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Airborne Lidar
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Airborne laser altimetry technology (L|DAR nght Detectlon And Ranging)
provides high-resolution topographical data, which can significantly
contribute to a better representation of land surface. A valuable
characteristic of this technology, which marks advantages over the
traditional topographic survey technigues, is the capability to derive a high-
resolution Digital Terrain Model (DTM) from the last pulse LIDAR data by
filtering the vegetation points (Slatton et al., 2007).
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Digital Camera Image LIDAR Elevation Discrete Return Profile
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Raw LIDAR
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Topographic Lidar

A=1064 nm

Green LIDAR

A=532nm+A=1064 nm

It is important to remember that the
deep water surfaces normally do not
reflect the signal: however this is not
true in case of presence of floating
sediments or when using bathymetric
lidar. The bathymetric lidar, that is
based on the same principles as
topographic lidar, emits laser beams
in two wavelengths: an infrared (1064
nm) and a green one (532 nm). The
infrared wavelength is reflected on the
water surface, while the green one
penetrates the water and is reflected
by the bottom surface or other objects
in the water. Due to this reason the
bathymetric lidar is also called green
lidar.
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During optimal environment
condition, when the water is clear,
the green lidar survey may reach
50 m water depth with an horizontal
accuracy of 2.5 m, and vertical
accuracy of +0.25 m. This
technology is growing fast, and
some of the first applications in
rivers are coming out (Hilldale and
Raff, 2008; McKean et al., 2009).
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Example 1: Le Sueur River basin

Le Sueur River located in south-central Minnesota,
covers an area of 2880 km? (87% row-crop
agriculture)

Provides ~ 24%-30% of the TSS entering the
Minnesota River

Pepin
Minnesota River major source of sediment for Lake
Pepin (~85% of TSS load)

‘Le Sueur

Turbidity and related nutrients levels of Lake Pepin
clvaton (1 are far in excess of EPA standards

,( .a;

State of Minnesota required to determine the

sources of pollution and take management and

policy actions "
NCED Research
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Example 2: Limiting factors analysis of Coho salmon

River networks produce a highly structured pattern of process and morphology
downstream.

This structure can be exploited to predict habitat and carrying capacity of species
throughout the watershed.

Ripple: spatially explicit model that links quantitatively topography, habitat carrying
capacity and population dynamics for an entire watershed.
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From specific examples to the large picture

Hydrologic and sediment modeling need detailed information of basin
geomorphological characteristics; channel form relevant to floods.

Input basin geomorphological characteristics to determine habitat limitations.

Spatial-temporal patterns of extreme floods f(drainage area, slope, stream
morphology....); spatial analysis of channel properties as related to extreme events.

Effect of climate variability on floods and consequently on channel morphology.

Need to understand channel form deeply



Digital elevation data

Data resolution available until recently 30-100 m.

Tirso basin, Italy . s
Resolution 100.m x 100 m % AT _ Y m x 90 m
Data source: University of Padova *‘5‘?“‘*\ iee: WUniversity of Padova




Rio Cordon basin, Selva di Cadore, Italy

channel heads &
shallow landslides

colluvial channels
deep landslide

&
“alluvial channel <' :

Slide courtesy of Dr. Paolo Tarolli, University of Padova, Italy



The role of data resolution

DTM 10x10 m

alluvial channel

Slide courtesy of Dr. Paolo Tarolli, University of Padova, Italy



The role of data resolution

DTM 1x1 m




Challenges in geomorphic feature extraction

250 500

Channel initiation

 Identification of accurate centerline
3| ©+ Presence of roads and bridges
 Atrtificial drainage ditches

« Small signal to noise ratio

» |dentification of channel banks

~ « Measurement of bluffs




How do we extract this information?

Methodologies available for determining channel initiation from DTMs often include
a threshold on drainage area, or a combination of area and slope.

Airborne LiDAR Systems Market
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“The LiDAR market is growing all around the world, but LiDAR handling software

is not and there is a void in LIDAR processing software.”
Richard Vincent —Virtual Geomatics

Tirso basin, Italy
Resolution 100 m x*100 m
Data source: University of Padova

Data from Leica Geosystems




extraction

Acknowledgments
Contributors
Data
¥ Documentation
b Code structure
FAQ
Matlab concepts
¥ Revision history
Test cases
Download
How-to
License
¥ News

New version of
GeoMet coming soon

~* Publications

¥ Conference
presentations

F Journal articles

Sitemap

Links

GeoNet 2.0

UT Austin CAEE
L-DEQ

Open Topo
NCALM

NCED

NSF-G55
NSF-GLD
Matlab

Search this site

Home

Welcome to GeoNet 2.0

GeoNet 2.0 is a MatLab-based computational tool for the automatic extraction of channel networks and geomorphic features
from lidar data. It is the newest version of GeoNet, following GeoNet 1.0 and GeoNet 1.0.1. GeoNet 2.0 has been sustantially
re-coded, but the basic idea behind the tool remains the same.

GeoNet combines nonlinear filtering for data preprocessing and cost minimization principles for feature extraction. The use of
nonlinear filtering achieves noise removal in low gradient areas and edge enhancement in high gradient areas, i.e., near feature
boundaries. After preprocessing, GeoNet extracts channels as geodesics—lines that minimize a cost function based on
fundamental geomorphic characteristics of channels such as flow accumulation and curvature.

GeoNet extracted network
=—=Surveyed network

GeoNet extraction of the Rio Col Duro river basin in the Eastern Italian Alps and comparison to the surveyed network (results
obtained with GeoNet 1.0.1) [Passalacqua, Tarolli and Foufoula-Georgiou, WRR, 2010].

Subpages (2): Acknowledgments Contributors

GeoNet: NCED toolbox for channel network



GeoNet: Nonlinear filtering

1. Nonlinear filtering: Enhance features of interest, while smoothing
small scale features. Perona and Malik [1990]

o.h(x,y,t)=V-(c(x,y,t)Vh)

1
C =

1+(vh|/2f




GeoNet: Statistical signature of geomorphic transitions
2.

Skeleton of likely channelized pixels: Set of pixels with curvature
above threshold, identified from quantile-quantile plot of curvature.
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The deviation of the pdf from Gaussian can be interpreted as transition
from hillslope to valley [Lashermes et al,. 2007].
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Channel extraction: geodesics

2. Geodesic minimization: Channels are extracted as paths of
minimum cost

The cost function y represents the cost of traveling between point a and
point b in terms of a function of area (A), slope (S), curvature (k) and
skeleton (Skel):

1 1
= e.g.,
f (A S, k, Skel) J a-A+0- -k

4




contour line (10 mint.)
Rio Col Duro basin
channel head

| landslide scar

- colluvial channel

bedrock channel

= alluvial channel

Passalacqua, P., P. Tarolli, and E. Foufoula-Georgiou, Water Resour. Res, 2010




Flat lands and channel morphology

Le Sueur River major source of sediment to the Minnesota River.
« Both listed as impaired for turbidity by USEPA.

* Need to identify sediment sources



Roads and ditches
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|dentification of likely channelized pixels in engineered
landscapes
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Passalacqua, P., P. Belmont, and E. Foufoula-Georgiou, Water Resour. Res., 2012
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Curvature analysis to distinguish channels and roads
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Laplacian curvature
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Differentiating natural versus artificial features
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Channel network extraction and bridge crossings
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Channel network extraction and area threshold
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Automatic extraction of channel morphology
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Automatic extraction of channel cross-section

Detection of bank location
|dentification of geomorphic bankfull water surface elevation

Measurements of channel width and of bank and bluff height



Automatic extraction of channel morphology
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Codependence of vegetation and drainage density
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gradient map (Imaizumi et al. [2010]).



Codependence of vegetation and drainage density
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Study Area

Six test sites were studied

for testing the

methodology.

The data for the test sites \ o>
was obtained from TNRIS

Slide courtesy of Harish Sangireddy, UT Austin



Site 1 results

The site has only streams and surrounding farmlands

dry stre

Slide courtesy of Harish Sangireddy, UT Austin



Site 2 results

Site has roads, streams, marshy areas, small culvert and drains by the
roadside

Slide courtesy of Harish Sangireddy, UT Austin



Site 6 results

Detects points around the water gaps and maps the geometry of stream properly

Probable
floodplain

Slide courtesy of Harish Sangireddy, UT Austin



Limitations

When the elevation difference is very small in the region, the model identifies all
low lying areas as water surfaces

farmland

Site 5

Slide courtesy of Harish Sangireddy, UT Austin
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