average End Depth Over Rise     | %               | 2                    | Fixed Point   |
| 5                  | Bottom Width                    | m               | 2                    | Fixed Point   |
| 6                  | Bypass Flow                     | m³/s            | 2                    | Fixed Point   |
| 7                  | Centroid Elevation              | m               | 2                    | Fixed Point   |
| 8                  | Channel Slope                   | m/m             | 5                    | Fixed Point   |
| 9                  | Clogging                        | %               | 2                    | Fixed Point   |
| 10                 | Crest Breadth                   | m               | 2                    | Fixed Point   |
| 11                 | Crest Elevation                 | m               | 2                    | Fixed Point   |
| 12                 | Crest Length                    | m               | 2                    | Fixed Point   |
| 13                 | Critical Depth                  | m               | 2                    | Fixed Point   |
| 14                 | Critical Elevation              | m               | 2                    | Fixed Point   |
| 15                 | Critical Slope                  | m/m             | 5                    | Fixed Point   |
| 16                 | Curb Opening Length             | m               | 2                    | Fixed Point   |
| 17                 | Depth                           | m               | 2                    | Fixed Point   |
| 18                 | Diameter                        | m               | 2                    | Fixed Point   |
| 19                 | Discharge                       | m³/s            | 2                    | Fixed Point   |
| 20                 | DischargeCoefficient            |                 | 2                    | Fixed Point   |
| 21                 | Discharge Full                  | m³/s            | 2                    | Fixed Point   |
| 22                 | Distance                        | m               | 2                    | Fixed Point   |
| 23                 | Efficiency                      | %               | 2                    | Fixed Point   |

Under **File** in the menu tab, **select New**, then **select Worksheet**. In the **Create New Worksheet** you can explore the various flow elements that FlowMaster can analyze. An unlimited number of worksheets can be created within a project file to analyze a variety of flow elements. To begin, **select Open Channels** under Categories and then **double-click Rectangular Channel**.

| Edit Analysis View I                                      | 8 B B 1 4 A                                                        |                       |                        | C. I 57   |
|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------------|------------------------|-----------|
| bular Reports   Detailed Project Explorer Tutorial 1, fm8 |                                                                    | ole 🔛 Rating          | Curve 🖮 Cross          | Section 🔄 |
| Create New Worksheet                                      |                                                                    |                       |                        | Ŀ         |
| Categories:<br>Open Channels<br>Pipes<br>Weirs<br>Orfices | Worksheets:<br>s<br>Rectangular<br>Channel<br>Parabolic<br>Channel | Triangular<br>Channel | Trapezoidal<br>Channel | Gutter    |
| Rectangular Channel                                       |                                                                    | ок                    | Cancel                 | Help      |

You will see the new worksheet for a rectangular channel on the screen. Select the tab next to **Solve For:** to view the channel variables FlowMaster can calculate. From these options **select Discharge.** Let's use FlowMaster to solve for the discharge of a **concrete rectangular channel** with a **longitudinal slope of 5%**, a **maximum depth of 0.3 meters**, and a **base width of 0.5 meters** using Manning's Equation. **Select** the tab next to **Friction Method**, and choose **Manning Formula**.

Under the **Solve For** tab are spaces to enter data for the rectangular channel. To enter the data for the Roughness Coefficient, select the ellipsis button, and expand the data field. A materials tab will appear on the screen. **Expand the Material Libraries, and Expand the MaterialLibray.xml**, pictured below. Scroll down through the materials, **select Concrete** and **click Okay**.

| 🛁 Worksheet : Rectangul                                                                  | lar Channel - 1                          | Materials                                                                                                                                                                                                                                                                 | Ξ |
|------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Uniform Flow Gradually V<br>Solve For: Discharge                                         | /aried Flow 🕘 Messag                     | Auminum<br>Auminum<br>Auminum structural plate 32 in CR                                                                                                                                                                                                                   | • |
| Roughness Coefficient:<br>Channel Slope:<br>Normal Depth:<br>Bottom Width:<br>Discharge: | 0.000<br>0.00000<br>0.00<br>0.00<br>0.00 | Auminum structural plate 32 in CR Histori<br>Asbestos Cement<br>Asphalt ditch<br>Asphalt pavement (rough)<br>Asphalt pavement (smooth)<br>Asphalted cast iron (new)<br>Bare soil<br>Bare soil<br>Best concrete<br>Brick in motar<br>Cast iron<br>Select a single element. | - |
| Bottom Width must be                                                                     | greater than zero.                       |                                                                                                                                                                                                                                                                           |   |
|                                                                                          |                                          | OK Cancel                                                                                                                                                                                                                                                                 |   |

**Enter the Channel slope** as a decimal, 0.05, in the channel slope field. **Enter** 0.3 in the **Normal Depth** Field, and **enter** 0.5 in the **Bottom Width** Field. The Discharge Field is highlighted in yellow because it is the field FlowMaster is solving for. To solve for the channel discharge select the solve button, 2. The results of the analysis are seen below.

| Jniform Flow | Gradually V  | aried Flow 🜖 N | lessages |                     |               |     |
|--------------|--------------|----------------|----------|---------------------|---------------|-----|
| Solve For:   | Discharge    |                | • 2      | Friction Method: Ma | nning Formula | •]  |
| Roughness (  | Coefficient: | 0.013          |          | Flow Area:          | 0.15          | m²  |
| Channel Slop | be:          | 0.05000        | m/m      | Wetted Perimeter:   | 1.10          | m   |
| Normal Depti | n:           | 0.30           | m        | Hydraulic Radius:   | 0.14          | m   |
| Bottom Width | 1:           | 0.50           | m        | Top Width:          | 0.50          | m   |
| Discharge:   |              | 0.68           | m³/s     | Critical Depth:     | 0.58          | m   |
|              |              |                |          | Critical Slope:     | 0.00980       | m/m |
|              |              |                |          | Velocity:           | 4.56          | m/s |
|              |              |                |          | Velocity Head:      | 1.06          | m   |
|              |              |                |          | Specific Energy:    | 1.36          | m   |
|              |              |                |          | Froude Number:      | 2.66          |     |
|              |              |                |          | Flow Type:          | Supercritical |     |

#### (3) Creating a Rating Curve

FlowMaster can be used to create rating and plot curves for flow elements that have been analyzed. To create a rating curve, discharge versus depth chart, for this channel select the Rating Curve Button, Rating Curve. In the Plot field select Discharge (m<sup>3</sup>/s). In the Vs. field Select Normal Depth. Enter 0 as the Minimum Value, 0.3 as the Maximum Value, and 0.01 as the Increment Value. For this analysis we will only plot Discharge versus Normal Depth, so select OK. If the rating curve does not come out looking like what you expect, check that you are plotting discharge vs normal depth. The default is to plot Discharge vs Roughness.

Note: FlowMaster allows you to create a different kind of rating curve by check the varying box and selecting another variable in the Vs. Field.

| 🍒 Bentley FlowMaster V8i (SELE                            | CTseries 1)                  |                                             |                       | (and a state of the state of th | or is Berlin, Succession |          |
|-----------------------------------------------------------|------------------------------|---------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|
| <u>Eile E</u> dit <u>A</u> nalysis <u>V</u> iew           | <u>T</u> ools <u>W</u> indow | <u>H</u> elp                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |          |
| : 🗋 • 🚵 🖶 🗞 📚 🗖 🖡                                         | \$ B B I                     | ካ 🎓 💂 🚳 🎯                                   | Ŧ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |          |
| Tabular Reports 🔹 📄 Detaile                               | ed Report 💽 Rati             | ng Table 🜃 Rating C                         | Curve 🔚 Cross Section | on 🔄 GVF Profile 🔄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GVF Profile Table        |          |
| Project Explorer 4 ×<br>Tutorial 1.fm8<br>• Rectangular C | Rating Curve Se<br>Plot:     | etup : Rectangular Ch<br>Discharge (m³/s) 🔹 | nannel - 1            | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Increment                | <b>×</b> |
| •                                                         | Vs:                          | Normal Depth (m)                            | • 0.00                | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01                     |          |
| Lah                                                       |                              |                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |          |
| € +<br>10                                                 | 🔲 Varying:                   | Channel Slope (m/ 🔫                         | 0.00000               | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00000                  |          |

A rating curve, pictured below, should appear on the screen. To customize the rating curve use the Chart Options tool by **selecting** the **Chart Options...** icon.



### (4) Creating a Channel Cross-Section

Under the Analysis menu bar, select the **Cross Section** button. **Note: The rating curve window must be closed to create a channel cross-section. Enter** the **Report Title** in the Cross Section Setup, and select **OK**.

| Report Title: | Cross Section f | or Rectan | gular Channe | 1-1      |
|---------------|-----------------|-----------|--------------|----------|
| Aspect Ratio: | 1.00            | H:V       | 🥅 Manua      | al Scale |
| ОК            | Cancel          |           | Help         | Ì        |

After selecting OK, the channel cross-section will appear on the screen. To print the crosssection, **click Print Preview** and then **click Print**.

| -   -          |
|----------------|
| 0.30 m         |
|                |
| V: 1 L<br>H: 1 |
|                |